1120 lines
41 KiB
C
1120 lines
41 KiB
C
/* Definitions of target machine for GNU compiler, for IBM S/390
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
|
|
Ulrich Weigand (uweigand@de.ibm.com).
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#ifndef _S390_H
|
|
#define _S390_H
|
|
|
|
/* Override the __fixdfdi etc. routines when building libgcc2.
|
|
??? This should be done in a cleaner way ... */
|
|
#if defined (IN_LIBGCC2) && !defined (__s390x__)
|
|
#include <s390/fixdfdi.h>
|
|
#endif
|
|
|
|
|
|
/* Run-time target specification. */
|
|
|
|
/* Target CPU builtins. */
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
|
do \
|
|
{ \
|
|
builtin_assert ("cpu=s390"); \
|
|
builtin_assert ("machine=s390"); \
|
|
builtin_define ("__s390__"); \
|
|
if (TARGET_64BIT) \
|
|
builtin_define ("__s390x__"); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Optional target features. */
|
|
extern int target_flags;
|
|
|
|
#define TARGET_HARD_FLOAT (target_flags & 1)
|
|
#define TARGET_SOFT_FLOAT (!(target_flags & 1))
|
|
#define TARGET_BACKCHAIN (target_flags & 2)
|
|
#define TARGET_SMALL_EXEC (target_flags & 4)
|
|
#define TARGET_DEBUG_ARG (target_flags & 8)
|
|
#define TARGET_64BIT (target_flags & 16)
|
|
#define TARGET_MVCLE (target_flags & 32)
|
|
|
|
/* ??? Once this actually works, it could be made a runtime option. */
|
|
#define TARGET_IBM_FLOAT 0
|
|
#define TARGET_IEEE_FLOAT 1
|
|
|
|
#ifdef DEFAULT_TARGET_64BIT
|
|
#define TARGET_DEFAULT 0x13
|
|
#else
|
|
#define TARGET_DEFAULT 0x3
|
|
#endif
|
|
|
|
#define TARGET_SWITCHES \
|
|
{ { "hard-float", 1, N_("Use hardware fp")}, \
|
|
{ "soft-float", -1, N_("Don't use hardware fp")}, \
|
|
{ "backchain", 2, N_("Set backchain")}, \
|
|
{ "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")}, \
|
|
{ "small-exec", 4, N_("Use bras for executable < 64k")}, \
|
|
{ "no-small-exec",-4, N_("Don't use bras")}, \
|
|
{ "debug", 8, N_("Additional debug prints")}, \
|
|
{ "no-debug", -8, N_("Don't print additional debug prints")}, \
|
|
{ "64", 16, N_("64 bit mode")}, \
|
|
{ "31", -16, N_("31 bit mode")}, \
|
|
{ "mvcle", 32, N_("mvcle use")}, \
|
|
{ "no-mvcle", -32, N_("mvc&ex")}, \
|
|
{ "", TARGET_DEFAULT, 0 } }
|
|
|
|
/* Target version string. Overridden by the OS header. */
|
|
#ifdef DEFAULT_TARGET_64BIT
|
|
#define TARGET_VERSION fprintf (stderr, " (zSeries)");
|
|
#else
|
|
#define TARGET_VERSION fprintf (stderr, " (S/390)");
|
|
#endif
|
|
|
|
/* Hooks to override options. */
|
|
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
|
|
#define OVERRIDE_OPTIONS override_options ()
|
|
|
|
/* Frame pointer is not used for debugging. */
|
|
#define CAN_DEBUG_WITHOUT_FP
|
|
|
|
|
|
/* In libgcc2, determine target settings as compile-time constants. */
|
|
#ifdef IN_LIBGCC2
|
|
#undef TARGET_64BIT
|
|
#ifdef __s390x__
|
|
#define TARGET_64BIT 1
|
|
#else
|
|
#define TARGET_64BIT 0
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* Target machine storage layout. */
|
|
|
|
/* Everything is big-endian. */
|
|
#define BITS_BIG_ENDIAN 1
|
|
#define BYTES_BIG_ENDIAN 1
|
|
#define WORDS_BIG_ENDIAN 1
|
|
|
|
/* Width of a word, in units (bytes). */
|
|
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
|
#ifndef IN_LIBGCC2
|
|
#define MIN_UNITS_PER_WORD 4
|
|
#endif
|
|
#define MAX_BITS_PER_WORD 64
|
|
|
|
/* Function arguments and return values are promoted to word size. */
|
|
#define PROMOTE_FUNCTION_ARGS
|
|
#define PROMOTE_FUNCTION_RETURN
|
|
#define PROMOTE_FOR_CALL_ONLY
|
|
|
|
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
|
if (INTEGRAL_MODE_P (MODE) && \
|
|
GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
|
|
(MODE) = Pmode; \
|
|
}
|
|
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
|
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
|
|
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
|
#define STACK_BOUNDARY 64
|
|
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
|
#define FUNCTION_BOUNDARY 32
|
|
|
|
/* There is no point aligning anything to a rounder boundary than this. */
|
|
#define BIGGEST_ALIGNMENT 64
|
|
|
|
/* Alignment of field after `int : 0' in a structure. */
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
|
|
|
/* Alignment on even addresses for LARL instruction. */
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
|
|
|
|
/* Alignment is not required by the hardware. */
|
|
#define STRICT_ALIGNMENT 0
|
|
|
|
/* Mode of stack savearea.
