freebsd-skq/sys/dev/hptmv/ioctl.c
John Baldwin 49b3fc4062 Various fixes to hptmv(4):
- Replace the global driver lock with a per-instance device lock.
- Use the per-instance device lock instead of Giant for the CAM sim lock.
- Add global locks to protect the adapter list and DPC queues.
- Use wakeup() and mtx_sleep() to wait for certain events like the
  controller going idle rather than polling via timeouts passed to
  tsleep().
- Use callout(9) instead of timeout(9).
- Mark the interrupt handler MPSAFE.
- Remove compat shims for FreeBSD versions older than 8.0.

Reviewed by:	Steve Chang <ychang@highpoint-tech.com>
2014-08-05 23:58:49 +00:00

950 lines
26 KiB
C

/*
* Copyright (c) 2004-2005 HighPoint Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* ioctl.c ioctl interface implementation
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#ifndef __KERNEL__
#define __KERNEL__
#endif
#include <dev/hptmv/global.h>
#include <dev/hptmv/hptintf.h>
#include <dev/hptmv/osbsd.h>
#include <dev/hptmv/access601.h>
#pragma pack(1)
typedef struct _HPT_REBUILD_PARAM
{
DEVICEID idMirror;
DWORD Lba;
UCHAR nSector;
} HPT_REBUILD_PARAM, *PHPT_REBUILD_PARAM;
#pragma pack()
#define MAX_EVENTS 10
static HPT_EVENT hpt_event_queue[MAX_EVENTS];
static int event_queue_head=0, event_queue_tail=0;
static int hpt_get_event(PHPT_EVENT pEvent);
static int hpt_set_array_state(DEVICEID idArray, DWORD state);
static void lock_driver_idle(IAL_ADAPTER_T *pAdapter);
static void HPTLIBAPI thread_io_done(_VBUS_ARG PCommand pCmd);
static int HPTLIBAPI R1ControlSgl(_VBUS_ARG PCommand pCmd,
FPSCAT_GATH pSgTable, int logical);
static void
get_disk_location(PDevice pDev, int *controller, int *channel)
{
IAL_ADAPTER_T *pAdapTemp;
int i, j;
*controller = *channel = 0;
for (i=1, pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next, i++) {
for (j=0; j<MV_SATA_CHANNELS_NUM; j++) {
if (pDev == &pAdapTemp->VDevices[j].u.disk) {
*controller = i;
*channel = j;
return;
}
}
}
}
static int
event_queue_add(PHPT_EVENT pEvent)
{
int p;
p = (event_queue_tail + 1) % MAX_EVENTS;
if (p==event_queue_head)
{
return -1;
}
hpt_event_queue[event_queue_tail] = *pEvent;
event_queue_tail = p;
return 0;
}
static int
event_queue_remove(PHPT_EVENT pEvent)
{
if (event_queue_head != event_queue_tail)
{
*pEvent = hpt_event_queue[event_queue_head];
event_queue_head++;
event_queue_head %= MAX_EVENTS;
return 0;
}
return -1;
}
void HPTLIBAPI
ioctl_ReportEvent(UCHAR event, PVOID param)
{
HPT_EVENT e;
ZeroMemory(&e, sizeof(e));
e.EventType = event;
switch(event)
{
case ET_INITIALIZE_ABORTED:
case ET_INITIALIZE_FAILED:
memcpy(e.Data, ((PVDevice)param)->u.array.ArrayName, MAX_ARRAY_NAME);
case ET_INITIALIZE_STARTED:
case ET_INITIALIZE_FINISHED:
case ET_REBUILD_STARTED:
case ET_REBUILD_ABORTED:
case ET_REBUILD_FAILED:
case ET_REBUILD_FINISHED:
case ET_VERIFY_STARTED:
