f8f0945b09
this change both simplifies the code and plugs a hole where the devise was reset without keeping the management controller at bay :) Second, the 82571 LAA reset problem was incomplete, this addition is necessary. Just one of those days :)
5043 lines
146 KiB
C
5043 lines
146 KiB
C
/**************************************************************************
|
|
|
|
Copyright (c) 2001-2007, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***************************************************************************/
|
|
|
|
/*$FreeBSD$*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "e1000_api.h"
|
|
#include "e1000_82575.h"
|
|
#include "if_em.h"
|
|
|
|
/*********************************************************************
|
|
* Set this to one to display debug statistics
|
|
*********************************************************************/
|
|
int em_display_debug_stats = 0;
|
|
|
|
/*********************************************************************
|
|
* Driver version:
|
|
*********************************************************************/
|
|
char em_driver_version[] = "Version - 6.5.3";
|
|
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into e1000_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static em_vendor_info_t em_vendor_info_array[] =
|
|
{
|
|
/* Intel(R) PRO/1000 Network Connection */
|
|
{ 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575EM_FIBER_SERDES,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
/* required last entry */
|
|
{ 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings for all supported NICs.
|
|
*********************************************************************/
|
|
|
|
static char *em_strings[] = {
|
|
"Intel(R) PRO/1000 Network Connection"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int em_probe(device_t);
|
|
static int em_attach(device_t);
|
|
static int em_detach(device_t);
|
|
static int em_shutdown(device_t);
|
|
static int em_suspend(device_t);
|
|
static int em_resume(device_t);
|
|
static void em_start(struct ifnet *);
|
|
static void em_start_locked(struct ifnet *ifp);
|
|
static int em_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void em_watchdog(struct adapter *);
|
|
static void em_init(void *);
|
|
static void em_init_locked(struct adapter *);
|
|
static void em_stop(void *);
|
|
static void em_media_status(struct ifnet *, struct ifmediareq *);
|
|
static int em_media_change(struct ifnet *);
|
|
static void em_identify_hardware(struct adapter *);
|
|
static int em_allocate_pci_resources(struct adapter *);
|
|
static int em_allocate_intr(struct adapter *);
|
|
static void em_free_intr(struct adapter *);
|
|
static void em_free_pci_resources(struct adapter *);
|
|
static void em_local_timer(void *);
|
|
static int em_hardware_init(struct adapter *);
|
|
static void em_setup_interface(device_t, struct adapter *);
|
|
static int em_setup_transmit_structures(struct adapter *);
|
|
static void em_initialize_transmit_unit(struct adapter *);
|
|
static int em_setup_receive_structures(struct adapter *);
|
|
static void em_initialize_receive_unit(struct adapter *);
|
|
static void em_enable_intr(struct adapter *);
|
|
static void em_disable_intr(struct adapter *);
|
|
static void em_free_transmit_structures(struct adapter *);
|
|
static void em_free_receive_structures(struct adapter *);
|
|
static void em_update_stats_counters(struct adapter *);
|
|
static void em_txeof(struct adapter *);
|
|
static int em_allocate_receive_structures(struct adapter *);
|
|
static int em_allocate_transmit_structures(struct adapter *);
|
|
static int em_rxeof(struct adapter *, int);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static int em_fixup_rx(struct adapter *);
|
|
#endif
|
|
static void em_receive_checksum(struct adapter *, struct e1000_rx_desc *,
|
|
struct mbuf *);
|
|
static void em_transmit_checksum_setup(struct adapter *, struct mbuf *,
|
|
uint32_t *, uint32_t *);
|
|
static boolean_t em_tx_adv_ctx_setup(struct adapter *, struct mbuf *);
|
|
static boolean_t em_tso_setup(struct adapter *, struct mbuf *, uint32_t *,
|
|
uint32_t *);
|
|
static boolean_t em_tso_adv_setup(struct adapter *, struct mbuf *, uint32_t *);
|
|
static void em_set_promisc(struct adapter *);
|
|
static void em_disable_promisc(struct adapter *);
|
|
static void em_set_multi(struct adapter *);
|
|
static void em_print_hw_stats(struct adapter *);
|
|
static void em_update_link_status(struct adapter *);
|
|
static int em_get_buf(struct adapter *, int);
|
|
static void em_enable_vlans(struct adapter *);
|
|
static int em_encap(struct adapter *, struct mbuf **);
|
|
static int em_adv_encap(struct adapter *, struct mbuf **);
|
|
static void em_smartspeed(struct adapter *);
|
|
static int em_82547_fifo_workaround(struct adapter *, int);
|
|
static void em_82547_update_fifo_head(struct adapter *, int);
|
|
static int em_82547_tx_fifo_reset(struct adapter *);
|
|
static void em_82547_move_tail(void *);
|
|
static int em_dma_malloc(struct adapter *, bus_size_t,
|
|
struct em_dma_alloc *, int);
|
|
static void em_dma_free(struct adapter *, struct em_dma_alloc *);
|
|
static void em_print_debug_info(struct adapter *);
|
|
static int em_is_valid_ether_addr(uint8_t *);
|
|
static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
|
|
static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
|
|
static uint32_t em_fill_descriptors (bus_addr_t address, uint32_t length,
|
|
PDESC_ARRAY desc_array);
|
|
static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
|
|
static void em_add_int_delay_sysctl(struct adapter *, const char *,
|
|
const char *, struct em_int_delay_info *, int, int);
|
|
/* Management and WOL Support */
|
|
static void em_init_manageability(struct adapter *);
|
|
static void em_release_manageability(struct adapter *);
|
|
static void em_get_hw_control(struct adapter *);
|
|
static void em_release_hw_control(struct adapter *);
|
|
static void em_enable_wakeup(device_t);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t em_poll;
|
|
static void em_intr(void *);
|
|
#else
|
|
static int em_intr_fast(void *);
|
|
static void em_add_rx_process_limit(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
static void em_handle_rxtx(void *context, int pending);
|
|
static void em_handle_link(void *context, int pending);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t em_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, em_probe),
|
|
DEVMETHOD(device_attach, em_attach),
|
|
DEVMETHOD(device_detach, em_detach),
|
|
DEVMETHOD(device_shutdown, em_shutdown),
|
|
DEVMETHOD(device_suspend, em_suspend),
|
|
DEVMETHOD(device_resume, em_resume),
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t em_driver = {
|
|
"em", em_methods, sizeof(struct adapter),
|
|
};
|
|
|
|
static devclass_t em_devclass;
|
|
DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
|
|
MODULE_DEPEND(em, pci, 1, 1, 1);
|
|
MODULE_DEPEND(em, ether, 1, 1, 1);
|
|
|
|
/*********************************************************************
|
|
* Tunable default values.
|
|
*********************************************************************/
|
|
|
|
#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
|
|
#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
|
|
#define M_TSO_LEN 66
|
|
|
|
static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
|
|
static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
|
|
static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
|
|
static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
|
|
static int em_rxd = EM_DEFAULT_RXD;
|
|
static int em_txd = EM_DEFAULT_TXD;
|
|
static int em_smart_pwr_down = FALSE;
|
|
|
|
TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rxd", &em_rxd);
|
|
TUNABLE_INT("hw.em.txd", &em_txd);
|
|
TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
|
|
#ifndef DEVICE_POLLING
|
|
/* How many packets rxeof tries to clean at a time */
|
|
static int em_rx_process_limit = 100;
|
|
TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
|
|
#endif
|
|
/* Global used in WOL setup with multiport cards */
|
|
static int global_quad_port_a = 0;
|
|
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* em_probe determines if the driver should be loaded on
|
|
* adapter based on PCI vendor/device id of the adapter.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_probe(device_t dev)
|
|
{
|
|
char adapter_name[60];
|
|
uint16_t pci_vendor_id = 0;
|
|
uint16_t pci_device_id = 0;
|
|
uint16_t pci_subvendor_id = 0;
|
|
uint16_t pci_subdevice_id = 0;
|
|
em_vendor_info_t *ent;
|
|
|
|
INIT_DEBUGOUT("em_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != EM_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = em_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == PCI_ANY_ID)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == PCI_ANY_ID))) {
|
|
sprintf(adapter_name, "%s %s",
|
|
em_strings[ent->index],
|
|
em_driver_version);
|
|
device_set_desc_copy(dev, adapter_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_attach(device_t dev)
|
|
{
|
|
struct adapter *adapter;
|
|
int tsize, rsize;
|
|
int error = 0;
|
|
u16 eeprom_data, device_id;
|
|
|
|
INIT_DEBUGOUT("em_attach: begin");
|
|
|
|
adapter = device_get_softc(dev);
|
|
adapter->dev = adapter->osdep.dev = dev;
|
|
EM_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
|
|
/* SYSCTL stuff */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
em_sysctl_debug_info, "I", "Debug Information");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
em_sysctl_stats, "I", "Statistics");
|
|
|
|
callout_init_mtx(&adapter->timer, &adapter->mtx, 0);
|
|
callout_init_mtx(&adapter->tx_fifo_timer, &adapter->mtx, 0);
|
|
|
|
/* Determine hardware and mac info */
|
|
em_identify_hardware(adapter);
|
|
|
|
/* Setup PCI resources */
|
|
if (em_allocate_pci_resources(adapter)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
/*
|
|
** For ICH8 and family we need to
|
|
** map the flash memory, and this
|
|
** must happen after the MAC is
|
|
** identified
|
|
*/
|
|
if ((adapter->hw.mac.type == e1000_ich8lan) ||
|
|
(adapter->hw.mac.type == e1000_ich9lan)) {
|
|
int rid = EM_BAR_TYPE_FLASH;
|
|
adapter->flash_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
/* This is used in the shared code */
|
|
adapter->hw.flash_address = (u8 *)adapter->flash_mem;
|
|
adapter->osdep.flash_bus_space_tag =
|
|
rman_get_bustag(adapter->flash_mem);
|
|
adapter->osdep.flash_bus_space_handle =
|
|
rman_get_bushandle(adapter->flash_mem);
|
|
}
|
|
|
|
/* Do Shared Code initialization */
|
|
if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
|
|
device_printf(dev, "Setup of Shared code failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
e1000_get_bus_info(&adapter->hw);
|
|
|
|
/* Set up some sysctls for the tunable interrupt delays */
|
|
em_add_int_delay_sysctl(adapter, "rx_int_delay",
|
|
"receive interrupt delay in usecs", &adapter->rx_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "tx_int_delay",
|
|
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
|
|
if (adapter->hw.mac.type >= e1000_82540) {
|
|
em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
|
|
"receive interrupt delay limit in usecs",
|
|
&adapter->rx_abs_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_RADV),
|
|
em_rx_abs_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
|
|
"transmit interrupt delay limit in usecs",
|
|
&adapter->tx_abs_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_TADV),
|
|
em_tx_abs_int_delay_dflt);
|
|
}
|
|
|
|
#ifndef DEVICE_POLLING
|
|
/* Sysctls for limiting the amount of work done in the taskqueue */
|
|
em_add_rx_process_limit(adapter, "rx_processing_limit",
|
|
"max number of rx packets to process", &adapter->rx_process_limit,
|
|
em_rx_process_limit);
|
|
#endif
|
|
|
|
/*
|
|
* Validate number of transmit and receive descriptors. It
|
|
* must not exceed hardware maximum, and must be multiple
|
|
* of E1000_DBA_ALIGN.
|
|
*/
|
|
if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
|
|
(adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
|
|
(em_txd < EM_MIN_TXD)) {
|
|
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
|
|
EM_DEFAULT_TXD, em_txd);
|
|
adapter->num_tx_desc = EM_DEFAULT_TXD;
|
|
} else
|
|
adapter->num_tx_desc = em_txd;
|
|
if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
|
|
(adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
|
|
(em_rxd < EM_MIN_RXD)) {
|
|
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
|
|
EM_DEFAULT_RXD, em_rxd);
|
|
adapter->num_rx_desc = EM_DEFAULT_RXD;
|
|
} else
|
|
adapter->num_rx_desc = em_rxd;
|
|
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.wait_for_link = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
adapter->rx_buffer_len = 2048;
|
|
|
|
e1000_init_script_state_82541(&adapter->hw, TRUE);
|
|
e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
|
|
|
|
/* Copper options */
|
|
if (adapter->hw.media_type == e1000_media_type_copper) {
|
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
|
adapter->hw.phy.disable_polarity_correction = FALSE;
|
|
adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
|
|
}
|
|
|
|
/*
|
|
* Set the max frame size assuming standard ethernet
|
|
* sized frames.
|
|
*/
|
|
adapter->hw.mac.max_frame_size =
|
|
ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
|
|
|
|
adapter->hw.mac.min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
|
|
|
|
/*
|
|
* This controls when hardware reports transmit completion
|
|
* status.