|
|
FUNCTION is VOIDmode because calling convention maintains SP.
|
|
BLOCK needs Pmode for SP.
|
|
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
|
|
#define STACK_SAVEAREA_MODE(LEVEL) \
|
|
(LEVEL == SAVE_FUNCTION ? VOIDmode \
|
|
: LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
|
|
|
|
/* Define target floating point format. */
|
|
#define TARGET_FLOAT_FORMAT \
|
|
(TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
|
|
|
|
|
|
/* Type layout. */
|
|
|
|
/* Sizes in bits of the source language data types. */
|
|
#define SHORT_TYPE_SIZE 16
|
|
#define INT_TYPE_SIZE 32
|
|
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
|
|
#define MAX_LONG_TYPE_SIZE 64
|
|
#define LONG_LONG_TYPE_SIZE 64
|
|
#define FLOAT_TYPE_SIZE 32
|
|
#define DOUBLE_TYPE_SIZE 64
|
|
#define LONG_DOUBLE_TYPE_SIZE 64 /* ??? Should support extended format. */
|
|
|
|
/* We use "unsigned char" as default. */
|
|
#define DEFAULT_SIGNED_CHAR 0
|
|
|
|
|
|
/* Register usage. */
|
|
|
|
/* We have 16 general purpose registers (registers 0-15),
|
|
and 16 floating point registers (registers 16-31).
|
|
(On non-IEEE machines, we have only 4 fp registers.)
|
|
|
|
Amongst the general purpose registers, some are used
|
|
for specific purposes:
|
|
GPR 11: Hard frame pointer (if needed)
|
|
GPR 12: Global offset table pointer (if needed)
|
|
GPR 13: Literal pool base register
|
|
GPR 14: Return address register
|
|
GPR 15: Stack pointer
|
|
|
|
Registers 32-34 are 'fake' hard registers that do not
|
|
correspond to actual hardware:
|
|
Reg 32: Argument pointer
|
|
Reg 33: Condition code
|
|
Reg 34: Frame pointer */
|
|
|
|
#define FIRST_PSEUDO_REGISTER 35
|
|
|
|
/* Standard register usage. */
|
|
#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
|
|
#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
|
|
#define FP_REGNO_P(N) ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
|
|
#define CC_REGNO_P(N) ((N) == 33)
|
|
#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34)
|
|
|
|
#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
|
|
#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
|
|
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
|
|
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
|
|
#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
|
|
|
|
#define BASE_REGISTER 13
|
|
#define RETURN_REGNUM 14
|
|
#define CC_REGNUM 33
|
|
|
|
/* Set up fixed registers and calling convention:
|
|
|
|
GPRs 0-5 are always call-clobbered,
|
|
GPRs 6-15 are always call-saved.
|
|
GPR 12 is fixed if used as GOT pointer.
|
|
GPR 13 is always fixed (as literal pool pointer).
|
|
GPR 14 is always fixed (as return address).
|
|
GPR 15 is always fixed (as stack pointer).
|
|
The 'fake' hard registers are call-clobbered and fixed.
|
|
|
|
On 31-bit, FPRs 18-19 are call-clobbered;
|
|
on 64-bit, FPRs 24-31 are call-clobbered.
|
|
The remaining FPRs are call-saved. */
|
|
|
|
#define FIXED_REGISTERS \
|
|
{ 0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 1, 1, 1, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
1, 1, 1 }
|
|
|
|
#define CALL_USED_REGISTERS \
|
|
{ 1, 1, 1, 1, \
|
|
1, 1, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1 }
|
|
|
|
#define CALL_REALLY_USED_REGISTERS \
|
|
{ 1, 1, 1, 1, \
|
|
1, 1, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1 }
|
|
|
|
#define CONDITIONAL_REGISTER_USAGE \
|
|
do \
|
|
{ \
|
|
int i; \
|
|
\
|
|
if (flag_pic) \
|
|
{ \
|
|
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
|
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
|
} \
|
|
if (TARGET_64BIT) \
|
|
{ \
|
|
for (i = 24; i < 32; i++) \
|
|
call_used_regs[i] = call_really_used_regs[i] = 0; \
|
|
} \
|
|
else \
|
|
{ \
|
|
for (i = 18; i < 20; i++) \
|
|
call_used_regs[i] = call_really_used_regs[i] = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Preferred register allocation order. */
|
|
#define REG_ALLOC_ORDER \
|
|
{ 1, 2, 3, 4, 5, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, \
|
|
16, 17, 18, 19, 20, 21, 22, 23, \
|
|
24, 25, 26, 27, 28, 29, 30, 31, \
|
|
15, 32, 33, 34 }
|
|
|
|
|
|
/* Fitting values into registers. */
|
|
|
|
/* Integer modes <= word size fit into any GPR.