case ET_VERIFY_ABORTED:
case ET_VERIFY_FAILED:
case ET_VERIFY_FINISHED:
case ET_VERIFY_DATA_ERROR:
case ET_SPARE_TOOK_OVER:
case ET_DEVICE_REMOVED:
case ET_DEVICE_PLUGGED:
case ET_DEVICE_ERROR:
e.DeviceID = VDEV_TO_ID((PVDevice)param);
break;
default:
break;
}
event_queue_add(&e);
if (event==ET_DEVICE_REMOVED) {
int controller, channel;
get_disk_location(&((PVDevice)param)->u.disk, &controller, &channel);
hpt_printk(("Device removed: controller %d channel %d\n", controller, channel));
}
wakeup(param);
}
static int
hpt_delete_array(_VBUS_ARG DEVICEID id, DWORD options)
{
PVDevice pArray = ID_TO_VDEV(id);
BOOLEAN del_block0 = (options & DAF_KEEP_DATA_IF_POSSIBLE)?0:1;
int i;
PVDevice pa;
if ((id==0) || check_VDevice_valid(pArray))
return -1;
if(!mIsArray(pArray)) return -1;
if (pArray->u.array.rf_rebuilding || pArray->u.array.rf_verifying ||
pArray->u.array.rf_initializing)
return -1;
for(i=0; i<pArray->u.array.bArnMember; i++) {
pa = pArray->u.array.pMember[i];
if (pa && mIsArray(pa)) {
if (pa->u.array.rf_rebuilding || pa->u.array.rf_verifying ||
pa->u.array.rf_initializing)
return -1;
}
}
if (pArray->pVBus!=_vbus_p) { HPT_ASSERT(0); return -1;}
fDeleteArray(_VBUS_P pArray, del_block0);
return 0;
}
/* just to prevent driver from sending more commands */
static void HPTLIBAPI nothing(_VBUS_ARG void *notused){}
void
lock_driver_idle(IAL_ADAPTER_T *pAdapter)
{
_VBUS_INST(&pAdapter->VBus)
mtx_lock(&pAdapter->lock);
while (pAdapter->outstandingCommands) {
KdPrint(("outstandingCommands is %d, wait..\n", pAdapter->outstandingCommands));
if (!mWaitingForIdle(_VBUS_P0)) CallWhenIdle(_VBUS_P nothing, 0);
mtx_sleep(pAdapter, &pAdapter->lock, 0, "hptidle", 0);
}
CheckIdleCall(_VBUS_P0);
}
int Kernel_DeviceIoControl(_VBUS_ARG
DWORD dwIoControlCode, /* operation control code */
PVOID lpInBuffer, /* input data buffer */
DWORD nInBufferSize, /* size of input data buffer */
PVOID lpOutBuffer, /* output data buffer */
DWORD nOutBufferSize, /* size of output data buffer */
PDWORD lpBytesReturned /* byte count */
)
{
IAL_ADAPTER_T *pAdapter;
switch(dwIoControlCode) {
case HPT_IOCTL_DELETE_ARRAY:
{
DEVICEID idArray;
int iSuccess;
int i;
PVDevice pArray;
PVBus _vbus_p;
struct cam_periph *periph = NULL;
if (nInBufferSize!=sizeof(DEVICEID)+sizeof(DWORD)) return -1;
if (nOutBufferSize!=sizeof(int)) return -1;
idArray = *(DEVICEID *)lpInBuffer;
pArray = ID_TO_VDEV(idArray);
if((idArray == 0) || check_VDevice_valid(pArray))
return -1;
if(!mIsArray(pArray))
return -1;
_vbus_p=pArray->pVBus;
pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
for(i = 0; i < MAX_VDEVICE_PER_VBUS; i++) {
if(pArray == _vbus_p->pVDevice[i])
{
periph = hpt_get_periph(pAdapter->mvSataAdapter.adapterId, i);
if (periph != NULL && periph->refcount >= 1)
{
hpt_printk(("Can not delete a mounted device.\n"));
return -1;
}
}
/* the Mounted Disk isn't delete */