|
|
*/
|
|
adapter->hw.mac.report_tx_early = 1;
|
|
|
|
tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
|
|
EM_DBA_ALIGN);
|
|
|
|
/* Allocate Transmit Descriptor ring */
|
|
if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev, "Unable to allocate tx_desc memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
adapter->tx_desc_base =
|
|
(struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
|
|
|
|
rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
|
|
EM_DBA_ALIGN);
|
|
|
|
/* Allocate Receive Descriptor ring */
|
|
if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev, "Unable to allocate rx_desc memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
adapter->rx_desc_base =
|
|
(struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
/*
|
|
** Some PCI-E parts fail the first check due to
|
|
** the link being in sleep state, call it again,
|
|
** if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
device_printf(dev,
|
|
"The EEPROM Checksum Is Not Valid\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
}
|
|
|
|
if (e1000_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
|
|
device_printf(dev, "EEPROM read error "
|
|
"reading part number\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/* Initialize the hardware */
|
|
if (em_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/* Copy the permanent MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(&adapter->hw) < 0) {
|
|
device_printf(dev, "EEPROM read error while reading MAC"
|
|
" address\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
|
|
device_printf(dev, "Invalid MAC address\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/* Setup OS specific network interface */
|
|
em_setup_interface(dev, adapter);
|
|
|
|
em_allocate_intr(adapter);
|
|
|
|
/* Initialize statistics */
|
|
em_update_stats_counters(adapter);
|
|
|
|
adapter->hw.mac.get_link_status = 1;
|
|
em_update_link_status(adapter);
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(&adapter->hw))
|
|
device_printf(dev,
|
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
/* Determine if we have to control management hardware */
|
|
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
|
|
/*
|
|
* Setup Wake-on-Lan
|
|
*/
|
|
switch (adapter->hw.mac.type) {
|
|
|
|
case e1000_82542:
|
|
case e1000_82543:
|
|
break;
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
case e1000_82571:
|
|
case e1000_80003es2lan:
|
|
if (adapter->hw.bus.func == 1)
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
else
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
eeprom_data &= EM_EEPROM_APME;
|
|
break;
|
|
default:
|
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
|
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) &
|
|
E1000_WUC_APME;
|
|
break;
|
|
}
|
|
if (eeprom_data)
|
|
adapter->wol = E1000_WUFC_MAG;
|
|
/*
|
|
* We have the eeprom settings, now apply the special cases
|
|
* where the eeprom may be wrong or the board won't support
|
|
* wake on lan on a particular port
|
|
*/
|
|
device_id = pci_get_device(dev);
|
|
switch (device_id) {
|
|
case E1000_DEV_ID_82546GB_PCIE:
|
|
adapter->wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_FUNC_1)
|
|
adapter->wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
|
|
/* if quad port adapter, disable WoL on all but port A */
|
|
if (global_quad_port_a != 0)
|
|
adapter->wol = 0;
|
|
/* Reset for multiple quad port adapters */
|
|
if (++global_quad_port_a == 4)
|
|
global_quad_port_a = 0;
|
|
break;
|
|
}
|
|
|
|
/* Do we need workaround for 82544 PCI-X adapter? */
|
|
if (adapter->hw.bus.type == e1000_bus_type_pcix &&
|
|
adapter->hw.mac.type == e1000_82544)
|
|
adapter->pcix_82544 = TRUE;
|
|
else
|
|
adapter->pcix_82544 = FALSE;
|
|
|
|
/* Tell the stack that the interface is not active */
|
|
adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
INIT_DEBUGOUT("em_attach: end");
|
|
|
|
return (0);
|
|
|
|
err_hw_init:
|
|
em_release_hw_control(adapter);
|
|
e1000_remove_device(&adapter->hw);
|
|
em_dma_free(adapter, &adapter->rxdma);
|
|
err_rx_desc:
|
|
em_dma_free(adapter, &adapter->txdma);
|
|
err_tx_desc:
|
|
err_pci:
|
|
em_free_intr(adapter);
|
|
em_free_pci_resources(adapter);
|
|
EM_LOCK_DESTROY(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_detach(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
INIT_DEBUGOUT("em_detach: begin");
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
em_disable_intr(adapter);
|
|
em_free_intr(adapter);
|
|
EM_LOCK(adapter);
|
|
adapter->in_detach = 1;
|
|
em_stop(adapter);
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
em_release_manageability(adapter);
|
|
|
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
|
e1000_check_mng_mode(&adapter->hw))
|
|
em_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
em_enable_wakeup(dev);
|
|
}
|
|
|
|
EM_UNLOCK(adapter);
|
|
ether_ifdetach(adapter->ifp);
|
|
|
|
callout_drain(&adapter->timer);
|
|
callout_drain(&adapter->tx_fifo_timer);
|
|
|
|
em_free_pci_resources(adapter);
|
|
bus_generic_detach(dev);
|
|
if_free(ifp);
|
|
|
|
e1000_remove_device(&adapter->hw);
|
|
em_free_transmit_structures(adapter);
|
|
em_free_receive_structures(adapter);
|
|
|
|
/* Free Transmit Descriptor ring */
|
|
if (adapter->tx_desc_base) {
|
|
em_dma_free(adapter, &adapter->txdma);
|
|
adapter->tx_desc_base = NULL;
|
|
}
|
|
|
|
/* Free Receive Descriptor ring */
|
|
if (adapter->rx_desc_base) {
|
|
em_dma_free(adapter, &adapter->rxdma);
|
|
adapter->rx_desc_base = NULL;
|
|
}
|
|
|
|
EM_LOCK_DESTROY(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_shutdown(device_t dev)
|
|
{
|
|
return em_suspend(dev);
|
|
}
|
|
|
|
/*
|
|
* Suspend/resume device methods.
|
|
*/
|
|
static int
|
|
em_suspend(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
|
|
EM_LOCK(adapter);
|
|
em_stop(adapter);
|
|
|
|
em_release_manageability(adapter);
|
|
|
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
|
e1000_check_mng_mode(&adapter->hw))
|
|
em_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
em_enable_wakeup(dev);
|
|
}
|
|
|
|
EM_UNLOCK(adapter);
|
|
|
|
return bus_generic_suspend(dev);
|
|
}
|
|
|
|
static int
|
|
em_resume(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_LOCK(adapter);
|
|
em_init_locked(adapter);
|
|
em_init_manageability(adapter);
|
|
|
|
if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
em_start_locked(ifp);
|
|
|
|
EM_UNLOCK(adapter);
|
|
|
|
return bus_generic_resume(dev);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Transmit entry point
|
|
*
|
|
* em_start is called by the stack to initiate a transmit.
|
|
* The driver will remain in this routine as long as there are
|
|
* packets to transmit and transmit resources are available.
|
|
* In case resources are not available stack is notified and
|
|
* the packet is requeued.
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct mbuf *m_head;
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*
|
|
* We now use a pointer to accomodate legacy and
|
|
* advanced transmit functions.
|
|
*/
|
|
if (adapter->em_xmit(adapter, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
break;
|
|
}
|
|
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
|
|
/* Set timeout in case hardware has problems transmitting. */
|
|
adapter->watchdog_timer = EM_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_start(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
|
|
EM_LOCK(adapter);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
em_start_locked(ifp);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* em_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
int error = 0;
|
|
|
|
if (adapter->in_detach)
|
|
return (error);
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
if (ifa->ifa_addr->sa_family == AF_INET) {
|
|
/*
|
|
* XXX
|
|
* Since resetting hardware takes a very long time
|
|
* and results in link renegotiation we only
|
|
* initialize the hardware only when it is absolutely
|
|
* required.
|
|
*/
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
EM_LOCK(adapter);
|
|
em_init_locked(adapter);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
arp_ifinit(ifp, ifa);
|
|
} else
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
{
|
|
int max_frame_size;
|
|
uint16_t eeprom_data = 0;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
|
|
|
|
EM_LOCK(adapter);
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82573:
|
|
/*
|
|
* 82573 only supports jumbo frames
|
|
* if ASPM is disabled.
|
|
*/
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_3GIO_3, 1, &eeprom_data);
|
|
if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
|
|
max_frame_size = ETHER_MAX_LEN;
|
|
break;
|
|
}
|
|
/* Allow Jumbo frames - fall thru */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_ich9lan:
|
|
case e1000_82575:
|
|
case e1000_80003es2lan: /* Limit Jumbo Frame size */
|
|
max_frame_size = 9234;
|
|
break;
|
|
/* Adapters that do not support jumbo frames */
|
|
case e1000_82542:
|
|
case e1000_ich8lan:
|
|
max_frame_size = ETHER_MAX_LEN;
|
|
break;
|
|
default:
|
|
max_frame_size = MAX_JUMBO_FRAME_SIZE;
|
|
}
|
|
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
|
|
ETHER_CRC_LEN) {
|
|
EM_UNLOCK(adapter);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
adapter->hw.mac.max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
em_init_locked(adapter);
|
|
EM_UNLOCK(adapter);
|
|
break;
|
|
}
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd:\
|
|
SIOCSIFFLAGS (Set Interface Flags)");
|
|
EM_LOCK(adapter);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
if ((ifp->if_flags ^ adapter->if_flags) &
|
|
IFF_PROMISC) {
|
|
em_disable_promisc(adapter);
|
|
em_set_promisc(adapter);
|
|
}
|
|
} else
|
|
em_init_locked(adapter);
|
|
} else
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
em_stop(adapter);
|
|
adapter->if_flags = ifp->if_flags;
|
|
EM_UNLOCK(adapter);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
EM_LOCK(adapter);
|
|
em_disable_intr(adapter);
|
|
em_set_multi(adapter);
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
em_initialize_receive_unit(adapter);
|
|
}
|
|
#ifdef DEVICE_POLLING
|
|
if (!(ifp->if_capenable & IFCAP_POLLING))
|
|
#endif
|
|
em_enable_intr(adapter);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
/* Check SOL/IDER usage */
|
|
EM_LOCK(adapter);
|
|
if (e1000_check_reset_block(&adapter->hw)) {
|
|
EM_UNLOCK(adapter);
|
|
device_printf(adapter->dev, "Media change is"
|
|
" blocked due to SOL/IDER session.\n");
|
|
break;
|
|
}
|
|
EM_UNLOCK(adapter);
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: \
|
|
SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask, reinit;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(em_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
EM_LOCK(adapter);
|
|
em_disable_intr(adapter);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
EM_UNLOCK(adapter);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupt even in error case */
|
|
EM_LOCK(adapter);
|
|
em_enable_intr(adapter);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
}
|
|
#endif
|
|
if (mask & IFCAP_HWCSUM) {
|
|
ifp->if_capenable ^= IFCAP_HWCSUM;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_TSO4) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
reinit = 1;
|
|
}
|
|
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
em_init(adapter);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
}
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Watchdog timer:
|
|
*
|
|
* This routine is called from the local timer every second.
|
|
* As long as transmit descriptors are being cleaned the value
|
|
* is non-zero and we do nothing. Reaching 0 indicates a tx hang
|
|
* and we then reset the device.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_watchdog(struct adapter *adapter)
|
|
{
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
/*
|
|
** The timer is set to 5 every time start queues a packet.
|
|
** Then txeof keeps resetting to 5 as long as it cleans at
|
|
** least one descriptor.
|
|
** Finally, anytime all descriptors are clean the timer is
|
|
** set to 0.
|
|
*/
|
|
if (adapter->watchdog_timer == 0 || --adapter->watchdog_timer)
|
|
return;
|
|
|
|
/* If we are in this routine because of pause frames, then
|
|
* don't reset the hardware.
|
|
*/
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_TXOFF) {
|
|
adapter->watchdog_timer = EM_TX_TIMEOUT;
|
|
return;
|
|
}
|
|
|
|
if (e1000_check_for_link(&adapter->hw) == 0)
|
|
device_printf(adapter->dev, "watchdog timeout -- resetting\n");
|
|
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
adapter->watchdog_events++;
|
|
|
|
em_init_locked(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_init_locked(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
uint32_t pba;
|
|
|
|
INIT_DEBUGOUT("em_init: begin");
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
em_stop(adapter);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*
|
|
* Devices before the 82547 had a Packet Buffer of 64K.
|
|
* Default allocation: PBA=48K for Rx, leaving 16K for Tx.
|
|
* After the 82547 the buffer was reduced to 40K.
|
|
* Default allocation: PBA=30K for Rx, leaving 10K for Tx.
|
|
* Note: default does not leave enough room for Jumbo Frame >10k.
|
|
*/
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
|
|
if (adapter->hw.mac.max_frame_size > 8192)
|
|
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
|
|
else
|
|
pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
|
|
adapter->tx_fifo_head = 0;
|
|
adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
|
|
adapter->tx_fifo_size =
|
|
(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
|
|
break;
|
|
/* Total Packet Buffer on these is 48K */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_82575:
|
|
case e1000_80003es2lan:
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
break;
|
|
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
|
|
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
|
|
break;
|
|
case e1000_ich9lan:
|
|
#define E1000_PBA_10K 0x000A
|
|
pba = E1000_PBA_10K;
|
|
break;
|
|
case e1000_ich8lan:
|
|
pba = E1000_PBA_8K;
|
|
break;
|
|
default:
|
|
/* Devices before 82547 had a Packet Buffer of 64K. */
|
|
if (adapter->hw.mac.max_frame_size > 8192)
|
|
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
|
|
else
|
|
pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
|
|
}
|
|
|
|
INIT_DEBUGOUT1("em_init: pba=%dK",pba);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
|
|
/* Get the latest mac address, User can use a LAA */
|
|
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
/*
|
|
* With 82571 controllers, LAA may be overwritten
|
|
* due to controller reset from the other port.