|
|
Integer modes > word size fit into successive GPRs, starting with
|
|
an even-numbered register.
|
|
SImode and DImode fit into FPRs as well.
|
|
|
|
Floating point modes <= word size fit into any FPR or GPR.
|
|
Floating point modes > word size (i.e. DFmode on 32-bit) fit
|
|
into any FPR, or an even-odd GPR pair.
|
|
|
|
Complex floating point modes fit either into two FPRs, or into
|
|
successive GPRs (again starting with an even number).
|
|
|
|
Condition code modes fit only into the CC register. */
|
|
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
|
(FP_REGNO_P(REGNO)? \
|
|
(GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
|
|
GENERAL_REGNO_P(REGNO)? \
|
|
((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
|
|
1)
|
|
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
|
(FP_REGNO_P(REGNO)? \
|
|
((MODE) == SImode || (MODE) == DImode || \
|
|
GET_MODE_CLASS(MODE) == MODE_FLOAT || \
|
|
GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
|
|
GENERAL_REGNO_P(REGNO)? \
|
|
(HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
|
|
CC_REGNO_P(REGNO)? \
|
|
GET_MODE_CLASS (MODE) == MODE_CC : \
|
|
FRAME_REGNO_P(REGNO)? \
|
|
(enum machine_mode) (MODE) == Pmode : \
|
|
0)
|
|
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
|
(((MODE1) == SFmode || (MODE1) == DFmode) \
|
|
== ((MODE2) == SFmode || (MODE2) == DFmode))
|
|
|
|
/* Maximum number of registers to represent a value of mode MODE
|
|
in a register of class CLASS. */
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
|
((CLASS) == FP_REGS ? \
|
|
(GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
|
|
(GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
|
|
|
/* If a 4-byte value is loaded into a FPR, it is placed into the
|
|
*upper* half of the register, not the lower. Therefore, we
|
|
cannot use SUBREGs to switch between modes in FP registers. */
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
|
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
|
|
? reg_classes_intersect_p (FP_REGS, CLASS) : 0)
|
|
|
|
/* Register classes. */
|
|
|
|
/* We use the following register classes:
|
|
GENERAL_REGS All general purpose registers
|
|
ADDR_REGS All general purpose registers except %r0
|
|
(These registers can be used in address generation)
|
|
FP_REGS All floating point registers
|
|
|
|
GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
|
|
ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
|
|
|
|
NO_REGS No registers
|
|
ALL_REGS All registers
|
|
|
|
Note that the 'fake' frame pointer and argument pointer registers
|
|
are included amongst the address registers here. The condition
|
|
code register is only included in ALL_REGS. */
|
|
|
|
enum reg_class
|
|
{
|
|
NO_REGS, ADDR_REGS, GENERAL_REGS,
|
|
FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
|
|
ALL_REGS, LIM_REG_CLASSES
|
|
};
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
|
|
|
#define REG_CLASS_NAMES \
|
|
{ "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
|
|
"FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
|
|
|
|
/* Class -> register mapping. */
|
|
#define REG_CLASS_CONTENTS \
|
|
{ \
|
|
{ 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
|
{ 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
|
|
{ 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
|
|
{ 0xffff0000, 0x00000000 }, /* FP_REGS */ \
|
|
{ 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
|
|
{ 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
|
|
{ 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
|
|
}
|
|
|
|
/* Register -> class mapping. */
|
|
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
|
|
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
|
|
|
|
/* ADDR_REGS can be used as base or index register. */
|
|
#define INDEX_REG_CLASS ADDR_REGS
|
|
#define BASE_REG_CLASS ADDR_REGS
|
|
|
|
/* Check whether REGNO is a hard register of the suitable class
|
|
or a pseudo register currently allocated to one such. */
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
|
(((REGNO) < FIRST_PSEUDO_REGISTER \
|
|
&& REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
|
|
|| (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
|
|
|
|
|
|
/* Given an rtx X being reloaded into a reg required to be in class CLASS,
|
|
return the class of reg to actually use. */
|
|
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
|
s390_preferred_reload_class ((X), (CLASS))
|
|
|
|
/* We need a secondary reload when loading a PLUS which is
|
|
not a valid operand for LOAD ADDRESS. */
|
|
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
|
s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
|
|
|
|
/* We need a secondary reload when storing a double-word
