freebsd-skq/sys/dev/usb/uhci.c
iedowse 225f58e59f Use the limited scatter-gather capabilities of ehci, ohci and uhci
host controllers to avoid the need to allocate any multi-page
physically contiguous memory blocks. This makes it possible to use
USB devices reliably on low-memory systems or when memory is too
fragmented for contiguous allocations to succeed.

The USB subsystem now uses bus_dmamap_load() directly on the buffers
supplied by USB peripheral drivers, so this also avoids having to
copy data back and forth before and after transfers. The ehci and
ohci controllers support scatter/gather as long as the buffer is
contiguous in the virtual address space. For uhci the hardware
cannot handle a physical address discontinuity within a USB packet,
so it is necessary to copy small memory fragments at times.
2006-05-28 05:27:09 +00:00

3762 lines
95 KiB
C

/* $NetBSD: uhci.c,v 1.170 2003/02/19 01:35:04 augustss Exp $ */
/* Also already incorporated from NetBSD:
* $NetBSD: uhci.c,v 1.172 2003/02/23 04:19:26 simonb Exp $
* $NetBSD: uhci.c,v 1.173 2003/05/13 04:41:59 gson Exp $
* $NetBSD: uhci.c,v 1.175 2003/09/12 16:18:08 mycroft Exp $
* $NetBSD: uhci.c,v 1.176 2003/11/04 19:11:21 mycroft Exp $
* $NetBSD: uhci.c,v 1.177 2003/12/29 08:17:10 toshii Exp $
* $NetBSD: uhci.c,v 1.178 2004/03/02 16:32:05 martin Exp $
* $NetBSD: uhci.c,v 1.180 2004/07/17 20:12:03 mycroft Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Universal Host Controller driver.
* Handles e.g. PIIX3 and PIIX4.
*
* UHCI spec: http://developer.intel.com/design/USB/UHCI11D.htm
* USB spec: http://www.usb.org/developers/docs/usbspec.zip
* PIIXn spec: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
* ftp://download.intel.com/design/intarch/datashts/29056201.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/device.h>
#include <sys/select.h>
#elif defined(__FreeBSD__)
#include <sys/endian.h>
#include <sys/module.h>
#include <sys/bus.h>
#if defined(DIAGNOSTIC) && defined(__i386__)
#include <machine/cpu.h>
#endif
#endif
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
/* Use bandwidth reclamation for control transfers. Some devices choke on it. */
/*#define UHCI_CTL_LOOP */
#if defined(__FreeBSD__)
#define delay(d) DELAY(d)
#endif
#define MS_TO_TICKS(ms) ((ms) * hz / 1000)
#if defined(__OpenBSD__)
struct cfdriver uhci_cd = {
NULL, "uhci", DV_DULL
};
#endif
#ifdef USB_DEBUG
uhci_softc_t *thesc;
#define DPRINTF(x) if (uhcidebug) printf x
#define DPRINTFN(n,x) if (uhcidebug>(n)) printf x
int uhcidebug = 0;
int uhcinoloop = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, uhci, CTLFLAG_RW, 0, "USB uhci");
SYSCTL_INT(_hw_usb_uhci, OID_AUTO, debug, CTLFLAG_RW,
&uhcidebug, 0, "uhci debug level");
SYSCTL_INT(_hw_usb_uhci, OID_AUTO, loop, CTLFLAG_RW,
&uhcinoloop, 0, "uhci noloop");
#ifndef __NetBSD__
#define bitmask_snprintf(q,f,b,l) snprintf((b), (l), "%b", (q), (f))
#endif
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* The UHCI controller is little endian, so on big endian machines
* the data strored in memory needs to be swapped.
*/
#if defined(__OpenBSD__)
#if BYTE_ORDER == BIG_ENDIAN
#define htole32(x) (bswap32(x))
#define le32toh(x) (bswap32(x))
#else
#define htole32(x) (x)
#define le32toh(x) (x)
#endif
#endif
struct uhci_pipe {
struct usbd_pipe pipe;
int nexttoggle;
u_char aborting;
usbd_xfer_handle abortstart, abortend;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t reqdma;
uhci_soft_td_t *setup, *stat;
u_int length;
} ctl;
/* Interrupt pipe */
struct {
int npoll;
int isread;
uhci_soft_qh_t **qhs;
} intr;
/* Bulk pipe */
struct {
uhci_soft_qh_t *sqh;
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
uhci_soft_td_t **stds;
int next, inuse;
} iso;
} u;
};
Static void uhci_globalreset(uhci_softc_t *);
Static usbd_status uhci_portreset(uhci_softc_t*, int);
Static void uhci_reset(uhci_softc_t *);
#if defined(__NetBSD__) || defined(__OpenBSD__)
Static void uhci_shutdown(void *v);
Static void uhci_power(int, void *);
#endif
Static usbd_status uhci_run(uhci_softc_t *, int run);
Static uhci_soft_td_t *uhci_alloc_std(uhci_softc_t *);
Static void uhci_free_std(uhci_softc_t *, uhci_soft_td_t *);
Static uhci_soft_qh_t *uhci_alloc_sqh(uhci_softc_t *);
Static void uhci_free_sqh(uhci_softc_t *, uhci_soft_qh_t *);
Static usbd_status uhci_aux_dma_alloc(uhci_softc_t *, uhci_soft_td_t *,
void *data, int len);
Static uhci_physaddr_t uhci_aux_dma_prepare(uhci_soft_td_t *, int);
Static void uhci_aux_dma_complete(uhci_soft_td_t *, int);
#if 0
Static void uhci_enter_ctl_q(uhci_softc_t *, uhci_soft_qh_t *,
uhci_intr_info_t *);
Static void uhci_exit_ctl_q(uhci_softc_t *, uhci_soft_qh_t *);
#endif
Static void uhci_free_std_chain(uhci_softc_t *,
uhci_soft_td_t *, uhci_soft_td_t *);
Static usbd_status uhci_alloc_std_chain(struct uhci_pipe *,
uhci_softc_t *, int, int, u_int16_t,
usbd_xfer_handle xfer,
uhci_soft_td_t **, uhci_soft_td_t **);
Static void uhci_poll_hub(void *);
Static void uhci_waitintr(uhci_softc_t *, usbd_xfer_handle);
Static void uhci_check_intr(uhci_softc_t *, uhci_intr_info_t *);
Static void uhci_idone(uhci_intr_info_t *);
Static void uhci_abort_xfer(usbd_xfer_handle, usbd_status status);
Static void uhci_transfer_complete(usbd_xfer_handle xfer);
Static void uhci_timeout(void *);
Static void uhci_timeout_task(void *);
Static void uhci_add_ls_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_hs_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_bulk(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_ls_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_hs_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_bulk(uhci_softc_t *,uhci_soft_qh_t *);
Static int uhci_str(usb_string_descriptor_t *, int, char *);
Static void uhci_add_loop(uhci_softc_t *sc);
Static void uhci_rem_loop(uhci_softc_t *sc);
Static usbd_status uhci_setup_isoc(usbd_pipe_handle pipe);
Static void uhci_device_isoc_enter(usbd_xfer_handle);
Static usbd_status uhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
Static void uhci_freem(struct usbd_bus *, usb_dma_t *);
Static usbd_xfer_handle uhci_allocx(struct usbd_bus *);
Static void uhci_freex(struct usbd_bus *, usbd_xfer_handle);
Static usbd_status uhci_device_ctrl_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_ctrl_start(usbd_xfer_handle);
Static void uhci_device_ctrl_abort(usbd_xfer_handle);
Static void uhci_device_ctrl_close(usbd_pipe_handle);
Static void uhci_device_ctrl_done(usbd_xfer_handle);
Static usbd_status uhci_device_intr_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_intr_start(usbd_xfer_handle);
Static void uhci_device_intr_abort(usbd_xfer_handle);
Static void uhci_device_intr_close(usbd_pipe_handle);
Static void uhci_device_intr_done(usbd_xfer_handle);
Static usbd_status uhci_device_bulk_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_bulk_start(usbd_xfer_handle);
Static void uhci_device_bulk_abort(usbd_xfer_handle);
Static void uhci_device_bulk_close(usbd_pipe_handle);
Static void uhci_device_bulk_done(usbd_xfer_handle);
Static usbd_status uhci_device_isoc_transfer(usbd_xfer_handle);
Static usbd_status uhci_device_isoc_start(usbd_xfer_handle);
Static void uhci_device_isoc_abort(usbd_xfer_handle);
Static void uhci_device_isoc_close(usbd_pipe_handle);
Static void uhci_device_isoc_done(usbd_xfer_handle);
Static usbd_status uhci_root_ctrl_transfer(usbd_xfer_handle);
Static usbd_status uhci_root_ctrl_start(usbd_xfer_handle);
Static void uhci_root_ctrl_abort(usbd_xfer_handle);
Static void uhci_root_ctrl_close(usbd_pipe_handle);
Static void uhci_root_ctrl_done(usbd_xfer_handle);
Static usbd_status uhci_root_intr_transfer(usbd_xfer_handle);
Static usbd_status uhci_root_intr_start(usbd_xfer_handle);
Static void uhci_root_intr_abort(usbd_xfer_handle);
Static void uhci_root_intr_close(usbd_pipe_handle);
Static void uhci_root_intr_done(usbd_xfer_handle);
Static usbd_status uhci_open(usbd_pipe_handle);
Static void uhci_poll(struct usbd_bus *);
Static void uhci_softintr(void *);
Static usbd_status uhci_device_request(usbd_xfer_handle xfer);
Static void uhci_add_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static usbd_status uhci_device_setintr(uhci_softc_t *sc,
struct uhci_pipe *pipe, int ival);
Static void uhci_device_clear_toggle(usbd_pipe_handle pipe);
Static void uhci_noop(usbd_pipe_handle pipe);
Static __inline uhci_soft_qh_t *uhci_find_prev_qh(uhci_soft_qh_t *,
uhci_soft_qh_t *);
#ifdef USB_DEBUG
Static void uhci_dump_all(uhci_softc_t *);
Static void uhci_dumpregs(uhci_softc_t *);
Static void uhci_dump_qhs(uhci_soft_qh_t *);
Static void uhci_dump_qh(uhci_soft_qh_t *);
Static void uhci_dump_tds(uhci_soft_td_t *);
Static void uhci_dump_td(uhci_soft_td_t *);
Static void uhci_dump_ii(uhci_intr_info_t *ii);
void uhci_dump(void);
#endif
#define UBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define UWRITE1(sc, r, x) \
do { UBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE2(sc, r, x) \
do { UBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE4(sc, r, x) \
do { UBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UREAD1(sc, r) (UBARR(sc), bus_space_read_1((sc)->iot, (sc)->ioh, (r)))
#define UREAD2(sc, r) (UBARR(sc), bus_space_read_2((sc)->iot, (sc)->ioh, (r)))
#define UREAD4(sc, r) (UBARR(sc), bus_space_read_4((sc)->iot, (sc)->ioh, (r)))
#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)
#define UHCI_RESET_TIMEOUT 100 /* ms, reset timeout */
#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)
#define UHCI_INTR_ENDPT 1
struct usbd_bus_methods uhci_bus_methods = {
uhci_open,
uhci_softintr,
uhci_poll,
uhci_allocm,
uhci_freem,
uhci_allocx,
uhci_freex,
};
struct usbd_pipe_methods uhci_root_ctrl_methods = {
uhci_root_ctrl_transfer,
uhci_root_ctrl_start,
uhci_root_ctrl_abort,
uhci_root_ctrl_close,
uhci_noop,
uhci_root_ctrl_done,
};
struct usbd_pipe_methods uhci_root_intr_methods = {
uhci_root_intr_transfer,
uhci_root_intr_start,
uhci_root_intr_abort,
uhci_root_intr_close,
uhci_noop,
uhci_root_intr_done,
};
struct usbd_pipe_methods uhci_device_ctrl_methods = {
uhci_device_ctrl_transfer,
uhci_device_ctrl_start,
uhci_device_ctrl_abort,
uhci_device_ctrl_close,
uhci_noop,
uhci_device_ctrl_done,
};
struct usbd_pipe_methods uhci_device_intr_methods = {
uhci_device_intr_transfer,
uhci_device_intr_start,
uhci_device_intr_abort,
uhci_device_intr_close,
uhci_device_clear_toggle,
uhci_device_intr_done,
};
struct usbd_pipe_methods uhci_device_bulk_methods = {
uhci_device_bulk_transfer,
uhci_device_bulk_start,
uhci_device_bulk_abort,
uhci_device_bulk_close,
uhci_device_clear_toggle,
uhci_device_bulk_done,
};
struct usbd_pipe_methods uhci_device_isoc_methods = {
uhci_device_isoc_transfer,
uhci_device_isoc_start,
uhci_device_isoc_abort,
uhci_device_isoc_close,
uhci_noop,
uhci_device_isoc_done,
};
#define uhci_add_intr_info(sc, ii) \
LIST_INSERT_HEAD(&(sc)->sc_intrhead, (ii), list)
#define uhci_del_intr_info(ii) \
do { \
LIST_REMOVE((ii), list); \
(ii)->list.le_prev = NULL; \
} while (0)
#define uhci_active_intr_info(ii) ((ii)->list.le_prev != NULL)
Static __inline uhci_soft_qh_t *
uhci_find_prev_qh(uhci_soft_qh_t *pqh, uhci_soft_qh_t *sqh)
{
DPRINTFN(15,("uhci_find_prev_qh: pqh=%p sqh=%p\n", pqh, sqh));
for (; pqh->hlink != sqh; pqh = pqh->hlink) {
#if defined(DIAGNOSTIC) || defined(USB_DEBUG)
if (le32toh(pqh->qh.qh_hlink) & UHCI_PTR_T) {
printf("uhci_find_prev_qh: QH not found\n");
return (NULL);
}
#endif
}
return (pqh);
}
void
uhci_globalreset(uhci_softc_t *sc)
{
UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
UHCICMD(sc, 0); /* do nothing */
}
usbd_status
uhci_init(uhci_softc_t *sc)
{
usbd_status err;
int i, j;
uhci_soft_qh_t *clsqh, *chsqh, *bsqh, *sqh, *lsqh;
uhci_soft_td_t *std;
DPRINTFN(1,("uhci_init: start\n"));
#ifdef USB_DEBUG
thesc = sc;
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_globalreset(sc); /* reset the controller */
uhci_reset(sc);
/* Allocate and initialize real frame array. */
err = usb_allocmem(&sc->sc_bus,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
UHCI_FRAMELIST_ALIGN, &sc->sc_dma);
if (err)
return (err);
sc->sc_pframes = KERNADDR(&sc->sc_dma, 0);
UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0)); /* set frame list*/
/*
* Allocate a TD, inactive, that hangs from the last QH.
* This is to avoid a bug in the PIIX that makes it run berserk
* otherwise.
*/
std = uhci_alloc_std(sc);
if (std == NULL)
return (USBD_NOMEM);
std->link.std = NULL;
std->td.td_link = htole32(UHCI_PTR_T);
std->td.td_status = htole32(0); /* inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
/* Allocate the dummy QH marking the end and used for looping the QHs.*/
lsqh = uhci_alloc_sqh(sc);
if (lsqh == NULL)
return (USBD_NOMEM);
lsqh->hlink = NULL;
lsqh->qh.qh_hlink = htole32(UHCI_PTR_T); /* end of QH chain */
lsqh->elink = std;
lsqh->qh.qh_elink = htole32(std->physaddr | UHCI_PTR_TD);
sc->sc_last_qh = lsqh;
/* Allocate the dummy QH where bulk traffic will be queued. */
bsqh = uhci_alloc_sqh(sc);
if (bsqh == NULL)
return (USBD_NOMEM);
bsqh->hlink = lsqh;
bsqh->qh.qh_hlink = htole32(lsqh->physaddr | UHCI_PTR_QH);
bsqh->elink = NULL;
bsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
/* Allocate dummy QH where high speed control traffic will be queued. */
chsqh = uhci_alloc_sqh(sc);
if (chsqh == NULL)
return (USBD_NOMEM);
chsqh->hlink = bsqh;
chsqh->qh.qh_hlink = htole32(bsqh->physaddr | UHCI_PTR_QH);
chsqh->elink = NULL;
chsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_hctl_start = sc->sc_hctl_end = chsqh;
/* Allocate dummy QH where control traffic will be queued. */
clsqh = uhci_alloc_sqh(sc);
if (clsqh == NULL)
return (USBD_NOMEM);
clsqh->hlink = chsqh;
clsqh->qh.qh_hlink = htole32(chsqh->physaddr | UHCI_PTR_QH);
clsqh->elink = NULL;
clsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_lctl_start = sc->sc_lctl_end = clsqh;
/*
* Make all (virtual) frame list pointers point to the interrupt
* queue heads and the interrupt queue heads at the control
* queue head and point the physical frame list to the virtual.
*/
for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
sqh = uhci_alloc_sqh(sc);
if (std == NULL || sqh == NULL)
return (USBD_NOMEM);
std->link.sqh = sqh;
std->td.td_link = htole32(sqh->physaddr | UHCI_PTR_QH);
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
sqh->hlink = clsqh;
sqh->qh.qh_hlink = htole32(clsqh->physaddr | UHCI_PTR_QH);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_vframes[i].htd = std;
sc->sc_vframes[i].etd = std;
sc->sc_vframes[i].hqh = sqh;
sc->sc_vframes[i].eqh = sqh;
for (j = i;
j < UHCI_FRAMELIST_COUNT;
j += UHCI_VFRAMELIST_COUNT)
sc->sc_pframes[j] = htole32(std->physaddr);
}
LIST_INIT(&sc->sc_intrhead);
SIMPLEQ_INIT(&sc->sc_free_xfers);
usb_callout_init(sc->sc_poll_handle);
/* Set up the bus struct. */
sc->sc_bus.methods = &uhci_bus_methods;
sc->sc_bus.pipe_size = sizeof(struct uhci_pipe);
#if defined(__NetBSD__) || defined(__OpenBSD__)
sc->sc_suspend = PWR_RESUME;
sc->sc_powerhook = powerhook_establish(uhci_power, sc);
sc->sc_shutdownhook = shutdownhook_establish(uhci_shutdown, sc);
#endif
DPRINTFN(1,("uhci_init: enabling\n"));
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */
UHCICMD(sc, UHCI_CMD_MAXP); /* Assume 64 byte packets at frame end */
return (uhci_run(sc, 1)); /* and here we go... */
}
#if defined(__NetBSD__) || defined(__OpenBSD__)
int
uhci_activate(device_ptr_t self, enum devact act)
{
struct uhci_softc *sc = (struct uhci_softc *)self;
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
case DVACT_DEACTIVATE:
if (sc->sc_child != NULL)
rv = config_deactivate(sc->sc_child);
break;
}
return (rv);
}
#endif
int
uhci_detach(struct uhci_softc *sc, int flags)
{
usbd_xfer_handle xfer;
int rv = 0;
#if defined(__NetBSD__) || defined(__OpenBSD__)
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return (rv);
#else
sc->sc_dying = 1;
#endif
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_run(sc, 0);
#if defined(__NetBSD__) || defined(__OpenBSD__)
powerhook_disestablish(sc->sc_powerhook);
shutdownhook_disestablish(sc->sc_shutdownhook);
#endif
/* Free all xfers associated with this HC. */
for (;;) {
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer == NULL)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, next);
free(xfer, M_USB);
}
/* XXX free other data structures XXX */
usb_freemem(&sc->sc_bus, &sc->sc_dma);
return (rv);
}
usbd_status
uhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
{
return (usb_allocmem(bus, size, 0, dma));
}
void
uhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
{
usb_freemem(bus, dma);
}
usbd_xfer_handle
uhci_allocx(struct usbd_bus *bus)
{
struct uhci_softc *sc = (struct uhci_softc *)bus;
usbd_xfer_handle xfer;
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, next);
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_FREE) {
printf("uhci_allocx: xfer=%p not free, 0x%08x\n", xfer,
xfer->busy_free);
}
#endif
} else {
xfer = malloc(sizeof(struct uhci_xfer), M_USB, M_NOWAIT);
}
if (xfer != NULL) {
memset(xfer, 0, sizeof (struct uhci_xfer));
UXFER(xfer)->iinfo.sc = sc;
usb_init_task(&UXFER(xfer)->abort_task, uhci_timeout_task,
xfer);
UXFER(xfer)->uhci_xfer_flags = 0;
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
xfer->busy_free = XFER_BUSY;
#endif
}
return (xfer);
}
void
uhci_freex(struct usbd_bus *bus, usbd_xfer_handle xfer)
{
struct uhci_softc *sc = (struct uhci_softc *)bus;
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
printf("uhci_freex: xfer=%p not busy, 0x%08x\n", xfer,
xfer->busy_free);
return;
}
xfer->busy_free = XFER_FREE;
if (!UXFER(xfer)->iinfo.isdone) {
printf("uhci_freex: !isdone\n");
return;
}
#endif
SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, next);
}
/*
* Shut down the controller when the system is going down.
*/
void
uhci_shutdown(void *v)
{
uhci_softc_t *sc = v;
DPRINTF(("uhci_shutdown: stopping the HC\n"));
uhci_run(sc, 0); /* stop the controller */
}
/*
* Handle suspend/resume.
*
* We need to switch to polling mode here, because this routine is
* called from an interrupt context. This is all right since we
* are almost suspended anyway.