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82571)
|
|
e1000_set_laa_state_82571(&adapter->hw, TRUE);
|
|
|
|
/* Initialize the hardware */
|
|
if (em_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
return;
|
|
}
|
|
em_update_link_status(adapter);
|
|
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
|
|
em_enable_vlans(adapter);
|
|
|
|
/* Set hardware offload abilities */
|
|
ifp->if_hwassist = 0;
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
if (ifp->if_capenable & IFCAP_TXCSUM)
|
|
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
|
|
if (ifp->if_capenable & IFCAP_TSO4)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
}
|
|
|
|
/* Configure for OS presence */
|
|
em_init_manageability(adapter);
|
|
|
|
/* Prepare transmit descriptors and buffers */
|
|
if (em_setup_transmit_structures(adapter)) {
|
|
device_printf(dev, "Could not setup transmit structures\n");
|
|
em_stop(adapter);
|
|
return;
|
|
}
|
|
em_initialize_transmit_unit(adapter);
|
|
|
|
/* Setup Multicast table */
|
|
em_set_multi(adapter);
|
|
|
|
/* Prepare receive descriptors and buffers */
|
|
if (em_setup_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
em_stop(adapter);
|
|
return;
|
|
}
|
|
em_initialize_receive_unit(adapter);
|
|
|
|
/* Don't lose promiscuous settings */
|
|
em_set_promisc(adapter);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Only enable interrupts if we are not polling, make sure
|
|
* they are off otherwise.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
em_disable_intr(adapter);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
em_enable_intr(adapter);
|
|
|
|
/* Don't reset the phy next time init gets called */
|
|
adapter->hw.phy.reset_disable = TRUE;
|
|
}
|
|
|
|
static void
|
|
em_init(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_LOCK(adapter);
|
|
em_init_locked(adapter);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*********************************************************************
|
|
*
|
|
* Legacy polling routine
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
uint32_t reg_icr;
|
|
|
|
EM_LOCK(adapter);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
EM_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
e1000_check_for_link(&adapter->hw);
|
|
em_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz,
|
|
em_local_timer, adapter);
|
|
}
|
|
}
|
|
em_rxeof(adapter, count);
|
|
em_txeof(adapter);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
em_start_locked(ifp);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Legacy Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
|
|
static void
|
|
em_intr(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp;
|
|
uint32_t reg_icr;
|
|
|
|
EM_LOCK(adapter);
|
|
ifp = adapter->ifp;
|
|
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
EM_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
for (;;) {
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
if (adapter->hw.mac.type >= e1000_82571 &&
|
|
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
|
|
break;
|
|
else if (reg_icr == 0)
|
|
break;
|
|
|
|
/*
|
|
* XXX: some laptops trigger several spurious interrupts
|
|
* on em(4) when in the resume cycle. The ICR register
|
|
* reports all-ones value in this case. Processing such
|
|
* interrupts would lead to a freeze. I don't know why.
|
|
*/
|
|
if (reg_icr == 0xffffffff)
|
|
break;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
em_rxeof(adapter, -1);
|
|
em_txeof(adapter);
|
|
}
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
e1000_check_for_link(&adapter->hw);
|
|
em_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz,
|
|
em_local_timer, adapter);
|
|
}
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
}
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
em_start_locked(ifp);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
#else /* if not DEVICE_POLLING, then fast interrupt routines only */
|
|
|
|
static void
|
|
em_handle_link(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = adapter->ifp;
|
|
|
|
EM_LOCK(adapter);
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
EM_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
e1000_check_for_link(&adapter->hw);
|
|
em_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
static void
|
|
em_handle_rxtx(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct ifnet *ifp;
|
|
|
|
NET_LOCK_GIANT();
|
|
ifp = adapter->ifp;
|
|
|
|
/*
|
|
* TODO:
|
|
* It should be possible to run the tx clean loop without the lock.
|
|
*/
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (em_rxeof(adapter, adapter->rx_process_limit) != 0)
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
EM_LOCK(adapter);
|
|
em_txeof(adapter);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
em_start_locked(ifp);
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
em_enable_intr(adapter);
|
|
NET_UNLOCK_GIANT();
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Fast Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
em_intr_fast(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp;
|
|
uint32_t reg_icr;
|
|
|
|
ifp = adapter->ifp;
|
|
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
/* Hot eject? */
|
|
if (reg_icr == 0xffffffff)
|
|
return (FILTER_STRAY);
|
|
|
|
/* Definitely not our interrupt. */
|
|
if (reg_icr == 0x0)
|
|
return (FILTER_STRAY);
|
|
|
|
/*
|
|
* Starting with the 82571 chip, bit 31 should be used to
|
|
* determine whether the interrupt belongs to us.
|
|
*/
|
|
if (adapter->hw.mac.type >= e1000_82571 &&
|
|
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
|
|
return (FILTER_STRAY);
|
|
|
|
/*
|
|
* Mask interrupts until the taskqueue is finished running. This is
|
|
* cheap, just assume that it is needed. This also works around the
|
|
* MSI message reordering errata on certain systems.
|
|
*/
|
|
em_disable_intr(adapter);
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
|
|
taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
return (FILTER_HANDLED);
|
|
}
|
|
#endif /* ! DEVICE_POLLING */
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u_char fiber_type = IFM_1000_SX;
|
|
|
|
INIT_DEBUGOUT("em_media_status: begin");
|
|
|
|
EM_LOCK(adapter);
|
|
e1000_check_for_link(&adapter->hw);
|
|
em_update_link_status(adapter);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!adapter->link_active) {
|
|
EM_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if ((adapter->hw.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.media_type == e1000_media_type_internal_serdes)) {
|
|
if (adapter->hw.mac.type == e1000_82545)
|
|
fiber_type = IFM_1000_LX;
|
|
ifmr->ifm_active |= fiber_type | IFM_FDX;
|
|
} else {
|
|
switch (adapter->link_speed) {
|
|
case 10:
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
break;
|
|
case 100:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
case 1000:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
}
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
EM_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_media_change(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifmedia *ifm = &adapter->media;
|
|
|
|
INIT_DEBUGOUT("em_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
EM_LOCK(adapter);
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case IFM_100_TX:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case IFM_10_T:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
default:
|
|
device_printf(adapter->dev, "Unsupported media type\n");
|
|
}
|
|
|
|
/* As the speed/duplex settings my have changed we need to
|
|
* reset the PHY.
|
|
*/
|
|
adapter->hw.phy.reset_disable = FALSE;
|
|
|
|
em_init_locked(adapter);
|
|
EM_UNLOCK(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to tx descriptors.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_encap(struct adapter *adapter, struct mbuf **m_headp)
|
|
{
|
|
bus_dma_segment_t segs[EM_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *tx_buffer, *tx_buffer_mapped;
|
|
struct e1000_tx_desc *ctxd = NULL;
|
|
struct mbuf *m_head;
|
|
uint32_t txd_upper, txd_lower, txd_used, txd_saved;
|
|
int nsegs, i, j, first, last = 0;
|
|
int error, do_tso, tso_desc = 0;
|
|
|
|
m_head = *m_headp;
|
|
txd_upper = txd_lower = txd_used = txd_saved = 0;
|
|
|
|
do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
|
|
|
|
/*
|
|
* Force a cleanup if number of TX descriptors
|
|
* available hits the threshold
|
|
*/
|
|
if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
|
|
em_txeof(adapter);
|
|
/* Now do we at least have a minimal? */
|
|
if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
|
|
adapter->no_tx_desc_avail1++;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* TSO workaround:
|
|
* If an mbuf is only header we need
|
|
* to pull 4 bytes of data into it.
|
|
*/
|
|
if (do_tso && (m_head->m_len <= M_TSO_LEN)) {
|
|
m_head = m_pullup(m_head, M_TSO_LEN + 4);
|
|
*m_headp = m_head;
|
|
if (m_head == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
/*
|
|
* There are two types of errors we can (try) to handle:
|
|
* - EFBIG means the mbuf chain was too long and bus_dma ran
|
|
* out of segments. Defragment the mbuf chain and try again.
|
|
* - ENOMEM means bus_dma could not obtain enough bounce buffers
|
|
* at this point in time. Defer sending and try again later.
|
|
* All other errors, in particular EINVAL, are fatal and prevent the
|
|
* mbuf chain from ever going through. Drop it and report error.
|
|
*/
|
|
if (error == EFBIG) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_alloc_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again */
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* TSO Hardware workaround, if this packet is not
|
|
* TSO, and is only a single descriptor long, and
|
|
* it follows a TSO burst, then we need to add a
|
|
* sentinel descriptor to prevent premature writeback.
|
|
*/
|
|
if ((do_tso == 0) && (adapter->tx_tso == TRUE)) {
|
|
if (nsegs == 1)
|
|
tso_desc = TRUE;
|
|
adapter->tx_tso = FALSE;
|
|
}
|
|
|
|
if (nsegs > (adapter->num_tx_desc_avail - 2)) {
|
|
adapter->no_tx_desc_avail2++;
|
|
bus_dmamap_unload(adapter->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/* Do hardware assists */
|
|
if (em_tso_setup(adapter, m_head, &txd_upper, &txd_lower))
|
|
/* we need to make a final sentinel transmit desc */
|
|
tso_desc = TRUE;
|
|
else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
|
|
em_transmit_checksum_setup(adapter, m_head,
|
|
&txd_upper, &txd_lower);
|
|
|
|
i = adapter->next_avail_tx_desc;
|
|
if (adapter->pcix_82544)
|
|
txd_saved = i;
|
|
|
|
/* Set up our transmit descriptors */
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
/* If adapter is 82544 and on PCIX bus */
|
|
if(adapter->pcix_82544) {
|
|
DESC_ARRAY desc_array;
|
|
uint32_t array_elements, counter;
|
|
/*
|
|
* Check the Address and Length combination and
|
|
* split the data accordingly
|
|
*/
|
|
array_elements = em_fill_descriptors(segs[j].ds_addr,
|
|
segs[j].ds_len, &desc_array);
|
|
for (counter = 0; counter < array_elements; counter++) {
|
|
if (txd_used == adapter->num_tx_desc_avail) {
|
|
adapter->next_avail_tx_desc = txd_saved;
|
|
adapter->no_tx_desc_avail2++;
|
|
bus_dmamap_unload(adapter->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
ctxd = &adapter->tx_desc_base[i];
|
|
ctxd->buffer_addr = htole64(
|
|
desc_array.descriptor[counter].address);
|
|
ctxd->lower.data = htole32(
|
|
(adapter->txd_cmd | txd_lower | (uint16_t)
|
|
desc_array.descriptor[counter].length));
|
|
ctxd->upper.data =
|
|
htole32((txd_upper));
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
txd_used++;
|
|
}
|
|
} else {
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
ctxd = &adapter->tx_desc_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
/*
|
|
** TSO Workaround:
|
|
** If this is the last descriptor, we want to
|
|
** split it so we have a small final sentinel
|
|
*/
|
|
if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
|
|
seg_len -= 4;
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | seg_len);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
/* Now make the sentinel */
|
|
++txd_used; /* using an extra txd */
|
|
ctxd = &adapter->tx_desc_base[i];
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
ctxd->buffer_addr =
|
|
htole64(seg_addr + seg_len);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | 4);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
} else {
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | seg_len);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
}
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
}
|
|
|
|
adapter->next_avail_tx_desc = i;
|
|
if (adapter->pcix_82544)
|
|
adapter->num_tx_desc_avail -= txd_used;
|
|
else {
|
|
adapter->num_tx_desc_avail -= nsegs;
|
|
if (tso_desc) /* TSO used an extra for sentinel */
|
|
adapter->num_tx_desc_avail -= txd_used;
|
|
}
|
|
|
|
if (m_head->m_flags & M_VLANTAG) {
|
|
/* Set the vlan id. */
|
|
ctxd->upper.fields.special =
|
|
htole16(m_head->m_pkthdr.ether_vtag);
|
|
/* Tell hardware to add tag */
|
|
ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
|
|
}
|
|
|
|
tx_buffer->m_head = m_head;
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
ctxd->lower.data |=
|
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer->next_eop = last;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
if (adapter->hw.mac.type == e1000_82547 &&
|
|
adapter->link_duplex == HALF_DUPLEX)
|
|
em_82547_move_tail(adapter);
|
|
else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT, i);
|
|
if (adapter->hw.mac.type == e1000_82547)
|
|
em_82547_update_fifo_head(adapter,
|
|
m_head->m_pkthdr.len);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to Advanced TX descriptors.
|
|
* used by the 82575 adapter. It also needs no workarounds.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_adv_encap(struct adapter *adapter, struct mbuf **m_headp)
|
|
{
|
|
bus_dma_segment_t segs[EM_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *tx_buffer, *tx_buffer_mapped;
|
|
union e1000_adv_tx_desc *txd = NULL;
|
|
struct mbuf *m_head;
|
|
u32 olinfo_status = 0, cmd_type_len = 0;
|
|
u32 paylen = 0;
|
|
int nsegs, i, j, error, first, last = 0;
|
|
|
|
m_head = *m_headp;
|
|
|
|
|
|
/* Set basic descriptor constants */
|
|
cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
|
|
|
|
/*
|
|
* Force a cleanup if number of TX descriptors
|
|
* available hits the threshold
|
|
*/
|
|
if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
|
|
em_txeof(adapter);
|
|
/* Now do we at least have a minimal? */
|
|
if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
|
|
adapter->no_tx_desc_avail1++;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA.
