das
225ceb18e8
Add a "kernel" log function, based on e_log.c, which is useful for
...
implementing accurate logarithms in different bases. This is based
on an approach bde coded up years ago.
This function should always be inlined; it will be used in only a few
places, and rudimentary tests show a 40% performance improvement in
implementations of log2() and log10() on amd64.
The kernel takes a reduced argument x and returns the same polynomial
approximation as e_log.c, but omitting the low-order term. The low-order
term is much larger than the rest of the approximation, so the caller of
the kernel function can scale it to the appropriate base in extra precision
and obtain a much more accurate answer than by using log(x)/log(b).
2010-12-05 22:11:03 +00:00
..
2010-10-31 04:45:25 +00:00
2010-11-14 22:17:12 +00:00
2010-10-15 21:40:20 +00:00
2010-03-19 00:19:55 +00:00
2010-11-07 03:40:37 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-11-11 15:13:11 +00:00
2010-09-22 23:41:02 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-12-04 10:11:20 +00:00
2010-03-19 00:19:55 +00:00
2010-11-30 22:39:46 +00:00
2010-03-19 00:19:55 +00:00
2010-08-08 08:19:23 +00:00
2010-11-12 15:52:27 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-08-03 17:40:09 +00:00
2010-10-08 12:40:16 +00:00
2010-03-19 00:19:55 +00:00
2010-09-05 16:12:10 +00:00
2010-08-03 17:40:09 +00:00
2010-10-08 12:40:16 +00:00
2010-08-12 20:46:49 +00:00
2010-10-24 01:05:10 +00:00
2010-05-19 08:57:53 +00:00
2010-12-04 08:44:56 +00:00
2010-08-16 15:18:30 +00:00
2010-10-08 12:40:16 +00:00
2010-03-19 00:19:55 +00:00
2010-08-28 16:32:01 +00:00
2010-10-27 21:01:53 +00:00
2010-03-19 00:19:55 +00:00
2010-06-13 01:27:29 +00:00
2010-11-14 20:14:25 +00:00
2010-11-19 09:59:55 +00:00
2010-08-01 12:10:32 +00:00
2010-03-19 00:19:55 +00:00
2010-08-03 17:40:09 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-11-22 14:45:16 +00:00
2010-10-29 22:57:14 +00:00
2010-04-23 11:07:43 +00:00
2010-11-06 10:54:33 +00:00
2010-09-18 23:38:21 +00:00
2010-10-18 12:35:10 +00:00
2010-08-16 15:18:30 +00:00
2010-03-19 00:19:55 +00:00
2010-09-25 01:57:47 +00:00
2010-08-03 17:40:09 +00:00
2010-03-19 00:19:55 +00:00
2010-08-16 15:18:30 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-10-08 12:40:16 +00:00
2010-10-08 12:40:16 +00:00
2010-03-19 00:19:55 +00:00
2010-11-02 02:13:13 +00:00
2010-08-28 15:03:11 +00:00
2010-05-01 18:56:45 +00:00
2010-04-14 19:08:06 +00:00
2010-10-11 20:30:57 +00:00
2010-11-18 08:32:47 +00:00
2010-10-16 11:20:53 +00:00
2010-10-08 12:40:16 +00:00
2010-10-04 18:16:38 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-03-19 00:19:55 +00:00
2010-10-13 16:34:08 +00:00
2010-12-05 22:11:03 +00:00
2010-03-19 00:19:55 +00:00
2010-11-11 15:48:27 +00:00
2010-03-19 00:19:55 +00:00