*/
void
uhci_power(int why, void *v)
{
uhci_softc_t *sc = v;
int cmd;
int s;
s = splhardusb();
cmd = UREAD2(sc, UHCI_CMD);
DPRINTF(("uhci_power: sc=%p, why=%d (was %d), cmd=0x%x\n",
sc, why, sc->sc_suspend, cmd));
if (why != PWR_RESUME) {
#ifdef USB_DEBUG
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
if (sc->sc_intr_xfer != NULL)
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub,
sc->sc_intr_xfer);
sc->sc_bus.use_polling++;
uhci_run(sc, 0); /* stop the controller */
/* save some state if BIOS doesn't */
sc->sc_saved_frnum = UREAD2(sc, UHCI_FRNUM);
sc->sc_saved_sof = UREAD1(sc, UHCI_SOF);
UWRITE2(sc, UHCI_INTR, 0); /* disable intrs */
UHCICMD(sc, cmd | UHCI_CMD_EGSM); /* enter global suspend */
usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
sc->sc_suspend = why;
sc->sc_bus.use_polling--;
DPRINTF(("uhci_power: cmd=0x%x\n", UREAD2(sc, UHCI_CMD)));
} else {
#ifdef DIAGNOSTIC
if (sc->sc_suspend == PWR_RESUME)
printf("uhci_power: weird, resume without suspend.\n");
#endif
sc->sc_bus.use_polling++;
sc->sc_suspend = why;
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_globalreset(sc); /* reset the controller */
uhci_reset(sc);
if (cmd & UHCI_CMD_RS)
uhci_run(sc, 0); /* in case BIOS has started it */
uhci_globalreset(sc);
uhci_reset(sc);
/* restore saved state */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));
UWRITE2(sc, UHCI_FRNUM, sc->sc_saved_frnum);
UWRITE1(sc, UHCI_SOF, sc->sc_saved_sof);
UHCICMD(sc, cmd | UHCI_CMD_FGR); /* force global resume */
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
UHCICMD(sc, cmd & ~UHCI_CMD_EGSM); /* back to normal */
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* re-enable intrs */
UHCICMD(sc, UHCI_CMD_MAXP);
uhci_run(sc, 1); /* and start traffic again */
usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY);
sc->sc_bus.use_polling--;
if (sc->sc_intr_xfer != NULL)
usb_callout(sc->sc_poll_handle, sc->sc_ival,
uhci_poll_hub, sc->sc_intr_xfer);
#ifdef USB_DEBUG
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
}
splx(s);
}
#ifdef USB_DEBUG
Static void
uhci_dumpregs(uhci_softc_t *sc)
{
DPRINTFN(-1,("%s regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, "
"flbase=%08x, sof=%04x, portsc1=%04x, portsc2=%04x\n",
USBDEVNAME(sc->sc_bus.bdev),
UREAD2(sc, UHCI_CMD),
UREAD2(sc, UHCI_STS),
UREAD2(sc, UHCI_INTR),
UREAD2(sc, UHCI_FRNUM),
UREAD4(sc, UHCI_FLBASEADDR),
UREAD1(sc, UHCI_SOF),
UREAD2(sc, UHCI_PORTSC1),
UREAD2(sc, UHCI_PORTSC2)));
}
void
uhci_dump_td(uhci_soft_td_t *p)
{
char sbuf[128], sbuf2[128];
DPRINTFN(-1,("TD(%p) at %08lx = link=0x%08lx status=0x%08lx "
"token=0x%08lx buffer=0x%08lx\n",
p, (long)p->physaddr,
(long)le32toh(p->td.td_link),
(long)le32toh(p->td.td_status),
(long)le32toh(p->td.td_token),
(long)le32toh(p->td.td_buffer)));
bitmask_snprintf((u_int32_t)le32toh(p->td.td_link), "\20\1T\2Q\3VF",
sbuf, sizeof(sbuf));
bitmask_snprintf((u_int32_t)le32toh(p->td.td_status),
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD",
sbuf2, sizeof(sbuf2));
DPRINTFN(-1,(" %s %s,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d,"
"D=%d,maxlen=%d\n", sbuf, sbuf2,
UHCI_TD_GET_ERRCNT(le32toh(p->td.td_status)),
UHCI_TD_GET_ACTLEN(le32toh(p->td.td_status)),
UHCI_TD_GET_PID(le32toh(p->td.td_token)),
UHCI_TD_GET_DEVADDR(le32toh(p->td.td_token)),
UHCI_TD_GET_ENDPT(le32toh(p->td.td_token)),
UHCI_TD_GET_DT(le32toh(p->td.td_token)),
UHCI_TD_GET_MAXLEN(le32toh(p->td.td_token))));
}
void
uhci_dump_qh(uhci_soft_qh_t *sqh)
{
DPRINTFN(-1,("QH(%p) at %08x: hlink=%08x elink=%08x\n", sqh,
(int)sqh->physaddr, le32toh(sqh->qh.qh_hlink),
le32toh(sqh->qh.qh_elink)));
}
#if 1
void
uhci_dump(void)
{
uhci_dump_all(thesc);
}
#endif
void
uhci_dump_all(uhci_softc_t *sc)
{
uhci_dumpregs(sc);
printf("intrs=%d\n", sc->sc_bus.no_intrs);
/*printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link);*/
uhci_dump_qh(sc->sc_lctl_start);
}
void
uhci_dump_qhs(uhci_soft_qh_t *sqh)
{
uhci_dump_qh(sqh);
/* uhci_dump_qhs displays all the QHs and TDs from the given QH onwards
* Traverses sideways first, then down.
*
* QH1
* QH2
* No QH
* TD2.1
* TD2.2
* TD1.1
* etc.
*
* TD2.x being the TDs queued at QH2 and QH1 being referenced from QH1.
*/
if (sqh->hlink != NULL && !(le32toh(sqh->qh.qh_hlink) & UHCI_PTR_T))
uhci_dump_qhs(sqh->hlink);
else
DPRINTF(("No QH\n"));
if (sqh->elink != NULL && !(le32toh(sqh->qh.qh_elink) & UHCI_PTR_T))
uhci_dump_tds(sqh->elink);
else
DPRINTF(("No TD\n"));
}
void
uhci_dump_tds(uhci_soft_td_t *std)
{
uhci_soft_td_t *td;
for(td = std; td != NULL; td = td->link.std) {
uhci_dump_td(td);
/* Check whether the link pointer in this TD marks
* the link pointer as end of queue. This avoids
* printing the free list in case the queue/TD has
* already been moved there (seatbelt).
*/
if (le32toh(td->td.td_link) & UHCI_PTR_T ||
le32toh(td->td.td_link) == 0)
break;
}
}
Static void
uhci_dump_ii(uhci_intr_info_t *ii)
{
usbd_pipe_handle pipe;
usb_endpoint_descriptor_t *ed;
usbd_device_handle dev;
#ifdef DIAGNOSTIC
#define DONE ii->isdone
#else
#define DONE 0
#endif
if (ii == NULL) {
printf("ii NULL\n");
return;
}
if (ii->xfer == NULL) {
printf("ii %p: done=%d xfer=NULL\n",
ii, DONE);
return;
}
pipe = ii->xfer->pipe;
if (pipe == NULL) {
printf("ii %p: done=%d xfer=%p pipe=NULL\n",
ii, DONE, ii->xfer);
return;
}
if (pipe->endpoint == NULL) {
printf("ii %p: done=%d xfer=%p pipe=%p pipe->endpoint=NULL\n",
ii, DONE, ii->xfer, pipe);
return;
}
if (pipe->device == NULL) {
printf("ii %p: done=%d xfer=%p pipe=%p pipe->device=NULL\n",
ii, DONE, ii->xfer, pipe);
return;
}
ed = pipe->endpoint->edesc;
dev = pipe->device;
printf("ii %p: done=%d xfer=%p dev=%p vid=0x%04x pid=0x%04x addr=%d pipe=%p ep=0x%02x attr=0x%02x\n",
ii, DONE, ii->xfer, dev,
UGETW(dev->ddesc.idVendor),
UGETW(dev->ddesc.idProduct),
dev->address, pipe,
ed->bEndpointAddress, ed->bmAttributes);
#undef DONE
}
void uhci_dump_iis(struct uhci_softc *sc);
void
uhci_dump_iis(struct uhci_softc *sc)
{
uhci_intr_info_t *ii;
printf("intr_info list:\n");
for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list))
uhci_dump_ii(ii);
}
void iidump(void);
void iidump(void) { uhci_dump_iis(thesc); }
#endif
/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_poll_hub(void *addr)
{
usbd_xfer_handle xfer = addr;
usbd_pipe_handle pipe = xfer->pipe;
usbd_device_handle dev = pipe->device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int s;
u_char *p;
DPRINTFN(20, ("uhci_poll_hub\n"));
usb_callout(sc->sc_poll_handle, sc->sc_ival, uhci_poll_hub, xfer);
p = xfer->buffer;
p[0] = 0;
if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<1;
if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<2;
if (p[0] == 0)
/* No change, try again in a while */
return;
xfer->actlen = 1;
xfer->status = USBD_NORMAL_COMPLETION;
s = splusb();
dev->bus->intr_context++;
uhci_transfer_complete(xfer);
dev->bus->intr_context--;
splx(s);
}
void
uhci_root_intr_done(usbd_xfer_handle xfer)
{
}
void
uhci_root_ctrl_done(usbd_xfer_handle xfer)
{
}
/*
* Let the last QH loop back to the high speed control transfer QH.
* This is what intel calls "bandwidth reclamation" and improves
* USB performance a lot for some devices.
* If we are already looping, just count it.
*/
void
uhci_add_loop(uhci_softc_t *sc) {
#ifdef USB_DEBUG
if (uhcinoloop)
return;
#endif
if (++sc->sc_loops == 1) {
DPRINTFN(5,("uhci_start_loop: add\n"));
/* Note, we don't loop back the soft pointer. */
sc->sc_last_qh->qh.qh_hlink =
htole32(sc->sc_hctl_start->physaddr | UHCI_PTR_QH);
}
}
void
uhci_rem_loop(uhci_softc_t *sc) {
#ifdef USB_DEBUG
if (uhcinoloop)
return;
#endif
if (--sc->sc_loops == 0) {
DPRINTFN(5,("uhci_end_loop: remove\n"));
sc->sc_last_qh->qh.qh_hlink = htole32(UHCI_PTR_T);
}
}
/* Add high speed control QH, called at splusb(). */
void
uhci_add_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_hctl_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_hctl_end = sqh;
#ifdef UHCI_CTL_LOOP
uhci_add_loop(sc);
#endif
}
/* Remove high speed control QH, called at splusb(). */
void
uhci_remove_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_hs_ctrl: sqh=%p\n", sqh));
#ifdef UHCI_CTL_LOOP
uhci_rem_loop(sc);
#endif
/*
* The T bit should be set in the elink of the QH so that the HC
* doesn't follow the pointer. This condition may fail if the
* the transferred packet was short so that the QH still points
* at the last used TD.
* In this case we set the T bit and wait a little for the HC
* to stop looking at the TD.