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == EFBIG) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_alloc_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again */
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/* Check again to be sure we have enough descriptors */
|
|
if (nsegs > (adapter->num_tx_desc_avail - 2)) {
|
|
adapter->no_tx_desc_avail2++;
|
|
bus_dmamap_unload(adapter->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/*
|
|
* Set up the context descriptor:
|
|
* used when any hardware offload is done.
|
|
* This includes CSUM, VLAN, and TSO. It
|
|
* will use the first descriptor.
|
|
*/
|
|
/* First try TSO */
|
|
if (em_tso_adv_setup(adapter, m_head, &paylen)) {
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
|
|
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
|
|
if (em_tx_adv_ctx_setup(adapter, m_head))
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
}
|
|
|
|
/* Set up our transmit descriptors */
|
|
i = adapter->next_avail_tx_desc;
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
txd = (union e1000_adv_tx_desc *)&adapter->tx_desc_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
|
|
txd->read.buffer_addr = htole64(seg_addr);
|
|
txd->read.cmd_type_len = htole32(
|
|
adapter->txd_cmd | cmd_type_len | seg_len);
|
|
txd->read.olinfo_status = htole32(olinfo_status);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
adapter->next_avail_tx_desc = i;
|
|
adapter->num_tx_desc_avail -= nsegs;
|
|
|
|
tx_buffer->m_head = m_head;
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
txd->read.cmd_type_len |=
|
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer->next_eop = last;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT, i);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* 82547 workaround to avoid controller hang in half-duplex environment.
|
|
* The workaround is to avoid queuing a large packet that would span
|
|
* the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
|
|
* in this case. We do that only when FIFO is quiescent.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_82547_move_tail(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
uint16_t hw_tdt;
|
|
uint16_t sw_tdt;
|
|
struct e1000_tx_desc *tx_desc;
|
|
uint16_t length = 0;
|
|
boolean_t eop = 0;
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT);
|
|
sw_tdt = adapter->next_avail_tx_desc;
|
|
|
|
while (hw_tdt != sw_tdt) {
|
|
tx_desc = &adapter->tx_desc_base[hw_tdt];
|
|
length += tx_desc->lower.flags.length;
|
|
eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
|
|
if (++hw_tdt == adapter->num_tx_desc)
|
|
hw_tdt = 0;
|
|
|
|
if (eop) {
|
|
if (em_82547_fifo_workaround(adapter, length)) {
|
|
adapter->tx_fifo_wrk_cnt++;
|
|
callout_reset(&adapter->tx_fifo_timer, 1,
|
|
em_82547_move_tail, adapter);
|
|
break;
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT, hw_tdt);
|
|
em_82547_update_fifo_head(adapter, length);
|
|
length = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
em_82547_fifo_workaround(struct adapter *adapter, int len)
|
|
{
|
|
int fifo_space, fifo_pkt_len;
|
|
|
|
fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
|
|
|
|
if (adapter->link_duplex == HALF_DUPLEX) {
|
|
fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
|
|
|
|
if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
|
|
if (em_82547_tx_fifo_reset(adapter))
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_82547_update_fifo_head(struct adapter *adapter, int len)
|
|
{
|
|
int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
|
|
|
|
/* tx_fifo_head is always 16 byte aligned */
|
|
adapter->tx_fifo_head += fifo_pkt_len;
|
|
if (adapter->tx_fifo_head >= adapter->tx_fifo_size) {
|
|
adapter->tx_fifo_head -= adapter->tx_fifo_size;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
em_82547_tx_fifo_reset(struct adapter *adapter)
|
|
{
|
|
uint32_t tctl;
|
|
|
|
if ((E1000_READ_REG(&adapter->hw, E1000_TDT) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH)) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
|
|
/* Disable TX unit */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
|
|
tctl & ~E1000_TCTL_EN);
|
|
|
|
/* Reset FIFO pointers */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
|
|
adapter->tx_head_addr);
|
|
|
|
/* Re-enable TX unit */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
adapter->tx_fifo_head = 0;
|
|
adapter->tx_fifo_reset_cnt++;
|
|
|
|
return (TRUE);
|
|
}
|
|
else {
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_set_promisc(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
uint32_t reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
reg_rctl &= ~E1000_RCTL_UPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_disable_promisc(struct adapter *adapter)
|
|
{
|
|
uint32_t reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
reg_rctl &= (~E1000_RCTL_UPE);
|
|
reg_rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Multicast Update
|
|
*
|
|
* This routine is called whenever multicast address list is updated.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_set_multi(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t reg_rctl = 0;
|
|
uint8_t mta[512]; /* Largest MTS is 4096 bits */
|
|
int mcnt = 0;
|
|
|
|
IOCTL_DEBUGOUT("em_set_multi: begin");
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
reg_rctl |= E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
}
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
|
|
break;
|
|
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
&mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
|
|
mcnt++;
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else
|
|
e1000_mc_addr_list_update(&adapter->hw, mta,
|
|
mcnt, 1, adapter->hw.mac.rar_entry_count);
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl &= ~E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_set_mwi(&adapter->hw);
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine
|
|
*
|
|
* This routine checks for link status and updates statistics.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_local_timer(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
em_update_link_status(adapter);
|
|
em_update_stats_counters(adapter);
|
|
|
|
/* Check for 82571 LAA reset by other port */
|
|
if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
em_print_hw_stats(adapter);
|
|
|
|
em_smartspeed(adapter);
|
|
|
|
/*
|
|
* Each second we check the watchdog to
|
|
* protect against hardware hangs.
|
|
*/
|
|
em_watchdog(adapter);
|
|
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
}
|
|
|
|
static void
|
|
em_update_link_status(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_LU) {
|
|
if (adapter->link_active == 0) {
|
|
e1000_get_speed_and_duplex(&adapter->hw,
|
|
&adapter->link_speed, &adapter->link_duplex);
|
|
/* Check if we must disable SPEED_MODE bit on PCI-E */
|
|
if ((adapter->link_speed != SPEED_1000) &&
|
|
((adapter->hw.mac.type == e1000_82571) ||
|
|
(adapter->hw.mac.type == e1000_82572))) {
|
|
int tarc0;
|
|
|
|
tarc0 = E1000_READ_REG(&adapter->hw,
|
|
E1000_TARC0);
|
|
tarc0 &= ~SPEED_MODE_BIT;
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_TARC0, tarc0);
|
|
}
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
((adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex"));
|
|
adapter->link_active = 1;
|
|
adapter->smartspeed = 0;
|
|
ifp->if_baudrate = adapter->link_speed * 1000000;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
}
|
|
} else {
|
|
if (adapter->link_active == 1) {
|
|
ifp->if_baudrate = adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is Down\n");
|
|
adapter->link_active = 0;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_stop(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
INIT_DEBUGOUT("em_stop: begin");
|
|
|
|
em_disable_intr(adapter);
|
|
callout_stop(&adapter->timer);
|
|
callout_stop(&adapter->tx_fifo_timer);
|
|
em_free_transmit_structures(adapter);
|
|
em_free_receive_structures(adapter);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
if (adapter->hw.mac.type >= e1000_82544)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Determine hardware revision.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_identify_hardware(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
/* Make sure our PCI config space has the necessary stuff set */
|
|
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
if ((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) == 0 &&
|
|
(adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN)) {
|
|
device_printf(dev, "Memory Access and/or Bus Master bits "
|
|
"were not set!\n");
|
|
adapter->hw.bus.pci_cmd_word |=
|
|
(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
|
|
pci_write_config(dev, PCIR_COMMAND,
|
|
adapter->hw.bus.pci_cmd_word, 2);
|
|
}
|
|
|
|
/* Save off the information about this board */
|
|
adapter->hw.vendor_id = pci_get_vendor(dev);
|
|
adapter->hw.device_id = pci_get_device(dev);
|
|
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
adapter->hw.subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
adapter->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
/* Do Shared Code Init and Setup */
|
|
if (e1000_set_mac_type(&adapter->hw)) {
|
|
device_printf(dev, "Setup init failure\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
em_allocate_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int val, rid;
|
|
|
|
rid = PCIR_BAR(0);
|
|
adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (adapter->res_memory == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(adapter->res_memory);
|
|
adapter->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(adapter->res_memory);
|
|
adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
|
|
|
|
/* Only older adapters use IO mapping */
|
|
if ((adapter->hw.mac.type > e1000_82542) &&
|
|
(adapter->hw.mac.type < e1000_82571)) {
|
|
/* Figure our where our IO BAR is ? */
|
|
for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
|
|
val = pci_read_config(dev, rid, 4);
|
|
if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
|
|
adapter->io_rid = rid;
|
|
break;
|
|
}
|
|
rid += 4;
|
|
/* check for 64bit BAR */
|
|
if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
|
|
rid += 4;
|
|
}
|
|
if (rid >= PCIR_CIS) {
|
|
device_printf(dev, "Unable to locate IO BAR\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->res_ioport = bus_alloc_resource_any(dev,
|
|
SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
|
|
if (adapter->res_ioport == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"ioport\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->hw.io_base = 0;
|
|
adapter->osdep.io_bus_space_tag =
|
|
rman_get_bustag(adapter->res_ioport);
|
|
adapter->osdep.io_bus_space_handle =
|
|
rman_get_bushandle(adapter->res_ioport);
|
|
}
|
|
|
|
/*
|
|
* Setup MSI/X or MSI if PCI Express
|
|
* only the latest can use MSI/X and
|
|
* real support for it is forthcoming
|
|
*/
|
|
adapter->msi = 0; /* Set defaults */
|
|
rid = 0x0;
|
|
if (adapter->hw.mac.type >= e1000_82575) {
|
|
/*
|
|
* Setup MSI/X
|
|
*/
|
|
rid = PCIR_BAR(EM_MSIX_BAR);
|
|
adapter->msix_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (!adapter->msix_mem) {
|
|
device_printf(dev,"Unable to map MSIX table \n");
|
|
return (ENXIO);
|
|
}
|
|
/*
|
|
* Eventually this may be used
|
|
* for Multiqueue, for now we will
|
|
* just use one vector.
|
|
*
|
|
* val = pci_msix_count(dev);
|
|
*/
|
|
val = 1;
|
|
if ((val) && pci_alloc_msix(dev, &val) == 0) {
|
|
rid = 1;
|
|
adapter->msi = 1;
|
|
}
|
|
} else if (adapter->hw.mac.type > e1000_82571) {
|
|
val = pci_msi_count(dev);
|
|
if (val == 1 && pci_alloc_msi(dev, &val) == 0) {
|
|
rid = 1;
|
|
adapter->msi = 1;
|
|
}
|
|
}
|
|
adapter->res_interrupt = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res_interrupt == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
adapter->hw.back = &adapter->osdep;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the appropriate Interrupt handlers.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
em_allocate_intr(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int error;
|
|
|
|
/* Manually turn off all interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/* We do Legacy setup */
|
|
if (adapter->int_handler_tag == NULL &&
|
|
(error = bus_setup_intr(dev, adapter->res_interrupt,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter,
|
|
&adapter->int_handler_tag)) != 0) {
|
|
device_printf(dev, "Failed to register interrupt handler");
|
|
return (error);
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Try allocating a fast interrupt and the associated deferred
|
|
* processing contexts.