|
|
to a non-offsettable memory address. */
|
|
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
|
|
s390_secondary_output_reload_class ((CLASS), (MODE), (OUT))
|
|
|
|
/* We need secondary memory to move data between GPRs and FPRs. */
|
|
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
|
((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
|
|
|
|
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
|
|
because the movsi and movsf patterns don't handle r/f moves. */
|
|
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
|
|
(GET_MODE_BITSIZE (MODE) < 32 \
|
|
? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
|
|
: MODE)
|
|
|
|
|
|
/* Define various machine-dependent constraint letters. */
|
|
|
|
#define REG_CLASS_FROM_LETTER(C) \
|
|
((C) == 'a' ? ADDR_REGS : \
|
|
(C) == 'd' ? GENERAL_REGS : \
|
|
(C) == 'f' ? FP_REGS : NO_REGS)
|
|
|
|
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
|
((C) == 'I' ? (unsigned long) (VALUE) < 256 : \
|
|
(C) == 'J' ? (unsigned long) (VALUE) < 4096 : \
|
|
(C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : \
|
|
(C) == 'L' ? (unsigned long) (VALUE) < 65536 : 0)
|
|
|
|
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
|
|
|
|
#define EXTRA_CONSTRAINT(OP, C) \
|
|
((C) == 'Q' ? q_constraint (OP) : \
|
|
(C) == 'S' ? larl_operand (OP, GET_MODE (OP)) : 0)
|
|
|
|
#define EXTRA_MEMORY_CONSTRAINT(C) ((C) == 'Q')
|
|
|
|
|
|
/* Stack layout and calling conventions. */
|
|
|
|
/* Our stack grows from higher to lower addresses. However, local variables
|
|
are accessed by positive offsets, and function arguments are stored at
|
|
increasing addresses. */
|
|
#define STACK_GROWS_DOWNWARD
|
|
/* #undef FRAME_GROWS_DOWNWARD */
|
|
/* #undef ARGS_GROW_DOWNWARD */
|
|
|
|
/* The basic stack layout looks like this: the stack pointer points
|
|
to the register save area for called functions. Above that area
|
|
is the location to place outgoing arguments. Above those follow
|
|
dynamic allocations (alloca), and finally the local variables. */
|
|
|
|
/* Offset from stack-pointer to first location of outgoing args. */
|
|
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
|
|
|
|
/* Offset within stack frame to start allocating local variables at. */
|
|
extern int current_function_outgoing_args_size;
|
|
#define STARTING_FRAME_OFFSET \
|
|
(STACK_POINTER_OFFSET + current_function_outgoing_args_size)
|
|
|
|
/* Offset from the stack pointer register to an item dynamically
|
|
allocated on the stack, e.g., by `alloca'. */
|
|
#define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
|
|
|
|
/* Offset of first parameter from the argument pointer register value.
|
|
We have a fake argument pointer register that points directly to
|
|
the argument area. */
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
|
|
|
/* The return address of the current frame is retrieved
|
|
from the initial value of register RETURN_REGNUM.
|
|
For frames farther back, we use the stack slot where
|
|
the corresponding RETURN_REGNUM register was saved. */
|
|
|
|
#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
|
|
((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
|
|
plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
|
|
|
|
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
|
s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
|
|
|
|
/* In 31-bit mode, we need to mask off the high bit of return addresses. */
|
|
#define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
|
|
|
|
|
|
/* Exception handling. */
|
|
|
|
/* Describe calling conventions for DWARF-2 exception handling. */
|
|
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
|
|
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
|
|
#define DWARF_FRAME_RETURN_COLUMN 14
|
|
|
|
/* Describe how we implement __builtin_eh_return. */
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
|
|
#define EH_RETURN_HANDLER_RTX \
|
|
gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
|
|
TARGET_64BIT? -48 : -40))
|
|
|
|
/* Select a format to encode pointers in exception handling data. */
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
|
(flag_pic \
|
|
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
|
|
: DW_EH_PE_absptr)
|
|
|
|
|
|
/* Frame registers. */
|
|
|
|
#define STACK_POINTER_REGNUM 15
|
|
#define FRAME_POINTER_REGNUM 34
|
|
#define HARD_FRAME_POINTER_REGNUM 11
|
|
#define ARG_POINTER_REGNUM 32
|
|
|
|
/* The static chain must be call-clobbered, but not used for
|
|
function argument passing. As register 1 is clobbered by
|
|
the trampoline code, we only have one option. */
|
|
#define STATIC_CHAIN_REGNUM 0
|
|
|
|
/* Number of hardware registers that go into the DWARF-2 unwind info.