*/
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_hctl_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_hctl_end == sqh)
sc->sc_hctl_end = pqh;
}
/* Add low speed control QH, called at splusb(). */
void
uhci_add_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_ls_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_lctl_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_lctl_end = sqh;
}
/* Remove low speed control QH, called at splusb(). */
void
uhci_remove_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_ls_ctrl: sqh=%p\n", sqh));
/* See comment in uhci_remove_hs_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_lctl_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_lctl_end == sqh)
sc->sc_lctl_end = pqh;
}
/* Add bulk QH, called at splusb(). */
void
uhci_add_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh));
eqh = sc->sc_bulk_end;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_bulk_end = sqh;
uhci_add_loop(sc);
}
/* Remove bulk QH, called at splusb(). */
void
uhci_remove_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
SPLUSBCHECK;
DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh));
uhci_rem_loop(sc);
/* See comment in uhci_remove_hs_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_bulk_start, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_bulk_end == sqh)
sc->sc_bulk_end = pqh;
}
Static int uhci_intr1(uhci_softc_t *);
int
uhci_intr(void *arg)
{
uhci_softc_t *sc = arg;
if (sc->sc_dying)
return (0);
DPRINTFN(15,("uhci_intr: real interrupt\n"));
if (sc->sc_bus.use_polling) {
#ifdef DIAGNOSTIC
printf("uhci_intr: ignored interrupt while polling\n");
#endif
return (0);
}
return (uhci_intr1(sc));
}
int
uhci_intr1(uhci_softc_t *sc)
{
int status;
int ack;
/*
* It can happen that an interrupt will be delivered to
* us before the device has been fully attached and the
* softc struct has been configured. Usually this happens
* when kldloading the USB support as a module after the
* system has been booted. If we detect this condition,
* we need to squelch the unwanted interrupts until we're
* ready for them.
*/
if (sc->sc_bus.bdev == NULL) {
UWRITE2(sc, UHCI_STS, 0xFFFF); /* ack pending interrupts */
uhci_run(sc, 0); /* stop the controller */
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
return(0);
}
#ifdef USB_DEBUG
if (uhcidebug > 15) {
DPRINTF(("%s: uhci_intr1\n", USBDEVNAME(sc->sc_bus.bdev)));
uhci_dumpregs(sc);
}
#endif
status = UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS;
if (status == 0) /* The interrupt was not for us. */
return (0);
#if defined(DIAGNOSTIC) && defined(__NetBSD__)
if (sc->sc_suspend != PWR_RESUME)
printf("uhci_intr: suspended sts=0x%x\n", status);
#endif
if (sc->sc_suspend != PWR_RESUME) {
printf("%s: interrupt while not operating ignored\n",
USBDEVNAME(sc->sc_bus.bdev));
UWRITE2(sc, UHCI_STS, status); /* acknowledge the ints */
return (0);
}
ack = 0;
if (status & UHCI_STS_USBINT)
ack |= UHCI_STS_USBINT;
if (status & UHCI_STS_USBEI)
ack |= UHCI_STS_USBEI;
if (status & UHCI_STS_RD) {
ack |= UHCI_STS_RD;
#ifdef USB_DEBUG
printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev));
#endif
}
if (status & UHCI_STS_HSE) {
ack |= UHCI_STS_HSE;
printf("%s: host system error\n", USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCPE) {
ack |= UHCI_STS_HCPE;
printf("%s: host controller process error\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCH) {
/* no acknowledge needed */
if (!sc->sc_dying) {
printf("%s: host controller halted\n",
USBDEVNAME(sc->sc_bus.bdev));
#ifdef USB_DEBUG
uhci_dump_all(sc);
#endif
}
sc->sc_dying = 1;
}
if (!ack)
return (0); /* nothing to acknowledge */
UWRITE2(sc, UHCI_STS, ack); /* acknowledge the ints */
sc->sc_bus.no_intrs++;
usb_schedsoftintr(&sc->sc_bus);
DPRINTFN(15, ("%s: uhci_intr: exit\n", USBDEVNAME(sc->sc_bus.bdev)));
return (1);
}
void
uhci_softintr(void *v)
{
uhci_softc_t *sc = v;
uhci_intr_info_t *ii, *nextii;
DPRINTFN(10,("%s: uhci_softintr (%d)\n", USBDEVNAME(sc->sc_bus.bdev),
sc->sc_bus.intr_context));
sc->sc_bus.intr_context++;
/*
* Interrupts on UHCI really suck. When the host controller
* interrupts because a transfer is completed there is no
* way of knowing which transfer it was. You can scan down
* the TDs and QHs of the previous frame to limit the search,
* but that assumes that the interrupt was not delayed by more
* than 1 ms, which may not always be true (e.g. after debug
* output on a slow console).
* We scan all interrupt descriptors to see if any have
* completed.
*/
LIST_FOREACH_SAFE(ii, &sc->sc_intrhead, list, nextii)
uhci_check_intr(sc, ii);
#ifdef USB_USE_SOFTINTR
if (sc->sc_softwake) {
sc->sc_softwake = 0;
wakeup(&sc->sc_softwake);
}
#endif /* USB_USE_SOFTINTR */
sc->sc_bus.intr_context--;
}
/* Check for an interrupt. */
void
uhci_check_intr(uhci_softc_t *sc, uhci_intr_info_t *ii)
{
uhci_soft_td_t *std, *lstd;
u_int32_t status;
DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii));
#ifdef DIAGNOSTIC
if (ii == NULL) {
printf("uhci_check_intr: no ii? %p\n", ii);
return;
}
#endif
if (ii->xfer->status == USBD_CANCELLED ||
ii->xfer->status == USBD_TIMEOUT) {
DPRINTF(("uhci_check_intr: aborted xfer=%p\n", ii->xfer));
return;
}
if (ii->stdstart == NULL)
return;
lstd = ii->stdend;
#ifdef DIAGNOSTIC
if (lstd == NULL) {
printf("uhci_check_intr: std==0\n");
return;
}
#endif
/*
* If the last TD is still active we need to check whether there
* is an error somewhere in the middle, or whether there was a
* short packet (SPD and not ACTIVE).
*/
if (le32toh(lstd->td.td_status) & UHCI_TD_ACTIVE) {
DPRINTFN(12, ("uhci_check_intr: active ii=%p\n", ii));
for (std = ii->stdstart; std != lstd; std = std->link.std) {
status = le32toh(std->td.td_status);
/* If there's an active TD the xfer isn't done. */
if (status & UHCI_TD_ACTIVE)
break;
/* Any kind of error makes the xfer done. */
if (status & UHCI_TD_STALLED)
goto done;
/* We want short packets, and it is short: it's done */
if ((status & UHCI_TD_SPD) &&
UHCI_TD_GET_ACTLEN(status) <
UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token)))
goto done;
}
DPRINTFN(12, ("uhci_check_intr: ii=%p std=%p still active\n",
ii, ii->stdstart));
return;
}
done:
DPRINTFN(12, ("uhci_check_intr: ii=%p done\n", ii));
usb_uncallout(ii->xfer->timeout_handle, uhci_timeout, ii);
usb_rem_task(ii->xfer->pipe->device, &UXFER(ii->xfer)->abort_task);
uhci_idone(ii);
}
/* Called at splusb() */
void
uhci_idone(uhci_intr_info_t *ii)
{
usbd_xfer_handle xfer = ii->xfer;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_td_t *std;
u_int32_t status = 0, nstatus;
int actlen;
DPRINTFN(12, ("uhci_idone: ii=%p\n", ii));
#ifdef DIAGNOSTIC
{
int s = splhigh();
if (ii->isdone) {
splx(s);
#ifdef USB_DEBUG
printf("uhci_idone: ii is done!\n ");
uhci_dump_ii(ii);
#else
printf("uhci_idone: ii=%p is done!\n", ii);
#endif
return;
}
ii->isdone = 1;
splx(s);
}
#endif
if (xfer->nframes != 0) {
/* Isoc transfer, do things differently. */
uhci_soft_td_t **stds = upipe->u.iso.stds;
int i, n, nframes, len;
DPRINTFN(5,("uhci_idone: ii=%p isoc ready\n", ii));
nframes = xfer->nframes;
actlen = 0;
n = UXFER(xfer)->curframe;
for (i = 0; i < nframes; i++) {
std = stds[n];
#ifdef USB_DEBUG
if (uhcidebug > 5) {
DPRINTFN(-1,("uhci_idone: isoc TD %d\n", i));
uhci_dump_td(std);
}
#endif
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
status = le32toh(std->td.td_status);
len = UHCI_TD_GET_ACTLEN(status);
xfer->frlengths[i] = len;
actlen += len;
}
upipe->u.iso.inuse -= nframes;
xfer->actlen = actlen;
xfer->status = USBD_NORMAL_COMPLETION;
goto end;
}
#ifdef USB_DEBUG
DPRINTFN(10, ("uhci_idone: ii=%p, xfer=%p, pipe=%p ready\n",
ii, xfer, upipe));
if (uhcidebug > 10)
uhci_dump_tds(ii->stdstart);
#endif
/* The transfer is done, compute actual length and status. */
actlen = 0;
for (std = ii->stdstart; std != NULL; std = std->link.std) {
nstatus = le32toh(std->td.td_status);
if (nstatus & UHCI_TD_ACTIVE)
break;
status = nstatus;
if (UHCI_TD_GET_PID(le32toh(std->td.td_token)) !=
UHCI_TD_PID_SETUP)
actlen += UHCI_TD_GET_ACTLEN(status);
else {
/*
* UHCI will report CRCTO in addition to a STALL or NAK
* for a SETUP transaction. See section 3.2.2, "TD
* CONTROL AND STATUS".
*/
if (status & (UHCI_TD_STALLED | UHCI_TD_NAK))
status &= ~UHCI_TD_CRCTO;
}
}
/* If there are left over TDs we need to update the toggle. */
if (std != NULL)
upipe->nexttoggle = UHCI_TD_GET_DT(le32toh(std->td.td_token));
status &= UHCI_TD_ERROR;
DPRINTFN(10, ("uhci_idone: actlen=%d, status=0x%x\n",
actlen, status));
xfer->actlen = actlen;
if (status != 0) {
#ifdef USB_DEBUG
char sbuf[128];
bitmask_snprintf((u_int32_t)status,
"\20\22BITSTUFF\23CRCTO\24NAK\25"
"BABBLE\26DBUFFER\27STALLED\30ACTIVE",
sbuf, sizeof(sbuf));
DPRINTFN((status == UHCI_TD_STALLED)*10,
("uhci_idone: error, addr=%d, endpt=0x%02x, "
"status 0x%s\n",
xfer->pipe->device->address,
xfer->pipe->endpoint->edesc->bEndpointAddress,
sbuf));
#endif
if (status == UHCI_TD_STALLED)
xfer->status = USBD_STALLED;
else
xfer->status = USBD_IOERROR; /* more info XXX */
} else {
xfer->status = USBD_NORMAL_COMPLETION;
}
end:
uhci_transfer_complete(xfer);
DPRINTFN(12, ("uhci_idone: ii=%p done\n", ii));
}
/*
* Called when a request does not complete.
*/
void
uhci_timeout(void *addr)
{
uhci_intr_info_t *ii = addr;
struct uhci_xfer *uxfer = UXFER(ii->xfer);
struct uhci_pipe *upipe = (struct uhci_pipe *)uxfer->xfer.pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
DPRINTF(("uhci_timeout: uxfer=%p\n", uxfer));
if (sc->sc_dying) {
uhci_abort_xfer(&uxfer->xfer, USBD_TIMEOUT);
return;
}
/* Execute the abort in a process context. */
usb_add_task(uxfer->xfer.pipe->device, &uxfer->abort_task);
}
void
uhci_timeout_task(void *addr)
{
usbd_xfer_handle xfer = addr;
int s;
DPRINTF(("uhci_timeout_task: xfer=%p\n", xfer));
s = splusb();
uhci_abort_xfer(xfer, USBD_TIMEOUT);
splx(s);
}
/*
* Wait here until controller claims to have an interrupt.