|
|
*/
|
|
TASK_INIT(&adapter->rxtx_task, 0, em_handle_rxtx, adapter);
|
|
TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
|
|
adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &adapter->tq);
|
|
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(adapter->dev));
|
|
if ((error = bus_setup_intr(dev, adapter->res_interrupt,
|
|
INTR_TYPE_NET, em_intr_fast, NULL, adapter,
|
|
&adapter->int_handler_tag)) != 0) {
|
|
device_printf(dev, "Failed to register fast interrupt "
|
|
"handler: %d\n", error);
|
|
taskqueue_free(adapter->tq);
|
|
adapter->tq = NULL;
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
em_enable_intr(adapter);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_free_intr(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
if (adapter->res_interrupt != NULL) {
|
|
bus_teardown_intr(dev, adapter->res_interrupt,
|
|
adapter->int_handler_tag);
|
|
adapter->int_handler_tag = NULL;
|
|
}
|
|
if (adapter->tq != NULL) {
|
|
taskqueue_drain(adapter->tq, &adapter->rxtx_task);
|
|
taskqueue_drain(taskqueue_fast, &adapter->link_task);
|
|
taskqueue_free(adapter->tq);
|
|
adapter->tq = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_free_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
if (adapter->res_interrupt != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
adapter->msi ? 1 : 0, adapter->res_interrupt);
|
|
|
|
if (adapter->msix_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
|
|
|
|
if (adapter->msi)
|
|
pci_release_msi(dev);
|
|
|
|
if (adapter->res_memory != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), adapter->res_memory);
|
|
|
|
if (adapter->flash_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
EM_FLASH, adapter->flash_mem);
|
|
|
|
if (adapter->res_ioport != NULL)
|
|
bus_release_resource(dev, SYS_RES_IOPORT,
|
|
adapter->io_rid, adapter->res_ioport);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware to a configuration
|
|
* as specified by the adapter structure.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_hardware_init(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
uint16_t rx_buffer_size;
|
|
|
|
INIT_DEBUGOUT("em_hardware_init: begin");
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* Get control from any management/hw control */
|
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
|
e1000_check_mng_mode(&adapter->hw))
|
|
em_get_hw_control(adapter);
|
|
|
|
/* When hardware is reset, fifo_head is also reset */
|
|
adapter->tx_fifo_head = 0;
|
|
|
|
/* Set up smart power down as default off on newer adapters. */
|
|
if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 ||
|
|
adapter->hw.mac.type == e1000_82572)) {
|
|
uint16_t phy_tmp = 0;
|
|
|
|
/* Speed up time to link by disabling smart power down. */
|
|
e1000_read_phy_reg(&adapter->hw,
|
|
IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
|
|
phy_tmp &= ~IGP02E1000_PM_SPD;
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
IGP02E1000_PHY_POWER_MGMT, phy_tmp);
|
|
}
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two frames to be
|
|
* received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
|
|
0xffff) << 10 );
|
|
|
|
adapter->hw.mac.fc_high_water = rx_buffer_size -
|
|
roundup2(adapter->hw.mac.max_frame_size, 1024);
|
|
adapter->hw.mac.fc_low_water = adapter->hw.mac.fc_high_water - 1500;
|
|
if (adapter->hw.mac.type == e1000_80003es2lan)
|
|
adapter->hw.mac.fc_pause_time = 0xFFFF;
|
|
else
|
|
adapter->hw.mac.fc_pause_time = EM_FC_PAUSE_TIME;
|
|
adapter->hw.mac.fc_send_xon = TRUE;
|
|
adapter->hw.mac.fc = e1000_fc_full;
|
|
|
|
if (e1000_init_hw(&adapter->hw) < 0) {
|
|
device_printf(dev, "Hardware Initialization Failed\n");
|
|
return (EIO);
|
|
}
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_setup_interface(device_t dev, struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
INIT_DEBUGOUT("em_setup_interface: begin");
|
|
|
|
ifp = adapter->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL)
|
|
panic("%s: can not if_alloc()", device_get_nameunit(dev));
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_init = em_init;
|
|
ifp->if_softc = adapter;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = em_ioctl;
|
|
ifp->if_start = em_start;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ether_ifattach(ifp, adapter->hw.mac.addr);
|
|
|
|
ifp->if_capabilities = ifp->if_capenable = 0;
|
|
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
|
|
}
|
|
|
|
/* Identify TSO capable adapters */
|
|
if ((adapter->hw.mac.type > e1000_82544) &&
|
|
(adapter->hw.mac.type != e1000_82547))
|
|
ifp->if_capabilities |= IFCAP_TSO4;
|
|
/*
|
|
* By default only enable on PCI-E, this
|
|
* can be overriden by ifconfig.
|
|
*/
|
|
if (adapter->hw.mac.type >= e1000_82571)
|
|
ifp->if_capenable |= IFCAP_TSO4;
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_MTU;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&adapter->media, IFM_IMASK,
|
|
em_media_change, em_media_status);
|
|
if ((adapter->hw.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.media_type == e1000_media_type_internal_serdes)) {
|
|
u_char fiber_type = IFM_1000_SX; /* default type */
|
|
|
|
if (adapter->hw.mac.type == e1000_82545)
|
|
fiber_type = IFM_1000_LX;
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
|
|
} else {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
|
|
0, NULL);
|
|
if (adapter->hw.phy.type != e1000_phy_ife) {
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
}
|
|
}
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Workaround for SmartSpeed on 82541 and 82547 controllers
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_smartspeed(struct adapter *adapter)
|
|
{
|
|
uint16_t phy_tmp;
|
|
|
|
if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
|
|
adapter->hw.mac.autoneg == 0 ||
|
|
(adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
|
|
return;
|
|
|
|
if (adapter->smartspeed == 0) {
|
|
/* If Master/Slave config fault is asserted twice,
|
|
* we assume back-to-back */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
|
|
if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
|
|
return;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
|
|
if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
|
|
if(phy_tmp & CR_1000T_MS_ENABLE) {
|
|
phy_tmp &= ~CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
|
|
phy_tmp);
|
|
adapter->smartspeed++;
|
|
if(adapter->hw.mac.autoneg &&
|
|
!e1000_phy_setup_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL,
|
|
&phy_tmp)) {
|
|
phy_tmp |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL,
|
|
phy_tmp);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
|
|
/* If still no link, perhaps using 2/3 pair cable */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
|
|
phy_tmp |= CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
|
|
if(adapter->hw.mac.autoneg &&
|
|
!e1000_phy_setup_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
|
|
phy_tmp |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
|
|
}
|
|
}
|
|
/* Restart process after EM_SMARTSPEED_MAX iterations */
|
|
if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
|
|
adapter->smartspeed = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Manage DMA'able memory.
|
|
*/
|
|
static void
|
|
em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
em_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct em_dma_alloc *dma, int mapflags)
|
|
{
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
EM_DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dma->dma_tag);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dma_tag_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT, &dma->dma_map);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
|
|
__func__, (uintmax_t)size, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
dma->dma_paddr = 0;
|
|
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
|
|
if (error || dma->dma_paddr == 0) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamap_load failed: %d\n",
|
|
__func__, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail_3:
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_map = NULL;
|
|
dma->dma_tag = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
|
|
{
|
|
if (dma->dma_tag == NULL)
|
|
return;
|
|
if (dma->dma_map != NULL) {
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
dma->dma_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
dma->dma_tag = NULL;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_allocate_transmit_structures(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (adapter->tx_buffer_area == NULL) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bzero(adapter->tx_buffer_area,
|
|
(sizeof(struct em_buffer)) * adapter->num_tx_desc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize transmit structures.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *tx_buffer;
|
|
int error, i;
|
|
|
|
/*
|
|
* Create DMA tags for tx descriptors
|
|
*/
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
EM_TSO_SIZE, /* maxsize */
|
|
EM_MAX_SCATTER, /* nsegments */
|
|
EM_TSO_SEG_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&adapter->txtag)) != 0) {
|
|
device_printf(dev, "Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = em_allocate_transmit_structures(adapter)) != 0)
|
|
goto fail;
|
|
|
|
/* Clear the old ring contents */
|
|
bzero(adapter->tx_desc_base,
|
|
(sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
tx_buffer = adapter->tx_buffer_area;
|
|
for (i = 0; i < adapter->num_tx_desc; i++) {
|
|
error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
tx_buffer++;
|
|
}
|
|
|
|
adapter->next_avail_tx_desc = 0;
|
|
adapter->next_tx_to_clean = 0;
|
|
|
|
/* Set number of descriptors available */
|
|
adapter->num_tx_desc_avail = adapter->num_tx_desc;
|
|
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
em_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_initialize_transmit_unit(struct adapter *adapter)
|
|
{
|
|
uint32_t tctl, tarc, tipg = 0;
|
|
uint64_t bus_addr;
|
|
|
|
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
|
|
/* Setup the Base and Length of the Tx Descriptor Ring */
|
|
bus_addr = adapter->txdma.dma_paddr;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDLEN,
|
|
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAH, (uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAL, (uint32_t)bus_addr);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT, 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDH, 0);
|
|
|
|
HW_DEBUGOUT2("Base = %x, Length = %x\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDBAL),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDLEN));
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82542:
|
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
|
tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
|
|
break;
|
|
case e1000_80003es2lan:
|
|
tipg = DEFAULT_82543_TIPG_IPGR1;
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
|
|
E1000_TIPG_IPGR2_SHIFT;
|
|
break;
|
|
default:
|
|
if ((adapter->hw.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.media_type ==
|
|
e1000_media_type_internal_serdes))
|
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
|
else
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
|
|
if(adapter->hw.mac.type >= e1000_82540)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TADV,
|
|
adapter->tx_abs_int_delay.value);
|
|
|
|
if ((adapter->hw.mac.type == e1000_82571) ||
|
|
(adapter->hw.mac.type == e1000_82572)) {
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC0);
|
|
tarc |= SPEED_MODE_BIT;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC0, tarc);
|
|
} else if (adapter->hw.mac.type == e1000_80003es2lan) {
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC0);
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC0, tarc);
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC1);
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC1, tarc);
|
|
}
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
if (adapter->hw.mac.type >= e1000_82571)
|
|
tctl |= E1000_TCTL_MULR;
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
|
|
/* Setup Transmit Descriptor Base Settings */
|
|
adapter->txd_cmd = E1000_TXD_CMD_IFCS;
|
|
|
|
if ((adapter->tx_int_delay.value > 0) &&
|
|
(adapter->hw.mac.type != e1000_82575))
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
|
|
/* Set the function pointer for the transmit routine */
|
|
if (adapter->hw.mac.type >= e1000_82575)
|
|
adapter->em_xmit = em_adv_encap;
|
|
else
|
|
adapter->em_xmit = em_encap;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *tx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_transmit_structures: begin");
|
|
|
|
if (adapter->tx_buffer_area != NULL) {
|
|
tx_buffer = adapter->tx_buffer_area;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
|
|
if (tx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
} else if (tx_buffer->map != NULL)
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
if (tx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(adapter->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
if (adapter->tx_buffer_area != NULL) {
|
|
free(adapter->tx_buffer_area, M_DEVBUF);
|
|
adapter->tx_buffer_area = NULL;
|
|
}
|
|
if (adapter->txtag != NULL) {
|
|
bus_dma_tag_destroy(adapter->txtag);
|
|
adapter->txtag = NULL;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* The offload context needs to be set when we transfer the first
|
|
* packet of a particular protocol (TCP/UDP). This routine has been
|
|
* enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
|
|
uint32_t *txd_upper, uint32_t *txd_lower)
|
|
{
|
|
struct e1000_context_desc *TXD;
|
|
struct em_buffer *tx_buffer;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip;
|
|
struct ip6_hdr *ip6;
|
|
struct tcp_hdr *th;
|
|
int curr_txd, ehdrlen, hdr_len, ip_hlen;
|
|
uint32_t cmd = 0;
|
|
uint16_t etype;
|
|
uint8_t ipproto;
|
|
|
|
/* Setup checksum offload context. */
|
|
curr_txd = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[curr_txd];
|
|
TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
|
|
|
|
*txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
|
|
E1000_TXD_DTYP_D; /* Data descr */
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/*
|
|
* We only support TCP/UDP for IPv4 and IPv6 for the moment.
|
|
* TODO: Support SCTP too when it hits the tree.
|
|
*/
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
|
|
/* Setup of IP header checksum. */
|
|
if (mp->m_pkthdr.csum_flags & CSUM_IP) {
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD->lower_setup.ip_fields.ipcss = ehdrlen;
|
|
TXD->lower_setup.ip_fields.ipcse =
|
|
htole16(ehdrlen + ip_hlen);
|
|
TXD->lower_setup.ip_fields.ipcso =
|
|
ehdrlen + offsetof(struct ip, ip_sum);
|
|
cmd |= E1000_TXD_CMD_IP;
|
|
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
}
|
|
|
|
if (mp->m_len < ehdrlen + ip_hlen)
|
|
return; /* failure */
|
|
|
|
hdr_len = ehdrlen + ip_hlen;
|
|
ipproto = ip->ip_p;
|
|
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
|
|
|
|
if (mp->m_len < ehdrlen + ip_hlen)
|
|
return; /* failure */
|
|
|
|
/* IPv6 doesn't have a header checksum. */
|
|
|
|
hdr_len = ehdrlen + ip_hlen;
|
|
ipproto = ip6->ip6_nxt;
|
|
|
|
break;
|
|
default:
|
|
*txd_upper = 0;
|
|
*txd_lower = 0;
|
|
return;
|
|
}
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
|
|
/*
|
|
* Start offset for payload checksum calculation.