|
|
To avoid ABI incompatibility, this number must not change even as
|
|
'fake' hard registers are added or removed. */
|
|
#define DWARF_FRAME_REGISTERS 34
|
|
|
|
|
|
/* Frame pointer and argument pointer elimination. */
|
|
|
|
#define FRAME_POINTER_REQUIRED 0
|
|
|
|
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
|
|
|
|
#define ELIMINABLE_REGS \
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
|
|
|
|
#define CAN_ELIMINATE(FROM, TO) (1)
|
|
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
|
{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
|
{ (OFFSET) = 0; } \
|
|
else if ((FROM) == FRAME_POINTER_REGNUM \
|
|
&& (TO) == HARD_FRAME_POINTER_REGNUM) \
|
|
{ (OFFSET) = 0; } \
|
|
else if ((FROM) == ARG_POINTER_REGNUM \
|
|
&& (TO) == HARD_FRAME_POINTER_REGNUM) \
|
|
{ (OFFSET) = s390_arg_frame_offset (); } \
|
|
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
|
{ (OFFSET) = s390_arg_frame_offset (); } \
|
|
else \
|
|
abort(); \
|
|
}
|
|
|
|
|
|
/* Stack arguments. */
|
|
|
|
/* We need current_function_outgoing_args to be valid. */
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
|
|
|
/* Return doesn't modify the stack. */
|
|
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
|
|
|
|
|
|
/* Register arguments. */
|
|
|
|
typedef struct s390_arg_structure
|
|
{
|
|
int gprs; /* gpr so far */
|
|
int fprs; /* fpr so far */
|
|
}
|
|
CUMULATIVE_ARGS;
|
|
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
|
|
((CUM).gprs=0, (CUM).fprs=0)
|
|
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
|
s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
|
|
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
|
s390_function_arg (&CUM, MODE, TYPE, NAMED)
|
|
|
|
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
|
s390_function_arg_pass_by_reference (MODE, TYPE)
|
|
|
|
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
|
|
|
/* Arguments can be placed in general registers 2 to 6,
|
|
or in floating point registers 0 and 2. */
|
|
#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
|
|
(N) == 16 || (N) == 17)
|
|
|
|
|
|
/* Scalar return values. */
|
|
|
|
/* We return scalars in general purpose register 2 for integral values,
|
|
and floating point register 0 for fp values. */
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
|
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
|
|
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
|
|
|| POINTER_TYPE_P (VALTYPE) \
|
|
? word_mode : TYPE_MODE (VALTYPE), \
|
|
TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 16 : 2)
|
|
|
|
/* Define how to find the value returned by a library function assuming
|
|
the value has mode MODE. */
|
|
#define RET_REG(MODE) ((GET_MODE_CLASS (MODE) == MODE_INT \
|
|
|| TARGET_SOFT_FLOAT ) ? 2 : 16)
|
|
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RET_REG (MODE))
|
|
|
|
/* Only gpr 2 and fpr 0 are ever used as return registers. */
|
|
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
|
|
|
|
|
|
/* Aggregate return values. */
|
|
|
|
/* The definition of this macro implies that there are cases where
|
|
a scalar value cannot be returned in registers. */
|
|
#define RETURN_IN_MEMORY(type) \
|
|
(TYPE_MODE (type) == BLKmode || \
|
|
GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_INT || \
|
|
GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT)
|
|
|
|
/* Structure value address is passed as invisible first argument (gpr 2). */
|
|
#define STRUCT_VALUE 0
|
|
|
|
|
|
/* Function entry and exit. */
|
|
|
|
/* When returning from a function, the stack pointer does not matter. */
|
|
#define EXIT_IGNORE_STACK 1
|
|
|
|
|
|
/* Profiling. */
|
|
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
|
s390_function_profiler ((FILE), ((LABELNO)))
|
|
|
|
#define PROFILE_BEFORE_PROLOGUE 1
|
|
|
|
|
|
/* Implementing the varargs macros. */
|
|
|
|
#define BUILD_VA_LIST_TYPE(VALIST) \
|
|
(VALIST) = s390_build_va_list ()
|
|
|
|
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
|
|
s390_va_start (valist, nextarg)
|
|
|
|
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
|
|
s390_va_arg (valist, type)
|
|
|
|
|
|
/* Trampolines for nested functions. */
|
|
|
|
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
|
|
|
|
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
|
|
s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
|
|
|
|
#define TRAMPOLINE_TEMPLATE(FILE) \
|
|
s390_trampoline_template (FILE)
|
|
|
|
|
|
/* Library calls. */
|
|
|
|
/* We should use memcpy, not bcopy. */
|
|
#define TARGET_MEM_FUNCTIONS
|
|
|
|
|
|
/* Addressing modes, and classification of registers for them. */
|
|
|
|
/* Recognize any constant value that is a valid address. */
|
|
#define CONSTANT_ADDRESS_P(X) 0
|
|
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
|
#define MAX_REGS_PER_ADDRESS 2
|
|
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
|
|
its validity for a certain class. We have two alternate definitions
|
|
for each of them. The usual definition accepts all pseudo regs; the
|
|
other rejects them all. The symbol REG_OK_STRICT causes the latter
|
|
definition to be used.
|
|
|
|
Most source files want to accept pseudo regs in the hope that they will
|
|
get allocated to the class that the insn wants them to be in.