* Then call uhci_intr and return. Use timeout to avoid waiting
* too long.
* Only used during boot when interrupts are not enabled yet.
*/
void
uhci_waitintr(uhci_softc_t *sc, usbd_xfer_handle xfer)
{
int timo = xfer->timeout;
uhci_intr_info_t *ii;
DPRINTFN(10,("uhci_waitintr: timeout = %dms\n", timo));
xfer->status = USBD_IN_PROGRESS;
for (; timo >= 0; timo--) {
usb_delay_ms(&sc->sc_bus, 1);
DPRINTFN(20,("uhci_waitintr: 0x%04x\n", UREAD2(sc, UHCI_STS)));
if (UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS)
uhci_intr1(sc);
if (xfer->status != USBD_IN_PROGRESS)
return;
}
/* Timeout */
DPRINTF(("uhci_waitintr: timeout\n"));
for (ii = LIST_FIRST(&sc->sc_intrhead);
ii != NULL && ii->xfer != xfer;
ii = LIST_NEXT(ii, list))
;
#ifdef DIAGNOSTIC
if (ii == NULL)
panic("uhci_waitintr: lost intr_info");
#endif
uhci_idone(ii);
}
void
uhci_poll(struct usbd_bus *bus)
{
uhci_softc_t *sc = (uhci_softc_t *)bus;
if (UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS)
uhci_intr1(sc);
}
void
uhci_reset(uhci_softc_t *sc)
{
int n;
UHCICMD(sc, UHCI_CMD_HCRESET);
/* The reset bit goes low when the controller is done. */
for (n = 0; n < UHCI_RESET_TIMEOUT &&
(UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
usb_delay_ms(&sc->sc_bus, 1);
if (n >= UHCI_RESET_TIMEOUT)
printf("%s: controller did not reset\n",
USBDEVNAME(sc->sc_bus.bdev));
}
usbd_status
uhci_run(uhci_softc_t *sc, int run)
{
int s, n, running;
u_int16_t cmd;
run = run != 0;
s = splhardusb();
DPRINTF(("uhci_run: setting run=%d\n", run));
cmd = UREAD2(sc, UHCI_CMD);
if (run)
cmd |= UHCI_CMD_RS;
else
cmd &= ~UHCI_CMD_RS;
UHCICMD(sc, cmd);
for(n = 0; n < 10; n++) {
running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
/* return when we've entered the state we want */
if (run == running) {
splx(s);
DPRINTF(("uhci_run: done cmd=0x%x sts=0x%x\n",
UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS)));
return (USBD_NORMAL_COMPLETION);
}
usb_delay_ms(&sc->sc_bus, 1);
}
splx(s);
printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev),
run ? "start" : "stop");
return (USBD_IOERROR);
}
/*
* Memory management routines.
* uhci_alloc_std allocates TDs
* uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularaity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/
uhci_soft_td_t *
uhci_alloc_std(uhci_softc_t *sc)
{
uhci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freetds == NULL) {
DPRINTFN(2,("uhci_alloc_std: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, UHCI_STD_SIZE * UHCI_STD_CHUNK,
UHCI_TD_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < UHCI_STD_CHUNK; i++) {
offs = i * UHCI_STD_SIZE;
std = KERNADDR(&dma, offs);
std->physaddr = DMAADDR(&dma, offs);
std->link.std = sc->sc_freetds;
std->aux_dma.block = NULL;
std->aux_data = NULL;
std->aux_len = 0;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->link.std;
memset(&std->td, 0, sizeof(uhci_td_t));
return std;
}
void
uhci_free_std(uhci_softc_t *sc, uhci_soft_td_t *std)
{
#ifdef DIAGNOSTIC
#define TD_IS_FREE 0x12345678
if (le32toh(std->td.td_token) == TD_IS_FREE) {
printf("uhci_free_std: freeing free TD %p\n", std);
return;
}
std->td.td_token = htole32(TD_IS_FREE);
#endif
if (std->aux_dma.block != NULL) {
usb_freemem(&sc->sc_bus, &std->aux_dma);
std->aux_dma.block = NULL;
std->aux_data = NULL;
std->aux_len = 0;
}
std->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
uhci_soft_qh_t *
uhci_alloc_sqh(uhci_softc_t *sc)
{
uhci_soft_qh_t *sqh;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freeqhs == NULL) {
DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, UHCI_SQH_SIZE * UHCI_SQH_CHUNK,
UHCI_QH_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < UHCI_SQH_CHUNK; i++) {
offs = i * UHCI_SQH_SIZE;
sqh = KERNADDR(&dma, offs);
sqh->physaddr = DMAADDR(&dma, offs);
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
}
sqh = sc->sc_freeqhs;
sc->sc_freeqhs = sqh->hlink;
memset(&sqh->qh, 0, sizeof(uhci_qh_t));
return (sqh);
}
void
uhci_free_sqh(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
void
uhci_free_std_chain(uhci_softc_t *sc, uhci_soft_td_t *std,
uhci_soft_td_t *stdend)
{
uhci_soft_td_t *p;
for (; std != stdend; std = p) {
p = std->link.std;
uhci_free_std(sc, std);
}
}
usbd_status
uhci_alloc_std_chain(struct uhci_pipe *upipe, uhci_softc_t *sc, int len,
int rd, u_int16_t flags, usbd_xfer_handle xfer,
uhci_soft_td_t **sp, uhci_soft_td_t **ep)
{
struct usb_dma_mapping *dma = &xfer->dmamap;
uhci_soft_td_t *p, *prevp, *startp;
int err, i, ntd, l, tog, maxp, seg, segoff;
u_int32_t status;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
DPRINTFN(8, ("uhci_alloc_std_chain: addr=%d endpt=%d len=%d speed=%d "
"flags=0x%x\n", addr, UE_GET_ADDR(endpt), len,
upipe->pipe.device->speed, flags));
maxp = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize);
if (maxp == 0) {
printf("uhci_alloc_std_chain: maxp=0\n");
return (USBD_INVAL);
}
ntd = (len + maxp - 1) / maxp;
if ((flags & USBD_FORCE_SHORT_XFER) && len % maxp == 0)
ntd++;
DPRINTFN(10, ("uhci_alloc_std_chain: maxp=%d ntd=%d\n", maxp, ntd));
if (ntd == 0) {
*sp = *ep = 0;
DPRINTFN(-1,("uhci_alloc_std_chain: ntd=0\n"));
return (USBD_NORMAL_COMPLETION);
}
tog = upipe->nexttoggle;
prevp = NULL;
startp = NULL;
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE);
if (upipe->pipe.device->speed == USB_SPEED_LOW)
status |= UHCI_TD_LS;
if (flags & USBD_SHORT_XFER_OK)
status |= UHCI_TD_SPD;
seg = 0;
segoff = 0;
for (i = 0; i < ntd; i++) {
p = uhci_alloc_std(sc);
if (p == NULL) {
uhci_free_std_chain(sc, startp, NULL);
return (USBD_NOMEM);
}
p->link.std = NULL;
if (prevp != NULL) {
prevp->link.std = p;
prevp->td.td_link = htole32(p->physaddr | UHCI_PTR_VF |
UHCI_PTR_TD);
} else {
startp = p;
}
p->td.td_status = htole32(status);
if (i == ntd - 1) {
/* last TD */
l = len % maxp;
if (l == 0 && !(flags & USBD_FORCE_SHORT_XFER))
l = maxp;
*ep = p;
} else
l = maxp;
p->td.td_token =
htole32(rd ? UHCI_TD_IN (l, endpt, addr, tog) :
UHCI_TD_OUT(l, endpt, addr, tog));
KASSERT(seg < dma->nsegs,
("uhci_alloc_std_chain: too few segments"));
if (l > dma->segs[seg].ds_len - segoff) {
/* UHCI can't handle non-contiguous data. */
err = uhci_aux_dma_alloc(sc, p, (char *)xfer->buffer +
i * maxp, l);
if (err) {
uhci_free_std_chain(sc, startp, NULL);
return (err);
}
p->td.td_buffer = htole32(uhci_aux_dma_prepare(p, rd));
l -= dma->segs[seg].ds_len - segoff;
seg++;
KASSERT(seg < dma->nsegs,
("uhci_alloc_std_chain: too few segments 2"));
segoff = 0;
} else {
p->td.td_buffer = htole32(dma->segs[seg].ds_addr +
segoff);
}
segoff += l;
if (segoff >= dma->segs[seg].ds_len) {
KASSERT(segoff == dma->segs[seg].ds_len,
("uhci_alloc_std_chain: overlap"));
if (i * maxp + l != len) {
seg++;
segoff = 0;
}
}
prevp = p;
tog ^= 1;
}
prevp->td.td_link = htole32(UHCI_PTR_T | UHCI_PTR_VF | UHCI_PTR_TD);
upipe->nexttoggle = tog;
*sp = startp;
DPRINTFN(10, ("uhci_alloc_std_chain: nexttog=%d\n",
upipe->nexttoggle));
return (USBD_NORMAL_COMPLETION);
}
/*
* Allocate a physically contiguous buffer to handle cases where UHCI
* cannot handle a packet because it is not physically contiguous.
* If the usb_dma_t was already allocated this just ensures it is
* large enough for the specified size.
*/
Static usbd_status
uhci_aux_dma_alloc(uhci_softc_t *sc, uhci_soft_td_t *std, void *data, int len)
{
int err, align;
if (std->aux_dma.block == NULL || std->aux_dma.block->size < len) {
/* Align to avoid crossing a page boundary. */
if (powerof2(len))
align = len;
else
align = 1 << fls(len);
if (std->aux_dma.block != NULL)
usb_freemem(&sc->sc_bus, &std->aux_dma);
std->aux_dma.block = NULL;
err = usb_allocmem(&sc->sc_bus, len, align, &std->aux_dma);
if (err)
return (err);
}
std->aux_data = data;
std->aux_len = len;
return (USBD_NORMAL_COMPLETION);
}
Static uhci_physaddr_t
uhci_aux_dma_prepare(uhci_soft_td_t *std, int isread)
{
if (!isread) {
bcopy(std->aux_data, KERNADDR(&std->aux_dma, 0), std->aux_len);
bus_dmamap_sync(std->aux_dma.block->tag,
std->aux_dma.block->map, BUS_DMASYNC_PREWRITE);
}
return (DMAADDR(&std->aux_dma, 0));
}
Static void
uhci_aux_dma_complete(uhci_soft_td_t *std, int isread)
{
if (isread) {
bus_dmamap_sync(std->aux_dma.block->tag,
std->aux_dma.block->map, BUS_DMASYNC_POSTREAD);
bcopy(KERNADDR(&std->aux_dma, 0), std->aux_data, std->aux_len);
}
}
void
uhci_device_clear_toggle(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
upipe->nexttoggle = 0;
}
void
uhci_noop(usbd_pipe_handle pipe)
{
}
usbd_status
uhci_device_bulk_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_bulk_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
usbd_status err;
int len, isread, endpt;
int s;
DPRINTFN(3, ("uhci_device_bulk_start: xfer=%p len=%d flags=%d ii=%p\n",
xfer, xfer->length, xfer->flags, ii));
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("uhci_device_bulk_transfer: a request");
#endif
len = xfer->length;
endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sqh = upipe->u.bulk.sqh;
upipe->u.bulk.isread = isread;
upipe->u.bulk.length = len;
err = uhci_alloc_std_chain(upipe, sc, len, isread, xfer->flags, xfer,
&data, &dataend);
if (err)
return (err);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 8) {
DPRINTF(("uhci_device_bulk_transfer: data(1)\n"));
uhci_dump_tds(data);
}
#endif
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_bulk_transfer: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
s = splusb();
uhci_add_bulk(sc, sqh);
uhci_add_intr_info(sc, ii);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, MS_TO_TICKS(xfer->timeout),
uhci_timeout, ii);
}
xfer->status = USBD_IN_PROGRESS;
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_bulk_transfer: data(2)\n"));
uhci_dump_tds(data);
}
#endif
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
/* Abort a device bulk request. */
void
uhci_device_bulk_abort(usbd_xfer_handle xfer)
{
DPRINTF(("uhci_device_bulk_abort:\n"));
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
*/
void
uhci_abort_xfer(usbd_xfer_handle xfer, usbd_status status)
{
struct uhci_xfer *uxfer = UXFER(xfer);
uhci_intr_info_t *ii = &uxfer->iinfo;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
uhci_soft_td_t *std;
int s;
DPRINTFN(1,("uhci_abort_xfer: xfer=%p, status=%d\n", xfer, status));
if (sc->sc_dying) {
/* If we're dying, just do the software part. */
s = splusb();
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, uhci_timeout, xfer);
usb_rem_task(xfer->pipe->device, &UXFER(xfer)->abort_task);
uhci_transfer_complete(xfer);
splx(s);
return;
}
if (xfer->device->bus->intr_context || !curproc)
panic("uhci_abort_xfer: not in process context");
/*
* If an abort is already in progress then just wait for it to
* complete and return.