|
|
* End offset for payload checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
th = (struct tcp_hdr *)(mp->m_data + hdr_len);
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
hdr_len + offsetof(struct tcphdr, th_sum);
|
|
cmd |= E1000_TXD_CMD_TCP;
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
}
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
hdr_len + offsetof(struct udphdr, uh_sum);
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
TXD->tcp_seg_setup.data = htole32(0);
|
|
TXD->cmd_and_length =
|
|
htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++curr_txd == adapter->num_tx_desc)
|
|
curr_txd = 0;
|
|
|
|
adapter->num_tx_desc_avail--;
|
|
adapter->next_avail_tx_desc = curr_txd;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO)
|
|
*
|
|
**********************************************************************/
|
|
static boolean_t
|
|
em_tso_setup(struct adapter *adapter, struct mbuf *mp, uint32_t *txd_upper,
|
|
uint32_t *txd_lower)
|
|
{
|
|
struct e1000_context_desc *TXD;
|
|
struct em_buffer *tx_buffer;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip;
|
|
struct ip6_hdr *ip6;
|
|
struct tcphdr *th;
|
|
int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6;
|
|
uint16_t etype;
|
|
|
|
/*
|
|
* XXX: This is not really correct as the stack would not have
|
|
* set up all checksums.
|
|
* XXX: Return FALSE is not sufficient as we may have to return
|
|
* in true failure cases as well. Should do -1 (failure), 0 (no)
|
|
* and 1 (success).
|
|
*/
|
|
if (((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) ||
|
|
(mp->m_pkthdr.len <= EM_TX_BUFFER_SIZE))
|
|
return FALSE;
|
|
|
|
/*
|
|
* This function could/should be extended to support IP/IPv6
|
|
* fragmentation as well. But as they say, one step at a time.
|
|
*/
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/* Ensure we have at least the IP+TCP header in the first mbuf. */
|
|
if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
|
|
return FALSE; /* -1 */
|
|
|
|
/*
|
|
* We only support TCP for IPv4 and IPv6 (notyet) for the moment.
|
|
* TODO: Support SCTP too when it hits the tree.
|
|
*/
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
isip6 = 0;
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
if (ip->ip_p != IPPROTO_TCP)
|
|
return FALSE; /* 0 */
|
|
ip->ip_len = 0;
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
|
|
return FALSE; /* -1 */
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
#if 1
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
#else
|
|
th->th_sum = mp->m_pkthdr.csum_data;
|
|
#endif
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
isip6 = 1;
|
|
return FALSE; /* Not supported yet. */
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
if (ip6->ip6_nxt != IPPROTO_TCP)
|
|
return FALSE; /* 0 */
|
|
ip6->ip6_plen = 0;
|
|
ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */
|
|
if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
|
|
return FALSE; /* -1 */
|
|
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
|
|
#if 0
|
|
th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst,
|
|
htons(IPPROTO_TCP)); /* XXX: function notyet. */
|
|
#else
|
|
th->th_sum = mp->m_pkthdr.csum_data;
|
|
#endif
|
|
break;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
hdr_len = ehdrlen + ip_hlen + (th->th_off << 2);
|
|
|
|
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
|
|
E1000_TXD_DTYP_D | /* Data descr type */
|
|
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
|
|
|
|
/* IP and/or TCP header checksum calculation and insertion. */
|
|
*txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) |
|
|
E1000_TXD_POPTS_TXSM) << 8;
|
|
|
|
curr_txd = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[curr_txd];
|
|
TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
|
|
|
|
/* IPv6 doesn't have a header checksum. */
|
|
if (!isip6) {
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place put the checksum.
|
|
*/
|
|
TXD->lower_setup.ip_fields.ipcss = ehdrlen;
|
|
TXD->lower_setup.ip_fields.ipcse =
|
|
htole16(ehdrlen + ip_hlen - 1);
|
|
TXD->lower_setup.ip_fields.ipcso =
|
|
ehdrlen + offsetof(struct ip, ip_sum);
|
|
}
|
|
/*
|
|
* Start offset for payload checksum calculation.
|
|
* End offset for payload checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD->upper_setup.tcp_fields.tucss =
|
|
ehdrlen + ip_hlen;
|
|
TXD->upper_setup.tcp_fields.tucse = 0;
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum);
|
|
/*
|
|
* Payload size per packet w/o any headers.
|
|
* Length of all headers up to payload.
|
|
*/
|
|
TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
|
|
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
|
|
|
|
TXD->cmd_and_length = htole32(adapter->txd_cmd |
|
|
E1000_TXD_CMD_DEXT | /* Extended descr */
|
|
E1000_TXD_CMD_TSE | /* TSE context */
|
|
(isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */
|
|
E1000_TXD_CMD_TCP | /* Do TCP checksum */
|
|
(mp->m_pkthdr.len - (hdr_len))); /* Total len */
|
|
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++curr_txd == adapter->num_tx_desc)
|
|
curr_txd = 0;
|
|
|
|
adapter->num_tx_desc_avail--;
|
|
adapter->next_avail_tx_desc = curr_txd;
|
|
adapter->tx_tso = TRUE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO) on
|
|
* adapters using advanced tx descriptors
|
|
*
|
|
**********************************************************************/
|
|
static boolean_t
|
|
em_tso_adv_setup(struct adapter *adapter, struct mbuf *mp, u32 *paylen)
|
|
{
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct em_buffer *tx_buffer;
|
|
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
u32 mss_l4len_idx = 0;
|
|
u16 vtag = 0;
|
|
int ctxd, ehdrlen, hdrlen, ip_hlen, tcp_hlen;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *th;
|
|
|
|
if (((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) ||
|
|
(mp->m_pkthdr.len <= EM_TX_BUFFER_SIZE))
|
|
return FALSE;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
else
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
|
|
/* Ensure we have at least the IP+TCP header in the first mbuf. */
|
|
if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
|
|
return FALSE;
|
|
|
|
/* Only supports IPV4 for now */
|
|
ctxd = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
|
|
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
if (ip->ip_p != IPPROTO_TCP)
|
|
return FALSE; /* 0 */
|
|
ip->ip_len = 0;
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
tcp_hlen = th->th_off << 2;
|
|
hdrlen = ehdrlen + ip_hlen + tcp_hlen;
|
|
/* Calculate payload, this is used in the transmit desc in encap */
|
|
*paylen = mp->m_pkthdr.len - hdrlen;
|
|
|
|
/* VLAN MACLEN IPLEN */
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
}
|
|
vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
|
|
vlan_macip_lens |= ip_hlen;
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
|
|
/* ADV DTYPE TUCMD */
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
|
|
/* MSS L4LEN IDX */
|
|
mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
|
|
mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
|
|
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
|
|
|
|
TXD->seqnum_seed = htole32(0);
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
|
|
adapter->num_tx_desc_avail--;
|
|
adapter->next_avail_tx_desc = ctxd;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Advanced Context Descriptor setup for VLAN or CSUM
|
|
*
|
|
**********************************************************************/
|
|
|
|
static boolean_t
|
|
em_tx_adv_ctx_setup(struct adapter *adapter, struct mbuf *mp)
|
|
{
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct em_buffer *tx_buffer;
|
|
uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip;
|
|
struct ip6_hdr *ip6;
|
|
int ehdrlen, ip_hlen;
|
|
u16 etype;
|
|
u8 ipproto;
|
|
|
|
int ctxd = adapter->next_avail_tx_desc;
|
|
u16 vtag = 0;
|
|
|
|
tx_buffer = &adapter->tx_buffer_area[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd];
|
|
|
|
/*
|
|
** In advanced descriptors the vlan tag must
|
|
** be placed into the descriptor itself.
|
|
*/
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/* Set the ether header length */
|
|
vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
|
|
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
if (mp->m_len < ehdrlen + ip_hlen)
|
|
return FALSE; /* failure */
|
|
ipproto = ip->ip_p;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
if (mp->m_len < ehdrlen + ip_hlen)
|
|
return FALSE; /* failure */
|
|
ipproto = ip6->ip6_nxt;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
|
|
break;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
vlan_macip_lens |= ip_hlen;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_UDP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
break;
|
|
}
|
|
|
|
/* Now copy bits into descriptor */
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
TXD->seqnum_seed = htole32(0);
|
|
TXD->mss_l4len_idx = htole32(0);
|
|
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
/* We've consumed the first desc, adjust counters */
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
adapter->next_avail_tx_desc = ctxd;
|
|
--adapter->num_tx_desc_avail;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_txeof(struct adapter *adapter)
|
|
{
|
|
int first, last, done, num_avail;
|
|
struct em_buffer *tx_buffer;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_LOCK_ASSERT(adapter);
|
|
|
|
if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
|
|
return;
|
|
|
|
num_avail = adapter->num_tx_desc_avail;
|
|
first = adapter->next_tx_to_clean;
|
|
tx_desc = &adapter->tx_desc_base[first];
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
last = tx_buffer->next_eop;
|
|
eop_desc = &adapter->tx_desc_base[last];
|
|
|
|
/*
|
|
* What this does is get the index of the
|
|
* first descriptor AFTER the EOP of the
|
|
* first packet, that way we can do the
|
|
* simple comparison on the inner while loop.
|
|
*/
|
|
if (++last == adapter->num_tx_desc)
|
|
last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
tx_desc->upper.data = 0;
|
|
tx_desc->lower.data = 0;
|
|
tx_desc->buffer_addr = 0;
|
|
num_avail++;
|
|
|
|
if (tx_buffer->m_head) {
|
|
ifp->if_opackets++;
|
|
bus_dmamap_sync(adapter->txtag,
|
|
tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++first == adapter->num_tx_desc)
|
|
first = 0;
|
|
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_desc = &adapter->tx_desc_base[first];
|
|
}
|
|
/* See if we can continue to the next packet */
|
|
last = tx_buffer->next_eop;
|
|
if (last != -1) {
|
|
eop_desc = &adapter->tx_desc_base[last];
|
|
/* Get new done point */
|
|
if (++last == adapter->num_tx_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
adapter->next_tx_to_clean = first;
|
|
|
|
/*
|
|
* If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
|
|
* that it is OK to send packets.
|
|
* If there are no pending descriptors, clear the timeout. Otherwise,
|
|
* if some descriptors have been freed, restart the timeout.
|
|
*/
|
|
if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
/* All clean, turn off the timer */
|
|
if (num_avail == adapter->num_tx_desc)
|
|
adapter->watchdog_timer = 0;
|
|
/* Some cleaned, reset the timer */
|
|
else if (num_avail != adapter->num_tx_desc_avail)
|
|
adapter->watchdog_timer = EM_TX_TIMEOUT;
|
|
}
|
|
adapter->num_tx_desc_avail = num_avail;
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Get a buffer from system mbuf buffer pool.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_get_buf(struct adapter *adapter, int i)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *rx_buffer;
|
|
int error, nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
adapter->mbuf_cluster_failed++;
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
|
|
if (adapter->hw.mac.max_frame_size <= (MCLBYTES - ETHER_ALIGN))
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
/*
|
|
* Using memory from the mbuf cluster pool, invoke the
|
|
* bus_dma machinery to arrange the memory mapping.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
|
|
adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_free(m);
|
|
return (error);
|
|
}
|
|
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
KASSERT(nsegs == 1, ("Too many segments returned!"));
|
|
|
|
rx_buffer = &adapter->rx_buffer_area[i];
|
|
if (rx_buffer->m_head != NULL)
|
|
bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
|
|
|
|
map = rx_buffer->map;
|
|
rx_buffer->map = adapter->rx_sparemap;
|
|
adapter->rx_sparemap = map;
|
|
bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
|
|
rx_buffer->m_head = m;
|
|
|
|
adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_allocate_receive_structures(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *rx_buffer;
|
|
int i, error;
|
|
|
|
adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
|
|
adapter->num_rx_desc, M_DEVBUF, M_NOWAIT);
|
|
if (adapter->rx_buffer_area == NULL) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bzero(adapter->rx_buffer_area,
|
|
sizeof(struct em_buffer) * adapter->num_rx_desc);
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&adapter->rxtag);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the spare map (used by getbuf) */
|
|
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
|
|
&adapter->rx_sparemap);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
rx_buffer = adapter->rx_buffer_area;
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
|
|
&rx_buffer->map);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Setup the initial buffers */
|
|
for (i = 0; i < adapter->num_rx_desc; i++) {
|
|
error = em_get_buf(adapter, i);
|
|
if (error)
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
em_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate and initialize receive structures.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
int error;
|
|
|
|
bzero(adapter->rx_desc_base,
|
|
(sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
|
|
|
|
if ((error = em_allocate_receive_structures(adapter)) !=0)
|
|
return (error);
|
|
|
|
/* Setup our descriptor pointers */
|
|
adapter->next_rx_desc_to_check = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_initialize_receive_unit(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
uint64_t bus_addr;
|
|
uint32_t reg_rctl;
|
|
uint32_t reg_rxcsum;
|
|
|
|
INIT_DEBUGOUT("em_initialize_receive_unit: begin");
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring
|
|
*/
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl & ~E1000_RCTL_EN);
|
|
|
|
if(adapter->hw.mac.type >= e1000_82540) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RADV,
|
|
adapter->rx_abs_int_delay.value);
|
|
/*
|
|
* Set the interrupt throttling rate. Value is calculated
|
|
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
|
|
*/
|
|
#define MAX_INTS_PER_SEC 8000
|
|
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
|
|
}
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Ring */
|
|
bus_addr = adapter->rxdma.dma_paddr;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDLEN, adapter->num_rx_desc *
|
|
sizeof(struct e1000_rx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAH, (uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAL, (uint32_t)bus_addr);
|
|
|
|
/* Setup the Receive Control Register */
|
|
reg_rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
reg_rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
|
|
reg_rctl |= E1000_RCTL_SBP;
|
|
else
|
|
reg_rctl &= ~E1000_RCTL_SBP;
|
|
|
|
switch (adapter->rx_buffer_len) {
|
|
default:
|
|
case 2048:
|
|
reg_rctl |= E1000_RCTL_SZ_2048;
|
|
break;
|
|
case 4096:
|
|
reg_rctl |= E1000_RCTL_SZ_4096 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
case 8192:
|
|
reg_rctl |= E1000_RCTL_SZ_8192 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
case 16384:
|
|
reg_rctl |= E1000_RCTL_SZ_16384 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
}
|
|
|
|
if (ifp->if_mtu > ETHERMTU)
|
|
reg_rctl |= E1000_RCTL_LPE;
|
|
else
|
|
reg_rctl &= ~E1000_RCTL_LPE;
|
|
|
|
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
|
|
if ((adapter->hw.mac.type >= e1000_82543) &&
|
|
(ifp->if_capenable & IFCAP_RXCSUM)) {
|
|
reg_rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
|
|
reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, reg_rxcsum);