|
|
Some source files that are used after register allocation
|
|
need to be strict. */
|
|
|
|
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
|
|
((GET_MODE (X) == Pmode) && \
|
|
((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|
|
|| REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
|
|
|
|
#define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
|
|
|
|
#define REG_OK_FOR_INDEX_STRICT_P(X) \
|
|
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
|
|
|
|
#define REG_OK_FOR_BASE_STRICT_P(X) \
|
|
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
|
|
|
|
#ifndef REG_OK_STRICT
|
|
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
|
|
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
|
|
#else
|
|
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
|
|
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
|
|
#endif
|
|
|
|
/* S/390 has no mode dependent addresses. */
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
|
|
|
|
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
|
|
valid memory address for an instruction.
|
|
The MODE argument is the machine mode for the MEM expression
|
|
that wants to use this address. */
|
|
#ifdef REG_OK_STRICT
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
|
{ \
|
|
if (legitimate_address_p (MODE, X, 1)) \
|
|
goto ADDR; \
|
|
}
|
|
#else
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
|
{ \
|
|
if (legitimate_address_p (MODE, X, 0)) \
|
|
goto ADDR; \
|
|
}
|
|
#endif
|
|
|
|
/* Try machine-dependent ways of modifying an illegitimate address
|
|
to be legitimate. If we find one, return the new, valid address.
|
|
This macro is used in only one place: `memory_address' in explow.c. */
|
|
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
|
{ \
|
|
(X) = legitimize_address (X, OLDX, MODE); \
|
|
if (memory_address_p (MODE, X)) \
|
|
goto WIN; \
|
|
}
|
|
|
|
/* Nonzero if the constant value X is a legitimate general operand.
|
|
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
|
#define LEGITIMATE_CONSTANT_P(X) \
|
|
legitimate_constant_p (X)
|
|
|
|
/* Helper macro for s390.c and s390.md to check for symbolic constants. */
|
|
#define SYMBOLIC_CONST(X) \
|
|
(GET_CODE (X) == SYMBOL_REF \
|
|
|| GET_CODE (X) == LABEL_REF \
|
|
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
|
|
|
|
#define TLS_SYMBOLIC_CONST(X) \
|
|
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
|
|
|| (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
|
|
|
|
|
|
/* Condition codes. */
|
|
|
|
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
|
return the mode to be used for the comparison. */
|
|
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
|
|
|
|
/* Define the information needed to generate branch and scc insns. This is
|
|
stored from the compare operation. Note that we can't use "rtx" here
|
|
since it hasn't been defined! */
|
|
extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
|
|
|
|
|
|
/* Relative costs of operations. */
|
|
|
|
/* A part of a C `switch' statement that describes the relative costs
|
|
of constant RTL expressions. It must contain `case' labels for
|
|
expression codes `const_int', `const', `symbol_ref', `label_ref'
|
|
and `const_double'. Each case must ultimately reach a `return'
|
|
statement to return the relative cost of the use of that kind of
|
|
constant value in an expression. The cost may depend on the
|
|
precise value of the constant, which is available for examination
|
|
in X, and the rtx code of the expression in which it is contained,
|
|
found in OUTER_CODE.
|
|
|
|
CODE is the expression code--redundant, since it can be obtained
|
|
with `GET_CODE (X)'. */
|
|
/* Force_const_mem does not work out of reload, because the saveable_obstack
|
|
is set to reload_obstack, which does not live long enough.
|
|
Because of this we cannot use force_const_mem in addsi3.
|
|
This leads to problems with gen_add2_insn with a constant greater
|
|
than a short. Because of that we give an addition of greater
|
|
constants a cost of 3 (reload1.c 10096). */
|
|
|
|
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
|
|
case CONST: \
|
|
if ((GET_CODE (XEXP (RTX, 0)) == MINUS) && \
|
|
(GET_CODE (XEXP (XEXP (RTX, 0), 1)) != CONST_INT)) \
|
|
return 1000; \
|
|
case CONST_INT: \
|
|
if ((OUTER_CODE == PLUS) && \
|
|
((INTVAL (RTX) > 32767) || \
|
|
(INTVAL (RTX) < -32768))) \
|
|
return COSTS_N_INSNS (3); \
|
|
case LABEL_REF: \
|
|
case SYMBOL_REF: \
|
|
case CONST_DOUBLE: \
|
|
return 0; \
|
|
|
|
|
|
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
|
|
This can be used, for example, to indicate how costly a multiply
|
|
instruction is. In writing this macro, you can use the construct
|
|