}
iSuccess = hpt_delete_array(_VBUS_P idArray, *(DWORD*)((DEVICEID *)lpInBuffer+1));
*(int*)lpOutBuffer = iSuccess;
if(iSuccess != 0)
return -1;
break;
}
case HPT_IOCTL_GET_EVENT:
{
PHPT_EVENT pInfo;
if (nInBufferSize!=0) return -1;
if (nOutBufferSize!=sizeof(HPT_EVENT)) return -1;
pInfo = (PHPT_EVENT)lpOutBuffer;
if (hpt_get_event(pInfo)!=0)
return -1;
}
break;
case HPT_IOCTL_SET_ARRAY_STATE:
{
DEVICEID idArray;
DWORD state;
if (nInBufferSize!=sizeof(HPT_SET_STATE_PARAM)) return -1;
if (nOutBufferSize!=0) return -1;
idArray = ((PHPT_SET_STATE_PARAM)lpInBuffer)->idArray;
state = ((PHPT_SET_STATE_PARAM)lpInBuffer)->state;
if(hpt_set_array_state(idArray, state)!=0)
return -1;
}
break;
case HPT_IOCTL_RESCAN_DEVICES:
{
if (nInBufferSize!=0) return -1;
if (nOutBufferSize!=0) return -1;
#ifndef FOR_DEMO
/* stop buzzer if user perform rescan */
for (pAdapter=gIal_Adapter; pAdapter; pAdapter=pAdapter->next) {
if (pAdapter->beeping) {
pAdapter->beeping = 0;
BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress);
}
}
#endif
}
break;
default:
{
PVDevice pVDev;
switch(dwIoControlCode) {
/* read-only ioctl functions can be called directly. */
case HPT_IOCTL_GET_VERSION:
case HPT_IOCTL_GET_CONTROLLER_IDS:
case HPT_IOCTL_GET_CONTROLLER_COUNT:
case HPT_IOCTL_GET_CONTROLLER_INFO:
case HPT_IOCTL_GET_CHANNEL_INFO:
case HPT_IOCTL_GET_LOGICAL_DEVICES:
case HPT_IOCTL_GET_DEVICE_INFO:
case HPT_IOCTL_GET_DEVICE_INFO_V2:
case HPT_IOCTL_GET_EVENT:
case HPT_IOCTL_GET_DRIVER_CAPABILITIES:
if(hpt_default_ioctl(_VBUS_P dwIoControlCode, lpInBuffer, nInBufferSize,
lpOutBuffer, nOutBufferSize, lpBytesReturned) == -1) return -1;
break;
default:
/*
* GUI always use /proc/scsi/hptmv/0, so the _vbus_p param will be
* wrong for second controller.
*/
switch(dwIoControlCode) {
case HPT_IOCTL_CREATE_ARRAY:
pVDev = ID_TO_VDEV(((PCREATE_ARRAY_PARAMS)lpInBuffer)->Members[0]); break;
case HPT_IOCTL_CREATE_ARRAY_V2:
pVDev = ID_TO_VDEV(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->Members[0]); break;
case HPT_IOCTL_SET_ARRAY_INFO:
pVDev = ID_TO_VDEV(((PHPT_SET_ARRAY_INFO)lpInBuffer)->idArray); break;
case HPT_IOCTL_SET_DEVICE_INFO:
pVDev = ID_TO_VDEV(((PHPT_SET_DEVICE_INFO)lpInBuffer)->idDisk); break;
case HPT_IOCTL_SET_DEVICE_INFO_V2:
pVDev = ID_TO_VDEV(((PHPT_SET_DEVICE_INFO_V2)lpInBuffer)->idDisk); break;
case HPT_IOCTL_SET_BOOT_MARK:
case HPT_IOCTL_ADD_SPARE_DISK:
case HPT_IOCTL_REMOVE_SPARE_DISK:
pVDev = ID_TO_VDEV(*(DEVICEID *)lpInBuffer); break;
case HPT_IOCTL_ADD_DISK_TO_ARRAY:
pVDev = ID_TO_VDEV(((PHPT_ADD_DISK_TO_ARRAY)lpInBuffer)->idArray); break;
default:
pVDev = 0;
}
if (pVDev && !check_VDevice_valid(pVDev)){
_vbus_p = pVDev->pVBus;
pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
/*
* create_array, and other functions can't be executed while channel is
* perform I/O commands. Wait until driver is idle.