|
|
}
|
|
|
|
/*
|
|
** XXX TEMPORARY WORKAROUND: on some systems with 82573
|
|
** long latencies are observed, like Lenovo X60. This
|
|
** change eliminates the problem, but since having positive
|
|
** values in RDTR is a known source of problems on other
|
|
** platforms another solution is being sought.
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82573)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20);
|
|
|
|
/* Enable Receives */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
|
|
/*
|
|
* Setup the HW Rx Head and
|
|
* Tail Descriptor Pointers
|
|
*/
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDH, 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT, adapter->num_rx_desc - 1);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *rx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_receive_structures: begin");
|
|
|
|
if (adapter->rx_sparemap) {
|
|
bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
|
|
adapter->rx_sparemap = NULL;
|
|
}
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (adapter->rx_buffer_area != NULL) {
|
|
rx_buffer = adapter->rx_buffer_area;
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
if (rx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(adapter->rxtag,
|
|
rx_buffer->map);
|
|
m_freem(rx_buffer->m_head);
|
|
rx_buffer->m_head = NULL;
|
|
} else if (rx_buffer->map != NULL)
|
|
bus_dmamap_unload(adapter->rxtag,
|
|
rx_buffer->map);
|
|
if (rx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(adapter->rxtag,
|
|
rx_buffer->map);
|
|
rx_buffer->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (adapter->rx_buffer_area != NULL) {
|
|
free(adapter->rx_buffer_area, M_DEVBUF);
|
|
adapter->rx_buffer_area = NULL;
|
|
}
|
|
|
|
if (adapter->rxtag != NULL) {
|
|
bus_dma_tag_destroy(adapter->rxtag);
|
|
adapter->rxtag = NULL;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
em_rxeof(struct adapter *adapter, int count)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *mp;
|
|
uint8_t accept_frame = 0;
|
|
uint8_t eop = 0;
|
|
uint16_t len, desc_len, prev_len_adj;
|
|
int i;
|
|
|
|
/* Pointer to the receive descriptor being examined. */
|
|
struct e1000_rx_desc *current_desc;
|
|
uint8_t status;
|
|
|
|
ifp = adapter->ifp;
|
|
i = adapter->next_rx_desc_to_check;
|
|
current_desc = &adapter->rx_desc_base[i];
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
if (!((current_desc->status) & E1000_RXD_STAT_DD))
|
|
return (0);
|
|
|
|
while ((current_desc->status & E1000_RXD_STAT_DD) &&
|
|
(count != 0) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
struct mbuf *m = NULL;
|
|
|
|
mp = adapter->rx_buffer_area[i].m_head;
|
|
/*
|
|
* Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
|
|
* needs to access the last received byte in the mbuf.
|
|
*/
|
|
bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
accept_frame = 1;
|
|
prev_len_adj = 0;
|
|
desc_len = le16toh(current_desc->length);
|
|
status = current_desc->status;
|
|
if (status & E1000_RXD_STAT_EOP) {
|
|
count--;
|
|
eop = 1;
|
|
if (desc_len < ETHER_CRC_LEN) {
|
|
len = 0;
|
|
prev_len_adj = ETHER_CRC_LEN - desc_len;
|
|
} else
|
|
len = desc_len - ETHER_CRC_LEN;
|
|
} else {
|
|
eop = 0;
|
|
len = desc_len;
|
|
}
|
|
|
|
if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
|
|
uint8_t last_byte;
|
|
uint32_t pkt_len = desc_len;
|
|
|
|
if (adapter->fmp != NULL)
|
|
pkt_len += adapter->fmp->m_pkthdr.len;
|
|
|
|
last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
|
|
if (TBI_ACCEPT(&adapter->hw, status,
|
|
current_desc->errors, pkt_len, last_byte)) {
|
|
e1000_tbi_adjust_stats_82543(&adapter->hw,
|
|
&adapter->stats, pkt_len,
|
|
adapter->hw.mac.addr);
|
|
if (len > 0)
|
|
len--;
|
|
} else
|
|
accept_frame = 0;
|
|
}
|
|
|
|
if (accept_frame) {
|
|
if (em_get_buf(adapter, i) != 0) {
|
|
ifp->if_iqdrops++;
|
|
goto discard;
|
|
}
|
|
|
|
/* Assign correct length to the current fragment */
|
|
mp->m_len = len;
|
|
|
|
if (adapter->fmp == NULL) {
|
|
mp->m_pkthdr.len = len;
|
|
adapter->fmp = mp; /* Store the first mbuf */
|
|
adapter->lmp = mp;
|
|
} else {
|
|
/* Chain mbuf's together */
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
/*
|
|
* Adjust length of previous mbuf in chain if
|
|
* we received less than 4 bytes in the last
|
|
* descriptor.
|
|
*/
|
|
if (prev_len_adj > 0) {
|
|
adapter->lmp->m_len -= prev_len_adj;
|
|
adapter->fmp->m_pkthdr.len -=
|
|
prev_len_adj;
|
|
}
|
|
adapter->lmp->m_next = mp;
|
|
adapter->lmp = adapter->lmp->m_next;
|
|
adapter->fmp->m_pkthdr.len += len;
|
|
}
|
|
|
|
if (eop) {
|
|
adapter->fmp->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
em_receive_checksum(adapter, current_desc,
|
|
adapter->fmp);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
if (adapter->hw.mac.max_frame_size >
|
|
(MCLBYTES - ETHER_ALIGN) &&
|
|
em_fixup_rx(adapter) != 0)
|
|
goto skip;
|
|
#endif
|
|
if (status & E1000_RXD_STAT_VP) {
|
|
adapter->fmp->m_pkthdr.ether_vtag =
|
|
(le16toh(current_desc->special) &
|
|
E1000_RXD_SPC_VLAN_MASK);
|
|
adapter->fmp->m_flags |= M_VLANTAG;
|
|
}
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
skip:
|
|
#endif
|
|
m = adapter->fmp;
|
|
adapter->fmp = NULL;
|
|
adapter->lmp = NULL;
|
|
}
|
|
} else {
|
|
ifp->if_ierrors++;
|
|
discard:
|
|
/* Reuse loaded DMA map and just update mbuf chain */
|
|
mp = adapter->rx_buffer_area[i].m_head;
|
|
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
|
|
mp->m_data = mp->m_ext.ext_buf;
|
|
mp->m_next = NULL;
|
|
if (adapter->hw.mac.max_frame_size <=
|
|
(MCLBYTES - ETHER_ALIGN))
|
|
m_adj(mp, ETHER_ALIGN);
|
|
if (adapter->fmp != NULL) {
|
|
m_freem(adapter->fmp);
|
|
adapter->fmp = NULL;
|
|
adapter->lmp = NULL;
|
|
}
|
|
m = NULL;
|
|
}
|
|
|
|
/* Zero out the receive descriptors status. */
|
|
current_desc->status = 0;
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == adapter->num_rx_desc)
|
|
i = 0;
|
|
if (m != NULL) {
|
|
adapter->next_rx_desc_to_check = i;
|
|
#ifdef DEVICE_POLLING
|
|
EM_UNLOCK(adapter);
|
|
(*ifp->if_input)(ifp, m);
|
|
EM_LOCK(adapter);
|
|
#else
|
|
/* Already running unlocked */
|
|
(*ifp->if_input)(ifp, m);
|
|
#endif
|
|
i = adapter->next_rx_desc_to_check;
|
|
}
|
|
current_desc = &adapter->rx_desc_base[i];
|
|
}
|
|
adapter->next_rx_desc_to_check = i;
|
|
|
|
/* Advance the E1000's Receive Queue #0 "Tail Pointer". */
|
|
if (--i < 0)
|
|
i = adapter->num_rx_desc - 1;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT, i);
|
|
if (!((current_desc->status) & E1000_RXD_STAT_DD))
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* When jumbo frames are enabled we should realign entire payload on
|
|
* architecures with strict alignment. This is serious design mistake of 8254x
|
|
* as it nullifies DMA operations. 8254x just allows RX buffer size to be
|
|
* 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
|
|
* payload. On architecures without strict alignment restrictions 8254x still
|
|
* performs unaligned memory access which would reduce the performance too.
|
|
* To avoid copying over an entire frame to align, we allocate a new mbuf and
|
|
* copy ethernet header to the new mbuf. The new mbuf is prepended into the
|
|
* existing mbuf chain.
|
|
*
|
|
* Be aware, best performance of the 8254x is achived only when jumbo frame is
|
|
* not used at all on architectures with strict alignment.
|
|
*/
|
|
static int
|
|
em_fixup_rx(struct adapter *adapter)
|
|
{
|
|
struct mbuf *m, *n;
|
|
int error;
|
|
|
|
error = 0;
|
|
m = adapter->fmp;
|
|
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
|
|
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
} else {
|
|
MGETHDR(n, M_DONTWAIT, MT_DATA);
|
|
if (n != NULL) {
|
|
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
m->m_len -= ETHER_HDR_LEN;
|
|
n->m_len = ETHER_HDR_LEN;
|
|
M_MOVE_PKTHDR(n, m);
|
|
n->m_next = m;
|
|
adapter->fmp = n;
|
|
} else {
|
|
adapter->dropped_pkts++;
|
|
m_freem(adapter->fmp);
|
|
adapter->fmp = NULL;
|
|
error = ENOMEM;
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
em_receive_checksum(struct adapter *adapter,
|
|
struct e1000_rx_desc *rx_desc, struct mbuf *mp)
|
|
{
|
|
/* 82543 or newer only */
|
|
if ((adapter->hw.mac.type < e1000_82543) ||
|
|
/* Ignore Checksum bit is set */
|
|
(rx_desc->status & E1000_RXD_STAT_IXSM)) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
if (rx_desc->status & E1000_RXD_STAT_IPCS) {
|
|
/* Did it pass? */
|
|
if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
|
|
/* IP Checksum Good */
|
|
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
|
|
} else {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
}
|
|
}
|
|
|
|
if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
|
|
/* Did it pass? */
|
|
if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
|
|
mp->m_pkthdr.csum_flags |=
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
em_enable_vlans(struct adapter *adapter)
|
|
{
|
|
uint32_t ctrl;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
}
|
|
|
|
static void
|
|
em_enable_intr(struct adapter *adapter)
|
|
{
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
(IMS_ENABLE_MASK));
|
|
}
|
|
|
|
static void
|
|
em_disable_intr(struct adapter *adapter)
|
|
{
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features
|
|
*/
|
|
static void
|
|
em_init_manageability(struct adapter *adapter)
|
|
{
|
|
/* A shared code workaround */
|
|
#define E1000_82542_MANC2H E1000_MANC2H
|
|
if (adapter->has_manage) {
|
|
int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
if (adapter->hw.mac.type >= e1000_82571) {
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
#define E1000_MNG2HOST_PORT_623 (1 << 5)
|
|
#define E1000_MNG2HOST_PORT_664 (1 << 6)
|
|
manc2h |= E1000_MNG2HOST_PORT_623;
|
|
manc2h |= E1000_MNG2HOST_PORT_664;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
em_release_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
|
|
if (adapter->hw.mac.type >= e1000_82571)
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded. For AMT version (only with 82573)
|
|
* of the f/w this means that the network i/f is open.