`COSTS_N_INSNS (N)' to specify a cost equal to N fast
|
|
instructions. OUTER_CODE is the code of the expression in which X
|
|
is contained. */
|
|
|
|
#define RTX_COSTS(X, CODE, OUTER_CODE) \
|
|
case ASHIFT: \
|
|
case ASHIFTRT: \
|
|
case LSHIFTRT: \
|
|
case PLUS: \
|
|
case AND: \
|
|
case IOR: \
|
|
case XOR: \
|
|
case MINUS: \
|
|
case NEG: \
|
|
case NOT: \
|
|
return COSTS_N_INSNS (1); \
|
|
case MULT: \
|
|
if (GET_MODE (XEXP (X, 0)) == DImode) \
|
|
return COSTS_N_INSNS (40); \
|
|
else \
|
|
return COSTS_N_INSNS (7); \
|
|
case DIV: \
|
|
case UDIV: \
|
|
case MOD: \
|
|
case UMOD: \
|
|
return COSTS_N_INSNS (33);
|
|
|
|
|
|
/* An expression giving the cost of an addressing mode that contains
|
|
ADDRESS. If not defined, the cost is computed from the ADDRESS
|
|
expression and the `CONST_COSTS' values. */
|
|
#define ADDRESS_COST(RTX) s390_address_cost ((RTX))
|
|
|
|
/* On s390, copy between fprs and gprs is expensive. */
|
|
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
|
(( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
|
|
&& reg_classes_intersect_p ((CLASS2), FP_REGS)) \
|
|
|| ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
|
|
&& reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
|
|
|
|
/* A C expression for the cost of moving data of mode M between a
|
|
register and memory. A value of 2 is the default; this cost is
|
|
relative to those in `REGISTER_MOVE_COST'. */
|
|
#define MEMORY_MOVE_COST(M, C, I) 1
|
|
|
|
/* A C expression for the cost of a branch instruction. A value of 1
|
|
is the default; other values are interpreted relative to that. */
|
|
#define BRANCH_COST 1
|
|
|
|
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
|
#define SLOW_BYTE_ACCESS 1
|
|
|
|
/* The maximum number of bytes that a single instruction can move quickly
|
|
between memory and registers or between two memory locations. */
|
|
#define MOVE_MAX (TARGET_64BIT ? 16 : 8)
|
|
#define MAX_MOVE_MAX 16
|
|
|
|
/* Determine whether to use move_by_pieces or block move insn. */
|
|
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
|
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|
|
|| (TARGET_64BIT && (SIZE) == 8) )
|
|
|
|
/* Determine whether to use clear_by_pieces or block clear insn. */
|
|
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
|
|
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|
|
|| (TARGET_64BIT && (SIZE) == 8) )
|
|
|
|
/* Don't perform CSE on function addresses. */
|
|
#define NO_FUNCTION_CSE
|
|
|
|
|
|
/* Sections. */
|
|
|
|
/* Output before read-only data. */
|
|
#define TEXT_SECTION_ASM_OP ".text"
|
|
|
|
/* Output before writable (initialized) data. */
|
|
#define DATA_SECTION_ASM_OP ".data"
|
|
|
|
/* Output before writable (uninitialized) data. */
|
|
#define BSS_SECTION_ASM_OP ".bss"
|
|
|
|
/* S/390 constant pool breaks the devices in crtstuff.c to control section
|
|
in where code resides. We have to write it as asm code. */
|
|
#ifndef __s390x__
|
|
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
|
asm (SECTION_OP "\n\
|
|
bras\t%r2,1f\n\
|
|
0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
|
|
1: l\t%r3,0(%r2)\n\
|
|
bas\t%r14,0(%r3,%r2)\n\
|
|
.previous");
|
|
#endif
|
|
|
|
|
|
/* Position independent code. */
|
|
|
|
extern int flag_pic;
|
|
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
|
|
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
|
|
|
|
|
|
/* Assembler file format. */
|
|
|
|
/* Character to start a comment. */
|
|
#define ASM_COMMENT_START "#"
|
|
|
|
/* Declare an uninitialized external linkage data object. */
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
|
|
|
/* Globalizing directive for a label. */
|
|
#define GLOBAL_ASM_OP ".globl "
|
|
|
|
/* Advance the location counter to a multiple of 2**LOG bytes. */
|
|
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
|
if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
|
|
|
|
/* Advance the location counter by SIZE bytes. */
|
|
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
|
|
fprintf ((FILE), "\t.set\t.,.+%u\n", (SIZE))
|
|
|
|
/* Output a reference to a user-level label named NAME. */
|
|
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
|
|
asm_fprintf ((FILE), "%U%s", (*targetm.strip_name_encoding) (NAME))
|
|
|
|
/* Store in OUTPUT a string (made with alloca) containing
|
|
an assembler-name for a local static variable named NAME.
|
|
LABELNO is an integer which is different for each call. */
|
|
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
|
((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
|
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
|
|
|
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
|
|
#define LOCAL_LABEL_PREFIX "."