*/
lock_driver_idle(pAdapter);
if (hpt_default_ioctl(_VBUS_P dwIoControlCode, lpInBuffer, nInBufferSize,
lpOutBuffer, nOutBufferSize, lpBytesReturned) == -1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
mtx_unlock(&pAdapter->lock);
}
else
return -1;
break;
}
#ifdef SUPPORT_ARRAY
switch(dwIoControlCode)
{
case HPT_IOCTL_CREATE_ARRAY:
{
pAdapter=(IAL_ADAPTER_T *)(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->pVBus->OsExt;
mtx_lock(&pAdapter->lock);
if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_AND_DUPLICATE)
{
(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), DUPLICATE);
}
else if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_R5_ZERO_INIT)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), INITIALIZE);
}
else if(((PCREATE_ARRAY_PARAMS)lpInBuffer)->CreateFlags & CAF_CREATE_R5_BUILD_PARITY)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), REBUILD_PARITY);
}
mtx_unlock(&pAdapter->lock);
break;
}
case HPT_IOCTL_CREATE_ARRAY_V2:
{
pAdapter=(IAL_ADAPTER_T *)(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->pVBus->OsExt;
mtx_lock(&pAdapter->lock);
if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_AND_DUPLICATE) {
(ID_TO_VDEV(*(DEVICEID *)lpOutBuffer))->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), DUPLICATE);
} else if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_R5_ZERO_INIT) {
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), INITIALIZE);
} else if(((PCREATE_ARRAY_PARAMS_V2)lpInBuffer)->CreateFlags & CAF_CREATE_R5_BUILD_PARITY) {
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, ID_TO_VDEV(*(DEVICEID *)lpOutBuffer), REBUILD_PARITY);
}
mtx_unlock(&pAdapter->lock);
break;
}
case HPT_IOCTL_ADD_DISK_TO_ARRAY:
{
PVDevice pArray = ID_TO_VDEV(((PHPT_ADD_DISK_TO_ARRAY)lpInBuffer)->idArray);
pAdapter=(IAL_ADAPTER_T *)pArray->pVBus->OsExt;
if(pArray->u.array.rf_rebuilding == 0)
{
mtx_lock(&pAdapter->lock);
pArray->u.array.rf_auto_rebuild = 0;
pArray->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, DUPLICATE);
while (!pArray->u.array.rf_rebuilding)
{
if (mtx_sleep(pArray, &pAdapter->lock, 0, "hptwait", hz * 3) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
}
}
#endif
return 0;
}
}
if (lpBytesReturned)
*lpBytesReturned = nOutBufferSize;
return 0;
}
static int
hpt_get_event(PHPT_EVENT pEvent)
{
int ret = event_queue_remove(pEvent);
return ret;
}
static int
hpt_set_array_state(DEVICEID idArray, DWORD state)
{
IAL_ADAPTER_T *pAdapter;
PVDevice pVDevice = ID_TO_VDEV(idArray);
int i;
if(idArray == 0 || check_VDevice_valid(pVDevice)) return -1;
if(!mIsArray(pVDevice))
return -1;
if(!pVDevice->vf_online || pVDevice->u.array.rf_broken) return -1;
pAdapter=(IAL_ADAPTER_T *)pVDevice->pVBus->OsExt;
switch(state)
{
case MIRROR_REBUILD_START:
{
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_auto_rebuild = 0;
pVDevice->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice,
(UCHAR)((pVDevice->u.array.CriticalMembers || pVDevice->VDeviceType == VD_RAID_1)? DUPLICATE : REBUILD_PARITY));
while (!pVDevice->u.array.rf_rebuilding)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptwait", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case MIRROR_REBUILD_ABORT:
{
for(i = 0; i < pVDevice->u.array.bArnMember; i++) {