|
|
*
|
|
*/
|
|
static void
|
|
em_get_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext, swsm;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82573:
|
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
|
swsm | E1000_SWSM_DRV_LOAD);
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_80003es2lan:
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
|
* of the f/w this means that the network i/f is closed.
|
|
*
|
|
*/
|
|
static void
|
|
em_release_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext, swsm;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82573:
|
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
|
swsm & ~E1000_SWSM_DRV_LOAD);
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_80003es2lan:
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
break;
|
|
default:
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
static int
|
|
em_is_valid_ether_addr(uint8_t *addr)
|
|
{
|
|
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* NOTE: the following routines using the e1000
|
|
* naming style are provided to the shared
|
|
* code which expects that rather than 'em'
|
|
*/
|
|
|
|
void
|
|
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
|
{
|
|
pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2);
|
|
}
|
|
|
|
void
|
|
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
|
{
|
|
*value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2);
|
|
}
|
|
|
|
void
|
|
e1000_pci_set_mwi(struct e1000_hw *hw)
|
|
{
|
|
pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
|
|
(hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
|
|
}
|
|
|
|
void
|
|
e1000_pci_clear_mwi(struct e1000_hw *hw)
|
|
{
|
|
pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
|
|
(hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
|
|
}
|
|
|
|
/*
|
|
* Read the PCI Express capabilities
|
|
*/
|
|
int32_t
|
|
e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
|
{
|
|
int32_t error = E1000_SUCCESS;
|
|
uint16_t cap_off;
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_82573:
|
|
case e1000_80003es2lan:
|
|
cap_off = 0xE0;
|
|
e1000_read_pci_cfg(hw, cap_off + reg, value);
|
|
break;
|
|
default:
|
|
error = ~E1000_NOT_IMPLEMENTED;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int32_t
|
|
e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, uint32_t size)
|
|
{
|
|
int32_t error = 0;
|
|
|
|
hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (hw->dev_spec == NULL)
|
|
error = ENOMEM;
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
e1000_free_dev_spec_struct(struct e1000_hw *hw)
|
|
{
|
|
if (hw->dev_spec != NULL)
|
|
free(hw->dev_spec, M_DEVBUF);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enable PCI Wake On Lan capability
|
|
*/
|
|
void
|
|
em_enable_wakeup(device_t dev)
|
|
{
|
|
u16 cap, status;
|
|
u8 id;
|
|
|
|
/* First find the capabilities pointer*/
|
|
cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
|
|
/* Read the PM Capabilities */
|
|
id = pci_read_config(dev, cap, 1);
|
|
if (id != PCIY_PMG) /* Something wrong */
|
|
return;
|
|
/* OK, we have the power capabilities, so
|
|
now get the status register */
|
|
cap += PCIR_POWER_STATUS;
|
|
status = pci_read_config(dev, cap, 2);
|
|
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(dev, cap, status, 2);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* 82544 Coexistence issue workaround.
|
|
* There are 2 issues.
|
|
* 1. Transmit Hang issue.
|
|
* To detect this issue, following equation can be used...
|
|
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
|
|
* If SUM[3:0] is in between 1 to 4, we will have this issue.
|
|
*
|
|
* 2. DAC issue.
|
|
* To detect this issue, following equation can be used...
|
|
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
|
|
* If SUM[3:0] is in between 9 to c, we will have this issue.
|
|
*
|
|
*
|
|
* WORKAROUND:
|
|
* Make sure we do not have ending address
|
|
* as 1,2,3,4(Hang) or 9,a,b,c (DAC)
|
|
*
|
|
*************************************************************************/
|
|
static uint32_t
|
|
em_fill_descriptors (bus_addr_t address, uint32_t length,
|
|
PDESC_ARRAY desc_array)
|
|
{
|
|
/* Since issue is sensitive to length and address.*/
|
|
/* Let us first check the address...*/
|
|
uint32_t safe_terminator;
|
|
if (length <= 4) {
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length;
|
|
desc_array->elements = 1;
|
|
return (desc_array->elements);
|
|
}
|
|
safe_terminator = (uint32_t)((((uint32_t)address & 0x7) +
|
|
(length & 0xF)) & 0xF);
|
|
/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
|
|
if (safe_terminator == 0 ||
|
|
(safe_terminator > 4 &&
|
|
safe_terminator < 9) ||
|
|
(safe_terminator > 0xC &&
|
|
safe_terminator <= 0xF)) {
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length;
|
|
desc_array->elements = 1;
|
|
return (desc_array->elements);
|
|
}
|
|
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length - 4;
|
|
desc_array->descriptor[1].address = address + (length - 4);
|
|
desc_array->descriptor[1].length = 4;
|
|
desc_array->elements = 2;
|
|
return (desc_array->elements);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_update_stats_counters(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
|
|
adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
|
|
}
|
|
adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
|
|
adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
|
|
adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
|
|
adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
|
|
|
|
adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
|
|
adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
|
|
adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
|
|
adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
|
|
adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
|
|
adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
|
|
adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
|
|
adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
|
|
adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
|
|
adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
|
|
adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
|
|
adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
|
|
adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
|
|
adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
|
|
adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
|
|
adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
|
|
adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
|
|
adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
|
|
adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
|
|
adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, E1000_GORCL);
|
|
adapter->stats.gorch += E1000_READ_REG(&adapter->hw, E1000_GORCH);
|
|
adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, E1000_GOTCL);
|
|
adapter->stats.gotch += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
|
|
|
|
adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
|
|
adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
|
|
adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
|
|
adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
|
|
adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
|
|
|
|
adapter->stats.torl += E1000_READ_REG(&adapter->hw, E1000_TORL);
|
|
adapter->stats.torh += E1000_READ_REG(&adapter->hw, E1000_TORH);
|
|
adapter->stats.totl += E1000_READ_REG(&adapter->hw, E1000_TOTL);
|
|
adapter->stats.toth += E1000_READ_REG(&adapter->hw, E1000_TOTH);
|
|
|
|
adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
|
|
adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
|
|
adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
|
|
adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
|
|
adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
|
|
adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
|
|
adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
|
|
adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
|
|
adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
|
|
adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
|
|
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
adapter->stats.algnerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
|
|
adapter->stats.rxerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_RXERRC);
|
|
adapter->stats.tncrs +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TNCRS);
|
|
adapter->stats.cexterr +=
|
|
E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
|
|
adapter->stats.tsctc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTC);
|
|
adapter->stats.tsctfc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
|
|
}
|
|
ifp = adapter->ifp;
|
|
|
|
ifp->if_collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.mpc + adapter->stats.cexterr;
|
|
|
|
/* Tx Errors */
|
|
ifp->if_oerrors = adapter->stats.ecol +
|
|
adapter->stats.latecol + adapter->watchdog_events;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine is called only when em_display_debug_stats is enabled.
|
|
* This routine provides a way to take a look at important statistics
|
|
* maintained by the driver and hardware.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_print_debug_info(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
uint8_t *hw_addr = adapter->hw.hw_addr;
|
|
|
|
device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
|
|
device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
|
|
E1000_READ_REG(&adapter->hw, E1000_CTRL),
|
|
E1000_READ_REG(&adapter->hw, E1000_RCTL));
|
|
device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
|
|
((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
|
|
(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
|
|
device_printf(dev, "Flow control watermarks high = %d low = %d\n",
|
|
adapter->hw.mac.fc_high_water,
|
|
adapter->hw.mac.fc_low_water);
|
|
device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TIDV),
|
|
E1000_READ_REG(&adapter->hw, E1000_TADV));
|
|
device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_RDTR),
|
|
E1000_READ_REG(&adapter->hw, E1000_RADV));
|
|
device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
|
|
(long long)adapter->tx_fifo_wrk_cnt,
|
|
(long long)adapter->tx_fifo_reset_cnt);
|
|
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT));
|
|
device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_RDH),
|
|
E1000_READ_REG(&adapter->hw, E1000_RDT));
|
|
device_printf(dev, "Num Tx descriptors avail = %d\n",
|
|
adapter->num_tx_desc_avail);
|
|
device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
|
|
adapter->no_tx_desc_avail1);
|
|
device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
|
|
adapter->no_tx_desc_avail2);
|
|
device_printf(dev, "Std mbuf failed = %ld\n",
|
|
adapter->mbuf_alloc_failed);
|
|
device_printf(dev, "Std mbuf cluster failed = %ld\n",
|
|
adapter->mbuf_cluster_failed);
|
|
device_printf(dev, "Driver dropped packets = %ld\n",
|
|
adapter->dropped_pkts);
|
|
device_printf(dev, "Driver tx dma failure in encap = %ld\n",
|
|
adapter->no_tx_dma_setup);
|
|
}
|
|
|
|
static void
|
|
em_print_hw_stats(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
device_printf(dev, "Excessive collisions = %lld\n",
|
|
(long long)adapter->stats.ecol);
|
|
#if (DEBUG_HW > 0) /* Dont output these errors normally */
|
|
device_printf(dev, "Symbol errors = %lld\n",
|
|
(long long)adapter->stats.symerrs);
|
|
#endif
|
|
device_printf(dev, "Sequence errors = %lld\n",
|
|
(long long)adapter->stats.sec);
|
|
device_printf(dev, "Defer count = %lld\n",
|
|
(long long)adapter->stats.dc);
|
|
device_printf(dev, "Missed Packets = %lld\n",
|
|
(long long)adapter->stats.mpc);
|
|
device_printf(dev, "Receive No Buffers = %lld\n",
|
|
(long long)adapter->stats.rnbc);
|
|
/* RLEC is inaccurate on some hardware, calculate our own. */
|
|
device_printf(dev, "Receive Length Errors = %lld\n",
|
|
((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
|
|
device_printf(dev, "Receive errors = %lld\n",
|
|
(long long)adapter->stats.rxerrc);
|
|
device_printf(dev, "Crc errors = %lld\n",
|
|
(long long)adapter->stats.crcerrs);
|
|
device_printf(dev, "Alignment errors = %lld\n",
|
|
(long long)adapter->stats.algnerrc);
|
|
device_printf(dev, "Carrier extension errors = %lld\n",
|
|
(long long)adapter->stats.cexterr);
|
|
device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
|
|
device_printf(dev, "watchdog timeouts = %ld\n",
|
|
adapter->watchdog_events);
|
|
device_printf(dev, "XON Rcvd = %lld\n",
|
|
(long long)adapter->stats.xonrxc);
|
|
device_printf(dev, "XON Xmtd = %lld\n",
|
|
(long long)adapter->stats.xontxc);
|
|
device_printf(dev, "XOFF Rcvd = %lld\n",
|
|
(long long)adapter->stats.xoffrxc);
|
|
device_printf(dev, "XOFF Xmtd = %lld\n",
|
|
(long long)adapter->stats.xofftxc);
|
|
device_printf(dev, "Good Packets Rcvd = %lld\n",
|
|
(long long)adapter->stats.gprc);
|
|
device_printf(dev, "Good Packets Xmtd = %lld\n",
|
|
(long long)adapter->stats.gptc);
|
|
device_printf(dev, "TSO Contexts Xmtd = %lld\n",
|
|
(long long)adapter->stats.tsctc);
|
|
device_printf(dev, "TSO Contexts Failed = %lld\n",
|
|
(long long)adapter->stats.tsctfc);
|
|
}
|
|
|
|
static int
|
|
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
em_print_debug_info(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static int
|
|
em_sysctl_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
em_print_hw_stats(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct em_int_delay_info *info;
|
|
struct adapter *adapter;
|
|
uint32_t regval;
|
|
int error;
|
|
int usecs;
|
|
int ticks;
|
|
|
|
info = (struct em_int_delay_info *)arg1;
|
|
usecs = info->value;
|
|
error = sysctl_handle_int(oidp, &usecs, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
|
|
return (EINVAL);
|
|
info->value = usecs;
|
|
ticks = EM_USECS_TO_TICKS(usecs);
|
|
|
|
adapter = info->adapter;
|
|
|
|
EM_LOCK(adapter);
|
|
regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
|
|
regval = (regval & ~0xffff) | (ticks & 0xffff);
|
|
/* Handle a few special cases. */
|
|
switch (info->offset) {
|
|
case E1000_RDTR:
|
|
break;
|
|
case E1000_TIDV:
|
|
if (ticks == 0) {
|
|
adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
|
|
/* Don't write 0 into the TIDV register. */
|
|
regval++;
|
|
} else
|
|
if (adapter->hw.mac.type != e1000_82575)
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
break;
|
|
}
|
|
E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
|
|
EM_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
|
|
const char *description, struct em_int_delay_info *info,
|
|
int offset, int value)
|
|
{
|
|
info->adapter = adapter;
|
|
info->offset = offset;
|
|
info->value = value;
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
|
|
info, 0, em_sysctl_int_delay, "I", description);
|
|
}
|
|
|
|
#ifndef DEVICE_POLLING
|
|
static void
|
|
em_add_rx_process_limit(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
|
|
}
|
|
#endif
|