|
|
|
|
/* Either simplify a location expression, or return the original. */
|
|
#define ASM_SIMPLIFY_DWARF_ADDR(X) \
|
|
s390_simplify_dwarf_addr (X)
|
|
|
|
/* How to refer to registers in assembler output. This sequence is
|
|
indexed by compiler's hard-register-number (see above). */
|
|
#define REGISTER_NAMES \
|
|
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
|
|
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
|
|
"%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
|
|
"%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
|
|
"%ap", "%cc", "%fp" \
|
|
}
|
|
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE. */
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
|
|
|
/* Output an element of a case-vector that is absolute. */
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
|
do { \
|
|
char buf[32]; \
|
|
fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('\n', (FILE)); \
|
|
} while (0)
|
|
|
|
/* Output an element of a case-vector that is relative. */
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
|
do { \
|
|
char buf[32]; \
|
|
fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('-', (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('\n', (FILE)); \
|
|
} while (0)
|
|
|
|
|
|
/* Constant Pool for all symbols operands which are changed with
|
|
force_const_mem during insn generation (expand_insn). */
|
|
|
|
extern int s390_pool_count;
|
|
extern int s390_nr_constants;
|
|
|
|
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, fndecl, size) \
|
|
{ \
|
|
struct pool_constant *pool; \
|
|
\
|
|
if (s390_pool_count == -1) \
|
|
{ \
|
|
s390_nr_constants = 0; \
|
|
for (pool = first_pool; pool; pool = pool->next) \
|
|
if (pool->mark) s390_nr_constants++; \
|
|
return; \
|
|
} \
|
|
}
|
|
|
|
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, EXP, MODE, ALIGN, LABELNO, WIN) \
|
|
{ \
|
|
fprintf (FILE, ".LC%d:\n", LABELNO); \
|
|
\
|
|
/* Output the value of the constant itself. */ \
|
|
switch (GET_MODE_CLASS (MODE)) \
|
|
{ \
|
|
case MODE_FLOAT: \
|
|
if (GET_CODE (EXP) != CONST_DOUBLE) \
|
|
abort (); \
|
|
\
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, EXP); \
|
|
assemble_real (r, MODE, ALIGN); \
|
|
break; \
|
|
\
|
|
case MODE_INT: \
|
|
case MODE_PARTIAL_INT: \
|
|
if (GET_CODE (EXP) == CONST \
|
|
|| GET_CODE (EXP) == SYMBOL_REF \
|
|
|| GET_CODE (EXP) == LABEL_REF) \
|
|
{ \
|
|
fputs (integer_asm_op (UNITS_PER_WORD, TRUE), FILE); \
|
|
s390_output_symbolic_const (FILE, EXP); \
|
|
fputc ('\n', (FILE)); \
|
|
} \
|
|
else \
|
|
{ \
|
|
assemble_integer (EXP, GET_MODE_SIZE (MODE), ALIGN, 1); \
|
|
if (GET_MODE_SIZE (MODE) == 1) \
|
|
ASM_OUTPUT_SKIP ((FILE), 1); \
|
|
} \
|
|
break; \
|
|
\
|
|
default: \
|
|
abort (); \
|
|
} \
|
|
goto WIN; \
|
|
}
|
|
|
|
|
|
/* Miscellaneous parameters. */
|
|
|
|
/* Define the codes that are matched by predicates in aux-output.c. */
|
|
#define PREDICATE_CODES \
|
|
{"s_operand", { SUBREG, MEM }}, \
|
|
{"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
|
|
{"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
|
|
{"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
|
|
{"load_multiple_operation", {PARALLEL}}, \
|
|
{"store_multiple_operation", {PARALLEL}}, \
|
|
{"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
|
|
{"consttable_operand", { SYMBOL_REF, LABEL_REF, CONST, \
|
|
CONST_INT, CONST_DOUBLE }}, \
|
|
{"s390_plus_operand", { PLUS }},
|
|
|
|
/* Specify the machine mode that this machine uses for the index in the
|
|
tablejump instruction. */
|
|
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
|
|
|
|
/* Load from integral MODE < SI from memory into register makes sign_extend
|
|
or zero_extend
|
|
In our case sign_extension happens for Halfwords, other no extension. */
|
|
#define LOAD_EXTEND_OP(MODE) \
|
|
(TARGET_64BIT ? ((MODE) == QImode ? ZERO_EXTEND : \
|
|
(MODE) == HImode ? SIGN_EXTEND : NIL) \
|
|
: ((MODE) == HImode ? SIGN_EXTEND : NIL))
|
|
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
|
is done just by pretending it is already truncated. */
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
|
|
|
/* Specify the machine mode that pointers have.
|
|
After generation of rtl, the compiler makes no further distinction
|
|
between pointers and any other objects of this machine mode. */
|
|
#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
|
|
|
|
/* A function address in a call instruction is a byte address (for
|
|
indexing purposes) so give the MEM rtx a byte's mode. */
|
|
#define FUNCTION_MODE QImode
|
|
|
|
/* This macro definition sets up a default value for `main' to return. */
|
|
#define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
|
|
|
|
/* In rare cases, correct code generation requires extra machine dependent
|
|
processing between the second jump optimization pass and delayed branch
|
|
scheduling. On those machines, define this macro as a C statement to act on
|
|
the code starting at INSN. */
|
|
#define MACHINE_DEPENDENT_REORG(INSN) s390_machine_dependent_reorg (INSN)
|
|
|
|
#endif
|