if(pVDevice->u.array.pMember[i] != 0 && pVDevice->u.array.pMember[i]->VDeviceType == VD_RAID_1)
hpt_set_array_state(VDEV_TO_ID(pVDevice->u.array.pMember[i]), state);
}
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_rebuilding != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptabrt", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_VERIFY_START:
{
/*if(pVDevice->u.array.rf_verifying)
return -1;*/
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.RebuildSectors = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice, VERIFY);
while (!pVDevice->u.array.rf_verifying)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptvrfy", hz * 20) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_VERIFY_ABORT:
{
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_verifying != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptvrfy", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_INITIALIZE_START:
{
mtx_lock(&pAdapter->lock);
if (pVDevice->u.array.rf_rebuilding ||
pVDevice->u.array.rf_verifying ||
pVDevice->u.array.rf_initializing) {
mtx_unlock(&pAdapter->lock);
return -1;
}
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pVDevice, VERIFY);
while (!pVDevice->u.array.rf_initializing)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptinit", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
case AS_INITIALIZE_ABORT:
{
mtx_lock(&pAdapter->lock);
if(pVDevice->u.array.rf_initializing != 1) {
mtx_unlock(&pAdapter->lock);
return -1;
}
pVDevice->u.array.rf_abort_rebuild = 1;
while (pVDevice->u.array.rf_abort_rebuild)
{
if (mtx_sleep(pVDevice, &pAdapter->lock, 0,
"hptinit", hz * 80) != 0)
break;
}
mtx_unlock(&pAdapter->lock);
}
break;
default:
return -1;
}
return 0;
}
int HPTLIBAPI
R1ControlSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSgTable, int logical)
{
ULONG bufferSize = SECTOR_TO_BYTE(pCmd->uCmd.R1Control.nSectors);
if (pCmd->uCmd.R1Control.Command==CTRL_CMD_VERIFY)
bufferSize<<=1;
if (logical) {
pSgTable->dSgAddress = (ULONG_PTR)pCmd->uCmd.R1Control.Buffer;
pSgTable->wSgSize = (USHORT)bufferSize;
pSgTable->wSgFlag = SG_FLAG_EOT;
}
else {
/* build physical SG table for pCmd->uCmd.R1Control.Buffer */
ADDRESS dataPointer, v, nextpage, currvaddr, nextvaddr, currphypage, nextphypage;
ULONG length;
int idx = 0;
v = pCmd->uCmd.R1Control.Buffer;
dataPointer = (ADDRESS)fOsPhysicalAddress(v);
if ((ULONG_PTR)dataPointer & 0x1)
return FALSE;
#define ON64KBOUNDARY(x) (((ULONG_PTR)(x) & 0xFFFF) == 0)
#define NOTNEIGHBORPAGE(highvaddr, lowvaddr) ((ULONG_PTR)(highvaddr) - (ULONG_PTR)(lowvaddr) != PAGE_SIZE)
do {
if (idx >= MAX_SG_DESCRIPTORS) return FALSE;
pSgTable[idx].dSgAddress = fOsPhysicalAddress(v);
currvaddr = v;
currphypage = (ADDRESS)fOsPhysicalAddress((void*)trunc_page((ULONG_PTR)currvaddr));
do {
nextpage = (ADDRESS)trunc_page(((ULONG_PTR)currvaddr + PAGE_SIZE));
nextvaddr = (ADDRESS)MIN(((ULONG_PTR)v + bufferSize), (ULONG_PTR)(nextpage));
if (nextvaddr == (ADDRESS)((ULONG_PTR)v + bufferSize)) break;
nextphypage = (ADDRESS)fOsPhysicalAddress(nextpage);
if (NOTNEIGHBORPAGE(nextphypage, currphypage) || ON64KBOUNDARY(nextphypage)) {
nextvaddr = nextpage;
break;
}
currvaddr = nextvaddr;
currphypage = nextphypage;
}while (1);
length = (ULONG_PTR)nextvaddr - (ULONG_PTR)v;
v = nextvaddr;
bufferSize -= length;