*/
if (uxfer->uhci_xfer_flags & UHCI_XFER_ABORTING) {
DPRINTFN(2, ("uhci_abort_xfer: already aborting\n"));
/* No need to wait if we're aborting from a timeout. */
if (status == USBD_TIMEOUT)
return;
/* Override the status which might be USBD_TIMEOUT. */
xfer->status = status;
DPRINTFN(2, ("uhci_abort_xfer: waiting for abort to finish\n"));
uxfer->uhci_xfer_flags |= UHCI_XFER_ABORTWAIT;
while (uxfer->uhci_xfer_flags & UHCI_XFER_ABORTING)
tsleep(&uxfer->uhci_xfer_flags, PZERO, "uhciaw", 0);
return;
}
/*
* Step 1: Make interrupt routine and hardware ignore xfer.
*/
s = splusb();
uxfer->uhci_xfer_flags |= UHCI_XFER_ABORTING;
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, uhci_timeout, ii);
usb_rem_task(xfer->pipe->device, &UXFER(xfer)->abort_task);
DPRINTFN(1,("uhci_abort_xfer: stop ii=%p\n", ii));
for (std = ii->stdstart; std != NULL; std = std->link.std)
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
splx(s);
/*
* Step 2: Wait until we know hardware has finished any possible
* use of the xfer. Also make sure the soft interrupt routine
* has run.
*/
usb_delay_ms(upipe->pipe.device->bus, 2); /* Hardware finishes in 1ms */
s = splusb();
#ifdef USB_USE_SOFTINTR
sc->sc_softwake = 1;
#endif /* USB_USE_SOFTINTR */
usb_schedsoftintr(&sc->sc_bus);
#ifdef USB_USE_SOFTINTR
DPRINTFN(1,("uhci_abort_xfer: tsleep\n"));
tsleep(&sc->sc_softwake, PZERO, "uhciab", 0);
#endif /* USB_USE_SOFTINTR */
splx(s);
/*
* Step 3: Execute callback.
*/
DPRINTFN(1,("uhci_abort_xfer: callback\n"));
s = splusb();
#ifdef DIAGNOSTIC
ii->isdone = 1;
#endif
/* Do the wakeup first to avoid touching the xfer after the callback. */
uxfer->uhci_xfer_flags &= ~UHCI_XFER_ABORTING;
if (uxfer->uhci_xfer_flags & UHCI_XFER_ABORTWAIT) {
uxfer->uhci_xfer_flags &= ~UHCI_XFER_ABORTWAIT;
wakeup(&uxfer->uhci_xfer_flags);
}
uhci_transfer_complete(xfer);
splx(s);
}
/*
* Perform any UHCI-specific transfer completion operations, then
* call usb_transfer_complete().
*/
Static void
uhci_transfer_complete(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_td_t *p;
int i, isread, n;
/* XXX, must be an easier way to detect reads... */
isread = ((xfer->rqflags & URQ_REQUEST) &&
(xfer->request.bmRequestType & UT_READ)) ||
(xfer->pipe->endpoint->edesc->bEndpointAddress & UE_DIR_IN);
/* Copy back from any auxillary buffers after a read operation. */
if (xfer->nframes == 0) {
for (p = ii->stdstart; p != NULL; p = p->link.std) {
if (p->aux_data != NULL)
uhci_aux_dma_complete(p, isread);
}
} else {
if (xfer->nframes != 0) {
/* Isoc transfer, do things differently. */
n = UXFER(xfer)->curframe;
for (i = 0; i < xfer->nframes; i++) {
p = upipe->u.iso.stds[n];
if (p->aux_data != NULL)
uhci_aux_dma_complete(p, isread);
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
}
}
}
usb_transfer_complete(xfer);
}
/* Close a device bulk pipe. */
void
uhci_device_bulk_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_free_sqh(sc, upipe->u.bulk.sqh);
pipe->endpoint->savedtoggle = upipe->nexttoggle;
}
usbd_status
uhci_device_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_ctrl_start(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_device_ctrl_transfer: not a request");
#endif
err = uhci_device_request(xfer);
if (err)
return (err);
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
usbd_status
uhci_device_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_device_intr_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
usbd_status err;
int isread, endpt;
int i, s;
if (sc->sc_dying)
return (USBD_IOERROR);
DPRINTFN(3,("uhci_device_intr_transfer: xfer=%p len=%d flags=%d\n",
xfer, xfer->length, xfer->flags));
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("uhci_device_intr_transfer: a request");
#endif
endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sqh = upipe->u.bulk.sqh;
upipe->u.intr.isread = isread;
err = uhci_alloc_std_chain(upipe, sc, xfer->length, isread, xfer->flags,
xfer, &data, &dataend);
if (err)
return (err);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_transfer: data(1)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_intr_transfer: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
DPRINTFN(10,("uhci_device_intr_transfer: qhs[0]=%p\n",
upipe->u.intr.qhs[0]));
for (i = 0; i < upipe->u.intr.npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
}
uhci_add_intr_info(sc, ii);
xfer->status = USBD_IN_PROGRESS;
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_transfer: data(2)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
void
uhci_device_ctrl_abort(usbd_xfer_handle xfer)
{
DPRINTF(("uhci_device_ctrl_abort:\n"));
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device control pipe. */
void
uhci_device_ctrl_close(usbd_pipe_handle pipe)
{
}
/* Abort a device interrupt request. */
void
uhci_device_intr_abort(usbd_xfer_handle xfer)
{
DPRINTFN(1,("uhci_device_intr_abort: xfer=%p\n", xfer));
if (xfer->pipe->intrxfer == xfer) {
DPRINTFN(1,("uhci_device_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
uhci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device interrupt pipe. */
void
uhci_device_intr_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
int i, npoll;
int s;
/* Unlink descriptors from controller data structures. */
npoll = upipe->u.intr.npoll;
s = splusb();
for (i = 0; i < npoll; i++)
uhci_remove_intr(sc, upipe->u.intr.qhs[i]);
splx(s);
/*
* We now have to wait for any activity on the physical
* descriptors to stop.
