freebsd-skq/sys/dev/random/fortuna.c
Eitan Adler cef367e6a1 Don't repeat the the word 'the'
(one manual change to fix grammar)

Confirmed With: db
Approved by: secteam (not really, but this is a comment typo fix)
2016-05-17 12:52:31 +00:00

423 lines
13 KiB
C

/*-
* Copyright (c) 2013-2015 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* This implementation of Fortuna is based on the descriptions found in
* ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
* and Kohno ("FS&K").
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/limits.h>
#ifdef _KERNEL
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/random_harvestq.h>
#include <dev/random/uint128.h>
#include <dev/random/fortuna.h>
#else /* !_KERNEL */
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>
#include "unit_test.h"
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/uint128.h>
#include <dev/random/fortuna.h>
#endif /* _KERNEL */
/* Defined in FS&K */
#define RANDOM_FORTUNA_NPOOLS 32 /* The number of accumulation pools */
#define RANDOM_FORTUNA_DEFPOOLSIZE 64 /* The default pool size/length for a (re)seed */
#define RANDOM_FORTUNA_MAX_READ (1 << 20) /* Max bytes in a single read */
/*
* The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
* Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
* and too small may compromise initial security but get faster reseeds.
*/
#define RANDOM_FORTUNA_MINPOOLSIZE 16
#define RANDOM_FORTUNA_MAXPOOLSIZE UINT_MAX
CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
/* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
/* Probes for dtrace(1) */
SDT_PROVIDER_DECLARE(random);
SDT_PROVIDER_DEFINE(random);
SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
/*
* This is the beastie that needs protecting. It contains all of the
* state that we are excited about. Exactly one is instantiated.
*/
static struct fortuna_state {
struct fs_pool { /* P_i */
u_int fsp_length; /* Only the first one is used by Fortuna */
struct randomdev_hash fsp_hash;
} fs_pool[RANDOM_FORTUNA_NPOOLS];
u_int fs_reseedcount; /* ReseedCnt */
uint128_t fs_counter; /* C */
struct randomdev_key fs_key; /* K */
u_int fs_minpoolsize; /* Extras */
/* Extras for the OS */
#ifdef _KERNEL
/* For use when 'pacing' the reseeds */
sbintime_t fs_lasttime;
#endif
/* Reseed lock */
mtx_t fs_mtx;
} fortuna_state;
#ifdef _KERNEL
static struct sysctl_ctx_list random_clist;
RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
#else
static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
#endif
static void random_fortuna_pre_read(void);
static void random_fortuna_read(uint8_t *, u_int);
static bool random_fortuna_seeded(void);
static void random_fortuna_process_event(struct harvest_event *);
static void random_fortuna_init_alg(void *);
static void random_fortuna_deinit_alg(void *);
static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
struct random_algorithm random_alg_context = {
.ra_ident = "Fortuna",
.ra_init_alg = random_fortuna_init_alg,
.ra_deinit_alg = random_fortuna_deinit_alg,
.ra_pre_read = random_fortuna_pre_read,
.ra_read = random_fortuna_read,
.ra_seeded = random_fortuna_seeded,
.ra_event_processor = random_fortuna_process_event,
.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
};
/* ARGSUSED */
static void
random_fortuna_init_alg(void *unused __unused)
{
int i;
#ifdef _KERNEL
struct sysctl_oid *random_fortuna_o;
#endif
RANDOM_RESEED_INIT_LOCK();
/*
* Fortuna parameters. Do not adjust these unless you have
* have a very good clue about what they do!
*/
fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
#ifdef _KERNEL
fortuna_state.fs_lasttime = 0;
random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
SYSCTL_STATIC_CHILDREN(_kern_random),
OID_AUTO, "fortuna", CTLFLAG_RW, 0,
"Fortuna Parameters");
SYSCTL_ADD_PROC(&random_clist,
SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO,
"minpoolsize", CTLTYPE_UINT | CTLFLAG_RWTUN,
&fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
random_check_uint_fs_minpoolsize, "IU",
"Minimum pool size necessary to cause a reseed");
KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
#endif
/*-
* FS&K - InitializePRNG()
* - P_i = \epsilon
* - ReseedCNT = 0
*/
for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
fortuna_state.fs_pool[i].fsp_length = 0;
}
fortuna_state.fs_reseedcount = 0;
/*-
* FS&K - InitializeGenerator()
* - C = 0
* - K = 0
*/
fortuna_state.fs_counter = UINT128_ZERO;
explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
}
/* ARGSUSED */
static void
random_fortuna_deinit_alg(void *unused __unused)
{
RANDOM_RESEED_DEINIT_LOCK();
explicit_bzero(&fortuna_state, sizeof(fortuna_state));
#ifdef _KERNEL
sysctl_ctx_free(&random_clist);
#endif
}
/*-
* FS&K - AddRandomEvent()
* Process a single stochastic event off the harvest queue
*/
static void
random_fortuna_process_event(struct harvest_event *event)
{
u_int pl;
RANDOM_RESEED_LOCK();
/*-
* FS&K - P_i = P_i|<harvested stuff>
* Accumulate the event into the appropriate pool
* where each event carries the destination information.
*
* The hash_init() and hash_finish() calls are done in
* random_fortuna_pre_read().
*
* We must be locked against pool state modification which can happen
* during accumulation/reseeding and reading/regating.
*/
pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, event, sizeof(*event));
/*-
* Don't wrap the length. Doing this the hard way so as not to wrap at MAXUINT.