pSgTable[idx].wSgSize = (USHORT)length;
pSgTable[idx].wSgFlag = (bufferSize)? 0 : SG_FLAG_EOT;
idx++;
}while (bufferSize);
}
return 1;
}
static int End_Job=0;
void HPTLIBAPI
thread_io_done(_VBUS_ARG PCommand pCmd)
{
End_Job = 1;
wakeup((caddr_t)pCmd);
}
void
hpt_rebuild_data_block(IAL_ADAPTER_T *pAdapter, PVDevice pArray, UCHAR flags)
{
ULONG capacity = pArray->VDeviceCapacity / (pArray->u.array.bArnMember-1);
PCommand pCmd;
UINT result;
int needsync=0, retry=0, needdelete=0;
void *buffer = 0;
_VBUS_INST(&pAdapter->VBus)
if (pArray->u.array.rf_broken==1 ||
pArray->u.array.RebuildSectors>=capacity)
return;
mtx_lock(&pAdapter->lock);
switch(flags)
{
case DUPLICATE:
case REBUILD_PARITY:
if(pArray->u.array.rf_rebuilding == 0)
{
pArray->u.array.rf_rebuilding = 1;
hpt_printk(("Rebuilding started.\n"));
ioctl_ReportEvent(ET_REBUILD_STARTED, pArray);
}
break;
case INITIALIZE:
if(pArray->u.array.rf_initializing == 0)
{
pArray->u.array.rf_initializing = 1;
hpt_printk(("Initializing started.\n"));
ioctl_ReportEvent(ET_INITIALIZE_STARTED, pArray);
}
break;
case VERIFY:
if(pArray->u.array.rf_verifying == 0)
{
pArray->u.array.rf_verifying = 1;
hpt_printk(("Verifying started.\n"));
ioctl_ReportEvent(ET_VERIFY_STARTED, pArray);
}
break;
}
retry_cmd:
pCmd = AllocateCommand(_VBUS_P0);
HPT_ASSERT(pCmd);
pCmd->cf_control = 1;
End_Job = 0;
if (pArray->VDeviceType==VD_RAID_1)
{
#define MAX_REBUILD_SECTORS 0x40
/* take care for discontinuous buffer in R1ControlSgl */
buffer = malloc(SECTOR_TO_BYTE(MAX_REBUILD_SECTORS), M_DEVBUF, M_NOWAIT);
if(!buffer) {
FreeCommand(_VBUS_P pCmd);
hpt_printk(("can't allocate rebuild buffer\n"));
goto fail;
}
switch(flags)
{
case DUPLICATE:
pCmd->uCmd.R1Control.Command = CTRL_CMD_REBUILD;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS;
break;
case VERIFY:
pCmd->uCmd.R1Control.Command = CTRL_CMD_VERIFY;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS/2;
break;
case INITIALIZE:
pCmd->uCmd.R1Control.Command = CTRL_CMD_REBUILD;
pCmd->uCmd.R1Control.nSectors = MAX_REBUILD_SECTORS;
break;
}
pCmd->uCmd.R1Control.Lba = pArray->u.array.RebuildSectors;
if (capacity - pArray->u.array.RebuildSectors < pCmd->uCmd.R1Control.nSectors)
pCmd->uCmd.R1Control.nSectors = capacity - pArray->u.array.RebuildSectors;
pCmd->uCmd.R1Control.Buffer = buffer;
pCmd->pfnBuildSgl = R1ControlSgl;
}
else if (pArray->VDeviceType==VD_RAID_5)
{
switch(flags)
{
case DUPLICATE:
case REBUILD_PARITY:
pCmd->uCmd.R5Control.Command = CTRL_CMD_REBUILD; break;
case VERIFY:
pCmd->uCmd.R5Control.Command = CTRL_CMD_VERIFY; break;
case INITIALIZE:
pCmd->uCmd.R5Control.Command = CTRL_CMD_INIT; break;
}
pCmd->uCmd.R5Control.StripeLine=pArray->u.array.RebuildSectors>>pArray->u.array.bArBlockSizeShift;
}
else
HPT_ASSERT(0);
pCmd->pVDevice = pArray;
pCmd->pfnCompletion = thread_io_done;
pArray->pfnSendCommand(_VBUS_P pCmd);
CheckPendingCall(_VBUS_P0);
if (!End_Job) {
mtx_sleep(pCmd, &pAdapter->lock, 0, "hptrbld", hz * 60);
if (!End_Job) {
hpt_printk(("timeout, reset\n"));
fResetVBus(_VBUS_P0);
}
}
result = pCmd->Result;
FreeCommand(_VBUS_P pCmd);
if (buffer) free(buffer, M_DEVBUF);
KdPrintI(("cmd finished %d", result));
switch(result)
{
case RETURN_SUCCESS:
if (!pArray->u.array.rf_abort_rebuild)
{
if(pArray->u.array.RebuildSectors < capacity)
{