*/
usb_delay_ms(&sc->sc_bus, 2);
for(i = 0; i < npoll; i++)
uhci_free_sqh(sc, upipe->u.intr.qhs[i]);
free(upipe->u.intr.qhs, M_USBHC);
/* XXX free other resources */
}
usbd_status
uhci_device_request(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usb_device_request_t *req = &xfer->request;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = dev->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *setup, *data, *stat, *next, *dataend;
uhci_soft_qh_t *sqh;
int len;
u_int32_t ls;
usbd_status err;
int isread;
int s;
DPRINTFN(3,("uhci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), UGETW(req->wLength),
addr, endpt));
ls = dev->speed == USB_SPEED_LOW ? UHCI_TD_LS : 0;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
setup = upipe->u.ctl.setup;
stat = upipe->u.ctl.stat;
sqh = upipe->u.ctl.sqh;
/* Set up data transaction */
if (len != 0) {
upipe->nexttoggle = 1;
err = uhci_alloc_std_chain(upipe, sc, len, isread, xfer->flags,
xfer, &data, &dataend);
if (err)
return (err);
next = data;
dataend->link.std = stat;
dataend->td.td_link = htole32(stat->physaddr | UHCI_PTR_VF | UHCI_PTR_TD);
} else {
next = stat;
}
upipe->u.ctl.length = len;
memcpy(KERNADDR(&upipe->u.ctl.reqdma, 0), req, sizeof *req);
setup->link.std = next;
setup->td.td_link = htole32(next->physaddr | UHCI_PTR_VF | UHCI_PTR_TD);
setup->td.td_status = htole32(UHCI_TD_SET_ERRCNT(3) | ls |
UHCI_TD_ACTIVE);
setup->td.td_token = htole32(UHCI_TD_SETUP(sizeof *req, endpt, addr));
setup->td.td_buffer = htole32(DMAADDR(&upipe->u.ctl.reqdma, 0));
stat->link.std = NULL;
stat->td.td_link = htole32(UHCI_PTR_T);
stat->td.td_status = htole32(UHCI_TD_SET_ERRCNT(3) | ls |
UHCI_TD_ACTIVE | UHCI_TD_IOC);
stat->td.td_token =
htole32(isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
UHCI_TD_IN (0, endpt, addr, 1));
stat->td.td_buffer = htole32(0);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_request: before transfer\n"));
uhci_dump_tds(setup);
}
#endif
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = setup;
ii->stdend = stat;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_request: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
sqh->elink = setup;
sqh->qh.qh_elink = htole32(setup->physaddr | UHCI_PTR_TD);
s = splusb();
if (dev->speed == USB_SPEED_LOW)
uhci_add_ls_ctrl(sc, sqh);
else
uhci_add_hs_ctrl(sc, sqh);
uhci_add_intr_info(sc, ii);
#ifdef USB_DEBUG
if (uhcidebug > 12) {
uhci_soft_td_t *std;
uhci_soft_qh_t *xqh;
uhci_soft_qh_t *sxqh;
int maxqh = 0;
uhci_physaddr_t link;
DPRINTF(("uhci_enter_ctl_q: follow from [0]\n"));
for (std = sc->sc_vframes[0].htd, link = 0;
(link & UHCI_PTR_QH) == 0;
std = std->link.std) {
link = le32toh(std->td.td_link);
uhci_dump_td(std);
}
sxqh = (uhci_soft_qh_t *)std;
uhci_dump_qh(sxqh);
for (xqh = sxqh;
xqh != NULL;
xqh = (maxqh++ == 5 || xqh->hlink == sxqh ||
xqh->hlink == xqh ? NULL : xqh->hlink)) {
uhci_dump_qh(xqh);
}
DPRINTF(("Enqueued QH:\n"));
uhci_dump_qh(sqh);
uhci_dump_tds(sqh->elink);
}
#endif
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, MS_TO_TICKS(xfer->timeout),
uhci_timeout, ii);
}
xfer->status = USBD_IN_PROGRESS;
splx(s);
return (USBD_NORMAL_COMPLETION);
}
usbd_status
uhci_device_isoc_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
DPRINTFN(5,("uhci_device_isoc_transfer: xfer=%p\n", xfer));
/* Put it on our queue, */
err = usb_insert_transfer(xfer);
/* bail out on error, */
if (err && err != USBD_IN_PROGRESS)
return (err);
/* XXX should check inuse here */
/* insert into schedule, */
uhci_device_isoc_enter(xfer);
/* and start if the pipe wasn't running */
if (!err)
uhci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue));
return (err);
}
void
uhci_device_isoc_enter(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
struct iso *iso = &upipe->u.iso;
uhci_soft_td_t *std;
void *dataptr;
u_int32_t len, status;
int err, s, i, isread, next, nframes, seg, segoff;
DPRINTFN(5,("uhci_device_isoc_enter: used=%d next=%d xfer=%p "
"nframes=%d\n",
iso->inuse, iso->next, xfer, xfer->nframes));
if (sc->sc_dying)
return;
if (xfer->status == USBD_IN_PROGRESS) {
/* This request has already been entered into the frame list */
printf("uhci_device_isoc_enter: xfer=%p in frame list\n", xfer);
/* XXX */
}
#ifdef DIAGNOSTIC
if (iso->inuse >= UHCI_VFRAMELIST_COUNT)
printf("uhci_device_isoc_enter: overflow!\n");
#endif
next = iso->next;
if (next == -1) {
/* Not in use yet, schedule it a few frames ahead. */
next = (UREAD2(sc, UHCI_FRNUM) + 3) % UHCI_VFRAMELIST_COUNT;
DPRINTFN(2,("uhci_device_isoc_enter: start next=%d\n", next));
}
xfer->status = USBD_IN_PROGRESS;
UXFER(xfer)->curframe = next;
seg = 0;
segoff = 0;
dataptr = xfer->allocbuf; /* Normal buffers not possible for isoc? */
isread = xfer->pipe->endpoint->edesc->bEndpointAddress & UE_DIR_IN;
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(0) |
UHCI_TD_ACTIVE |
UHCI_TD_IOS);
nframes = xfer->nframes;
s = splusb();
for (i = 0; i < nframes; i++) {
std = iso->stds[next];
if (++next >= UHCI_VFRAMELIST_COUNT)
next = 0;
len = xfer->frlengths[i];
KASSERT(seg < xfer->dmamap.nsegs,
("uhci_device_isoc_enter: too few segments"));
if (len + segoff > xfer->dmamap.segs[seg].ds_len) {
/* UHCI can't handle non-contiguous data. */
err = uhci_aux_dma_alloc(sc, std, dataptr, len);
/* XXX */
if (err)
printf("uhci_device_isoc_enter: aux alloc\n");
std->td.td_buffer = htole32(uhci_aux_dma_prepare(std,
isread));
segoff += len;
while (segoff >= xfer->dmamap.segs[seg].ds_len) {
KASSERT(seg < xfer->dmamap.nsegs - 1 ||
segoff == xfer->dmamap.segs[seg].ds_len,
("uhci_device_isoc_enter: overlap2"));
segoff -= xfer->dmamap.segs[seg].ds_len;
seg++;
}
} else {
std->td.td_buffer =
htole32(xfer->dmamap.segs[seg].ds_addr + segoff);
segoff += len;
if (segoff >= xfer->dmamap.segs[seg].ds_len) {
KASSERT(segoff == xfer->dmamap.segs[seg].ds_len,
("uhci_device_isoc_enter: overlap"));
segoff = 0;
seg++;
}
}
if (i == nframes - 1)
status |= UHCI_TD_IOC;
std->td.td_status = htole32(status);
std->td.td_token &= htole32(~UHCI_TD_MAXLEN_MASK);
std->td.td_token |= htole32(UHCI_TD_SET_MAXLEN(len));
#ifdef USB_DEBUG
if (uhcidebug > 5) {
DPRINTFN(5,("uhci_device_isoc_enter: TD %d\n", i));
uhci_dump_td(std);
}
#endif
dataptr = (char *)dataptr + len;
}
iso->next = next;
iso->inuse += xfer->nframes;
splx(s);
}
usbd_status
uhci_device_isoc_start(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)upipe->pipe.device->bus;
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_soft_td_t *end;
int s, i;
DPRINTFN(5,("uhci_device_isoc_start: xfer=%p\n", xfer));
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->status != USBD_IN_PROGRESS)
printf("uhci_device_isoc_start: not in progress %p\n", xfer);
#endif
/* Find the last TD */
i = UXFER(xfer)->curframe + xfer->nframes;
if (i >= UHCI_VFRAMELIST_COUNT)
i -= UHCI_VFRAMELIST_COUNT;
end = upipe->u.iso.stds[i];
#ifdef DIAGNOSTIC
if (end == NULL) {
printf("uhci_device_isoc_start: end == NULL\n");
return (USBD_INVAL);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->xfer = xfer;
ii->stdstart = end;
ii->stdend = end;
#ifdef DIAGNOSTIC
if (!ii->isdone)
printf("uhci_device_isoc_start: not done, ii=%p\n", ii);
ii->isdone = 0;
#endif
uhci_add_intr_info(sc, ii);
splx(s);
return (USBD_IN_PROGRESS);
}
void
uhci_device_isoc_abort(usbd_xfer_handle xfer)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_td_t **stds = upipe->u.iso.stds;
uhci_soft_td_t *std;
int i, n, s, nframes, maxlen, len;
s = splusb();
/* Transfer is already done. */
if (xfer->status != USBD_NOT_STARTED &&
xfer->status != USBD_IN_PROGRESS) {
splx(s);
return;
}
/* Give xfer the requested abort code. */
xfer->status = USBD_CANCELLED;
/* make hardware ignore it, */
nframes = xfer->nframes;
n = UXFER(xfer)->curframe;
maxlen = 0;
for (i = 0; i < nframes; i++) {
std = stds[n];
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
len = UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token));
if (len > maxlen)
maxlen = len;
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
}
/* and wait until we are sure the hardware has finished. */
delay(maxlen);
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
#endif
/* Run callback and remove from interrupt list. */
uhci_transfer_complete(xfer);
splx(s);
}
void
uhci_device_isoc_close(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_soft_td_t *std, *vstd;
struct iso *iso;
int i, s;
/*
* Make sure all TDs are marked as inactive.
* Wait for completion.
* Unschedule.
* Deallocate.
*/
iso = &upipe->u.iso;
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++)
iso->stds[i]->td.td_status &= htole32(~UHCI_TD_ACTIVE);
usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */
s = splusb();
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = iso->stds[i];
for (vstd = sc->sc_vframes[i].htd;
vstd != NULL && vstd->link.std != std;
vstd = vstd->link.std)
;
if (vstd == NULL) {
/*panic*/
printf("uhci_device_isoc_close: %p not found\n", std);
splx(s);
return;
}
vstd->link = std->link;
vstd->td.td_link = std->td.td_link;
uhci_free_std(sc, std);
}
splx(s);
free(iso->stds, M_USBHC);
}
usbd_status
uhci_setup_isoc(usbd_pipe_handle pipe)
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
int rd = UE_GET_DIR(endpt) == UE_DIR_IN;
uhci_soft_td_t *std, *vstd;
u_int32_t token;
struct iso *iso;
int i, s;
iso = &upipe->u.iso;
iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *),
M_USBHC, M_WAITOK);
token = rd ? UHCI_TD_IN (0, endpt, addr, 0) :
UHCI_TD_OUT(0, endpt, addr, 0);
/* Allocate the TDs and mark as inactive; */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
if (std == 0)
goto bad;
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(token);
iso->stds[i] = std;
}
/* Insert TDs into schedule. */
s = splusb();
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = iso->stds[i];
vstd = sc->sc_vframes[i].htd;
std->link = vstd->link;
std->td.td_link = vstd->td.td_link;
vstd->link.std = std;
vstd->td.td_link = htole32(std->physaddr | UHCI_PTR_TD);
}
splx(s);
iso->next = -1;
iso->inuse = 0;
return (USBD_NORMAL_COMPLETION);
bad:
while (--i >= 0)
uhci_free_std(sc, iso->stds[i]);
free(iso->stds, M_USBHC);
return (USBD_NOMEM);
}
void
uhci_device_isoc_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
DPRINTFN(4, ("uhci_isoc_done: length=%d\n", xfer->actlen));
if (ii->xfer != xfer)
/* Not on interrupt list, ignore it. */
return;
if (!uhci_active_intr_info(ii))
return;
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
printf("uhci_device_isoc_done: xfer=%p not busy 0x%08x\n",
xfer, xfer->busy_free);
return;
}
if (ii->stdend == NULL) {
printf("uhci_device_isoc_done: xfer=%p stdend==NULL\n", xfer);
#ifdef USB_DEBUG
uhci_dump_ii(ii);
#endif
return;
}
#endif
/* Turn off the interrupt since it is active even if the TD is not. */
ii->stdend->td.td_status &= htole32(~UHCI_TD_IOC);
uhci_del_intr_info(ii); /* remove from active list */
#ifdef DIAGNOSTIC
if (ii->stdend == NULL) {
printf("uhci_device_isoc_done: xfer=%p stdend==NULL\n", xfer);
#ifdef USB_DEBUG
uhci_dump_ii(ii);
#endif
return;
}
#endif
ii->stdstart = NULL;
ii->stdend = NULL;
}
void
uhci_device_intr_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
uhci_soft_qh_t *sqh;
int i, npoll;
DPRINTFN(5, ("uhci_device_intr_done: length=%d\n", xfer->actlen));
npoll = upipe->u.intr.npoll;
for(i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