* This is a "saturating" add.
* XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
* but it's been useful debugging to see them all.
*/
if (RANDOM_FORTUNA_MAXPOOLSIZE - fortuna_state.fs_pool[pl].fsp_length > event->he_size)
fortuna_state.fs_pool[pl].fsp_length += event->he_size;
else
fortuna_state.fs_pool[pl].fsp_length = RANDOM_FORTUNA_MAXPOOLSIZE;
explicit_bzero(event, sizeof(*event));
RANDOM_RESEED_UNLOCK();
}
/*-
* FS&K - Reseed()
* This introduces new key material into the output generator.
* Additionally it increments the output generator's counter
* variable C. When C > 0, the output generator is seeded and
* will deliver output.
* The entropy_data buffer passed is a very specific size; the
* product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
*/
static void
random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
{
struct randomdev_hash context;
uint8_t hash[RANDOM_KEYSIZE];
RANDOM_RESEED_ASSERT_LOCK_OWNED();
/*-
* FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
* - C = C + 1
*/
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
randomdev_hash_iterate(&context, &fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
randomdev_hash_finish(&context, hash);
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
randomdev_hash_finish(&context, hash);
randomdev_encrypt_init(&fortuna_state.fs_key, hash);
explicit_bzero(hash, sizeof(hash));
/* Unblock the device if this is the first time we are reseeding. */
if (uint128_is_zero(fortuna_state.fs_counter))
randomdev_unblock();
uint128_increment(&fortuna_state.fs_counter);
}
/*-
* FS&K - GenerateBlocks()
* Generate a number of complete blocks of random output.
*/
static __inline void
random_fortuna_genblocks(uint8_t *buf, u_int blockcount)
{
u_int i;
RANDOM_RESEED_ASSERT_LOCK_OWNED();
for (i = 0; i < blockcount; i++) {
/*-
* FS&K - r = r|E(K,C)
* - C = C + 1
*/
randomdev_encrypt(&fortuna_state.fs_key, &fortuna_state.fs_counter, buf, RANDOM_BLOCKSIZE);
buf += RANDOM_BLOCKSIZE;
uint128_increment(&fortuna_state.fs_counter);
}
}
/*-
* FS&K - PseudoRandomData()
* This generates no more than 2^20 bytes of data, and cleans up its
* internal state when finished. It is assumed that a whole number of
* blocks are available for writing; any excess generated will be
* ignored.
*/
static __inline void
random_fortuna_genrandom(uint8_t *buf, u_int bytecount)
{
static uint8_t temp[RANDOM_BLOCKSIZE*(RANDOM_KEYS_PER_BLOCK)];
u_int blockcount;
RANDOM_RESEED_ASSERT_LOCK_OWNED();
/*-
* FS&K - assert(n < 2^20 (== 1 MB)
* - r = first-n-bytes(GenerateBlocks(ceil(n/16)))
* - K = GenerateBlocks(2)
*/
KASSERT((bytecount <= RANDOM_FORTUNA_MAX_READ), ("invalid single read request to Fortuna of %d bytes", bytecount));
blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
random_fortuna_genblocks(buf, blockcount);
random_fortuna_genblocks(temp, RANDOM_KEYS_PER_BLOCK);
randomdev_encrypt_init(&fortuna_state.fs_key, temp);
explicit_bzero(temp, sizeof(temp));
}
/*-
* FS&K - RandomData() (Part 1)
* Used to return processed entropy from the PRNG. There is a pre_read
* required to be present (but it can be a stub) in order to allow
* specific actions at the begin of the read.
*/
void
random_fortuna_pre_read(void)
{
#ifdef _KERNEL
sbintime_t now;
#endif
struct randomdev_hash context;
uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
uint8_t temp[RANDOM_KEYSIZE];
u_int i;
KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
#ifdef _KERNEL
/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
now = getsbinuptime();
#endif
RANDOM_RESEED_LOCK();
if (fortuna_state.fs_pool[0].fsp_length >= fortuna_state.fs_minpoolsize
#ifdef _KERNEL
/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
&& (now - fortuna_state.fs_lasttime > hz/10)
#endif
) {
#ifdef _KERNEL
fortuna_state.fs_lasttime = now;
#endif
/* FS&K - ReseedCNT = ReseedCNT + 1 */
fortuna_state.fs_reseedcount++;
/* s = \epsilon at start */
for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
/* FS&K - if Divides(ReseedCnt, 2^i) ... */
if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
/*-
* FS&K - temp = (P_i)
* - P_i = \epsilon
* - s = s|H(temp)
*/
randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
fortuna_state.fs_pool[i].fsp_length = 0;
randomdev_hash_init(&context);
randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
} else
break;
}
SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
/* FS&K */
random_fortuna_reseed_internal(s, i < RANDOM_FORTUNA_NPOOLS ? i + 1 : RANDOM_FORTUNA_NPOOLS);
/* Clean up and secure */
explicit_bzero(s, sizeof(s));
explicit_bzero(temp, sizeof(temp));
explicit_bzero(&context, sizeof(context));
}
RANDOM_RESEED_UNLOCK();
}
/*-
* FS&K - RandomData() (Part 2)
* Main read from Fortuna, continued. May be called multiple times after
* the random_fortuna_pre_read() above.
* The supplied buf MUST be a multiple of RANDOM_BLOCKSIZE in size.
* Lots of code presumes this for efficiency, both here and in other
* routines. You are NOT allowed to break this!
*/
void
random_fortuna_read(uint8_t *buf, u_int bytecount)
{
KASSERT((bytecount % RANDOM_BLOCKSIZE) == 0, ("%s(): bytecount (= %d) must be a multiple of %d", __func__, bytecount, RANDOM_BLOCKSIZE ));
RANDOM_RESEED_LOCK();
random_fortuna_genrandom(buf, bytecount);
RANDOM_RESEED_UNLOCK();
}
bool
random_fortuna_seeded(void)
{
return (!uint128_is_zero(fortuna_state.fs_counter));
}