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, flags);
}
else
{
switch (flags)
{
case DUPLICATE:
case REBUILD_PARITY:
needsync = 1;
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_need_rebuild = 0;
pArray->u.array.CriticalMembers = 0;
pArray->u.array.RebuildSectors = MAX_LBA_T;
pArray->u.array.rf_duplicate_and_create = 0;
hpt_printk(("Rebuilding finished.\n"));
ioctl_ReportEvent(ET_REBUILD_FINISHED, pArray);
break;
case INITIALIZE:
needsync = 1;
pArray->u.array.rf_initializing = 0;
pArray->u.array.rf_need_rebuild = 0;
pArray->u.array.RebuildSectors = MAX_LBA_T;
hpt_printk(("Initializing finished.\n"));
ioctl_ReportEvent(ET_INITIALIZE_FINISHED, pArray);
break;
case VERIFY:
pArray->u.array.rf_verifying = 0;
hpt_printk(("Verifying finished.\n"));
ioctl_ReportEvent(ET_VERIFY_FINISHED, pArray);
break;
}
}
}
else
{
pArray->u.array.rf_abort_rebuild = 0;
if (pArray->u.array.rf_rebuilding)
{
hpt_printk(("Abort rebuilding.\n"));
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_duplicate_and_create = 0;
ioctl_ReportEvent(ET_REBUILD_ABORTED, pArray);
}
else if (pArray->u.array.rf_verifying)
{
hpt_printk(("Abort verifying.\n"));
pArray->u.array.rf_verifying = 0;
ioctl_ReportEvent(ET_VERIFY_ABORTED, pArray);
}
else if (pArray->u.array.rf_initializing)
{
hpt_printk(("Abort initializing.\n"));
pArray->u.array.rf_initializing = 0;
ioctl_ReportEvent(ET_INITIALIZE_ABORTED, pArray);
}
needdelete=1;
}
break;
case RETURN_DATA_ERROR:
if (flags==VERIFY)
{
needsync = 1;
pArray->u.array.rf_verifying = 0;
pArray->u.array.rf_need_rebuild = 1;
hpt_printk(("Verifying failed: found inconsistency\n"));
ioctl_ReportEvent(ET_VERIFY_DATA_ERROR, pArray);
ioctl_ReportEvent(ET_VERIFY_FAILED, pArray);
if (!pArray->vf_online || pArray->u.array.rf_broken) break;
pArray->u.array.rf_auto_rebuild = 0;
pArray->u.array.rf_abort_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray,
(pArray->VDeviceType == VD_RAID_1) ? DUPLICATE : REBUILD_PARITY);
}
break;
default:
hpt_printk(("command failed with error %d\n", result));
if (++retry<3)
{
hpt_printk(("retry (%d)\n", retry));
goto retry_cmd;
}
fail:
pArray->u.array.rf_abort_rebuild = 0;
switch (flags)
{
case DUPLICATE:
case REBUILD_PARITY:
needsync = 1;
pArray->u.array.rf_rebuilding = 0;
pArray->u.array.rf_duplicate_and_create = 0;
hpt_printk(((flags==DUPLICATE)? "Duplicating failed.\n":"Rebuilding failed.\n"));
ioctl_ReportEvent(ET_REBUILD_FAILED, pArray);
break;
case INITIALIZE:
needsync = 1;
pArray->u.array.rf_initializing = 0;
hpt_printk(("Initializing failed.\n"));
ioctl_ReportEvent(ET_INITIALIZE_FAILED, pArray);
break;
case VERIFY:
needsync = 1;
pArray->u.array.rf_verifying = 0;
hpt_printk(("Verifying failed.\n"));
ioctl_ReportEvent(ET_VERIFY_FAILED, pArray);
break;
}
needdelete=1;
}
while (pAdapter->outstandingCommands)
{
KdPrintI(("currcmds is %d, wait..\n", pAdapter->outstandingCommands));
/* put this to have driver stop processing system commands quickly */
if (!mWaitingForIdle(_VBUS_P0)) CallWhenIdle(_VBUS_P nothing, 0);
mtx_sleep(pAdapter, &pAdapter->lock, 0, "hptidle", 0);
}
if (needsync) SyncArrayInfo(pArray);
if(needdelete && (pArray->u.array.rf_duplicate_must_done || (flags == INITIALIZE)))
fDeleteArray(_VBUS_P pArray, TRUE);
Check_Idle_Call(pAdapter);
mtx_unlock(&pAdapter->lock);
}