}
uhci_free_std_chain(sc, ii->stdstart, NULL);
/* XXX Wasteful. */
if (xfer->pipe->repeat) {
uhci_soft_td_t *data, *dataend;
DPRINTFN(5,("uhci_device_intr_done: requeing\n"));
/* This alloc cannot fail since we freed the chain above. */
uhci_alloc_std_chain(upipe, sc, xfer->length,
upipe->u.intr.isread, xfer->flags, xfer,
&data, &dataend);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_done: data(1)\n"));
uhci_dump_tds(data);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
ii->stdstart = data;
ii->stdend = dataend;
#ifdef DIAGNOSTIC
if (!ii->isdone) {
printf("uhci_device_intr_done: not done, ii=%p\n", ii);
}
ii->isdone = 0;
#endif
for (i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
}
xfer->status = USBD_IN_PROGRESS;
/* The ii is already on the examined list, just leave it. */
} else {
DPRINTFN(5,("uhci_device_intr_done: removing\n"));
if (uhci_active_intr_info(ii)) {
uhci_del_intr_info(ii);
ii->stdstart = NULL;
ii->stdend = NULL;
}
}
}
/* Deallocate request data structures */
void
uhci_device_ctrl_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_device_ctrl_done: not a request");
#endif
if (!uhci_active_intr_info(ii))
return;
uhci_del_intr_info(ii); /* remove from active list */
if (upipe->pipe.device->speed == USB_SPEED_LOW)
uhci_remove_ls_ctrl(sc, upipe->u.ctl.sqh);
else
uhci_remove_hs_ctrl(sc, upipe->u.ctl.sqh);
if (upipe->u.ctl.length != 0)
uhci_free_std_chain(sc, ii->stdstart->link.std, ii->stdend);
ii->stdstart = NULL;
ii->stdend = NULL;
DPRINTFN(5, ("uhci_device_ctrl_done: length=%d\n", xfer->actlen));
}
/* Deallocate request data structures */
void
uhci_device_bulk_done(usbd_xfer_handle xfer)
{
uhci_intr_info_t *ii = &UXFER(xfer)->iinfo;
uhci_softc_t *sc = ii->sc;
struct uhci_pipe *upipe = (struct uhci_pipe *)xfer->pipe;
DPRINTFN(5,("uhci_device_bulk_done: xfer=%p ii=%p sc=%p upipe=%p\n",
xfer, ii, sc, upipe));
if (!uhci_active_intr_info(ii))
return;
uhci_del_intr_info(ii); /* remove from active list */
uhci_remove_bulk(sc, upipe->u.bulk.sqh);
uhci_free_std_chain(sc, ii->stdstart, NULL);
ii->stdstart = NULL;
ii->stdend = NULL;
DPRINTFN(5, ("uhci_device_bulk_done: length=%d\n", xfer->actlen));
}
/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *eqh;
DPRINTFN(4, ("uhci_add_intr: n=%d sqh=%p\n", sqh->pos, sqh));
eqh = vf->eqh;
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
vf->eqh = sqh;
vf->bandwidth++;
}
/* Remove interrupt QH. */
void
uhci_remove_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *pqh;
DPRINTFN(4, ("uhci_remove_intr: n=%d sqh=%p\n", sqh->pos, sqh));
/* See comment in uhci_remove_ctrl() */
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(vf->hqh, sqh);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
delay(UHCI_QH_REMOVE_DELAY);
if (vf->eqh == sqh)
vf->eqh = pqh;
vf->bandwidth--;
}
usbd_status
uhci_device_setintr(uhci_softc_t *sc, struct uhci_pipe *upipe, int ival)
{
uhci_soft_qh_t *sqh;
int i, npoll, s;
u_int bestbw, bw, bestoffs, offs;
DPRINTFN(2, ("uhci_device_setintr: pipe=%p\n", upipe));
if (ival == 0) {
printf("uhci_setintr: 0 interval\n");
return (USBD_INVAL);
}
if (ival > UHCI_VFRAMELIST_COUNT)
ival = UHCI_VFRAMELIST_COUNT;
npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival;
DPRINTFN(2, ("uhci_device_setintr: ival=%d npoll=%d\n", ival, npoll));
upipe->u.intr.npoll = npoll;
upipe->u.intr.qhs =
malloc(npoll * sizeof(uhci_soft_qh_t *), M_USBHC, M_WAITOK);
/*
* Figure out which offset in the schedule that has most
* bandwidth left over.
*/
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
for (bw = i = 0; i < npoll; i++)
bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
if (bw < bestbw) {
bestbw = bw;
bestoffs = offs;
}
}
DPRINTFN(1, ("uhci_device_setintr: bw=%d offs=%d\n", bestbw, bestoffs));
for(i = 0; i < npoll; i++) {
upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
sqh->pos = MOD(i * ival + bestoffs);
}
#undef MOD
s = splusb();
/* Enter QHs into the controller data structures. */
for(i = 0; i < npoll; i++)
uhci_add_intr(sc, upipe->u.intr.qhs[i]);
splx(s);
DPRINTFN(5, ("uhci_device_setintr: returns %p\n", upipe));
return (USBD_NORMAL_COMPLETION);
}
/* Open a new pipe. */
usbd_status
uhci_open(usbd_pipe_handle pipe)
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
usbd_status err;
int ival;
DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, pipe->device->address,
ed->bEndpointAddress, sc->sc_addr));
upipe->aborting = 0;
upipe->nexttoggle = pipe->endpoint->savedtoggle;
if (pipe->device->address == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &uhci_root_ctrl_methods;
break;
case UE_DIR_IN | UHCI_INTR_ENDPT:
pipe->methods = &uhci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->methods = &uhci_device_ctrl_methods;
upipe->u.ctl.sqh = uhci_alloc_sqh(sc);
if (upipe->u.ctl.sqh == NULL)
goto bad;
upipe->u.ctl.setup = uhci_alloc_std(sc);
if (upipe->u.ctl.setup == NULL) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
goto bad;
}
upipe->u.ctl.stat = uhci_alloc_std(sc);
if (upipe->u.ctl.stat == NULL) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
goto bad;
}
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t),
0, &upipe->u.ctl.reqdma);
if (err) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
uhci_free_std(sc, upipe->u.ctl.stat);
goto bad;
}
break;
case UE_INTERRUPT:
pipe->methods = &uhci_device_intr_methods;
ival = pipe->interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
return (uhci_device_setintr(sc, upipe, ival));
case UE_ISOCHRONOUS:
pipe->methods = &uhci_device_isoc_methods;
return (uhci_setup_isoc(pipe));
case UE_BULK:
pipe->methods = &uhci_device_bulk_methods;
upipe->u.bulk.sqh = uhci_alloc_sqh(sc);
if (upipe->u.bulk.sqh == NULL)
goto bad;
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
return (USBD_NOMEM);
}
/*
* Data structures and routines to emulate the root hub.
*/
usb_device_descriptor_t uhci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UDCLASS_HUB, /* class */
UDSUBCLASS_HUB, /* subclass */
UDPROTO_FSHUB, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
usb_config_descriptor_t uhci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
usb_interface_descriptor_t uhci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UICLASS_HUB,
UISUBCLASS_HUB,
UIPROTO_FSHUB,
0
};
usb_endpoint_descriptor_t uhci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_DIR_IN | UHCI_INTR_ENDPT,
UE_INTERRUPT,
{8},
255
};
usb_hub_descriptor_t uhci_hubd_piix = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
2,
{ UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 },
50, /* power on to power good */
0,
{ 0x00 }, /* both ports are removable */
};
int
uhci_str(usb_string_descriptor_t *p, int l, char *s)
{
int i;
if (l == 0)
return (0);
p->bLength = 2 * strlen(s) + 2;
if (l == 1)
return (1);
p->bDescriptorType = UDESC_STRING;
l -= 2;
for (i = 0; s[i] && l > 1; i++, l -= 2)
USETW2(p->bString[i], 0, s[i]);
return (2*i+2);
}
/*
* The USB hub protocol requires that SET_FEATURE(PORT_RESET) also
* enables the port, and also states that SET_FEATURE(PORT_ENABLE)
* should not be used by the USB subsystem. As we cannot issue a
* SET_FEATURE(PORT_ENABLE) externally, we must ensure that the port
* will be enabled as part of the reset.
*
* On the VT83C572, the port cannot be successfully enabled until the
* outstanding "port enable change" and "connection status change"
* events have been reset.
*/
Static usbd_status
uhci_portreset(uhci_softc_t *sc, int index)
{
int lim, port, x;
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else
return (USBD_IOERROR);
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PR);
usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
DPRINTFN(3,("uhci port %d reset, status0 = 0x%04x\n",
index, UREAD2(sc, port)));
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
delay(100);
DPRINTFN(3,("uhci port %d reset, status1 = 0x%04x\n",
index, UREAD2(sc, port)));
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
for (lim = 10; --lim > 0;) {
usb_delay_ms(&sc->sc_bus, USB_PORT_RESET_DELAY);
x = UREAD2(sc, port);
DPRINTFN(3,("uhci port %d iteration %u, status = 0x%04x\n",
index, lim, x));
if (!(x & UHCI_PORTSC_CCS)) {
/*
* No device is connected (or was disconnected
* during reset). Consider the port reset.
* The delay must be long enough to ensure on
* the initial iteration that the device
* connection will have been registered. 50ms
* appears to be sufficient, but 20ms is not.
*/
DPRINTFN(3,("uhci port %d loop %u, device detached\n",
index, lim));
break;
}
if (x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)) {
/*
* Port enabled changed and/or connection
* status changed were set. Reset either or
* both raised flags (by writing a 1 to that
* bit), and wait again for state to settle.
*/
UWRITE2(sc, port, URWMASK(x) |
(x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)));
continue;
}
if (x & UHCI_PORTSC_PE)
/* Port is enabled */
break;
UWRITE2(sc, port, URWMASK(x) | UHCI_PORTSC_PE);
}
DPRINTFN(3,("uhci port %d reset, status2 = 0x%04x\n",
index, UREAD2(sc, port)));
if (lim <= 0) {
DPRINTFN(1,("uhci port %d reset timed out\n", index));
return (USBD_TIMEOUT);
}
sc->sc_isreset = 1;
return (USBD_NORMAL_COMPLETION);
}
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
usbd_status
uhci_root_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
usbd_status
uhci_root_ctrl_start(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usb_device_request_t *req;
void *buf = NULL;
int port, x;
int s, len, value, index, status, change, l, totlen = 0;
usb_port_status_t ps;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
panic("uhci_root_ctrl_transfer: not a request");
#endif
req = &xfer->request;
DPRINTFN(2,("uhci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
if (len != 0)
buf = xfer->buffer;
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
USETW(uhci_devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &uhci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_endpd, l);
break;
case UDESC_STRING:
if (len == 0)
break;
*(u_int8_t *)buf = 0;
totlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
totlen = uhci_str(buf, len, sc->sc_vendor);
break;
case 2: /* Product */
totlen = uhci_str(buf, len, "UHCI root hub");
break;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
break;
case UHF_C_PORT_CONNECTION:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
break;
case UHF_C_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
break;
case UHF_C_PORT_OVER_CURRENT:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
err = USBD_NORMAL_COMPLETION;
goto ret;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
if (len > 0) {
*(u_int8_t *)buf =
(UREAD2(sc, port) & UHCI_PORTSC_LS) >>
UHCI_PORTSC_LS_SHIFT;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
l = min(len, USB_HUB_DESCRIPTOR_SIZE);
totlen = l;
memcpy(buf, &uhci_hubd_piix, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
x = UREAD2(sc, port);
status = change = 0;
if (x & UHCI_PORTSC_CCS)
status |= UPS_CURRENT_CONNECT_STATUS;
if (x & UHCI_PORTSC_CSC)
change |= UPS_C_CONNECT_STATUS;
if (x & UHCI_PORTSC_PE)
status |= UPS_PORT_ENABLED;
if (x & UHCI_PORTSC_POEDC)
change |= UPS_C_PORT_ENABLED;
if (x & UHCI_PORTSC_OCI)
status |= UPS_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_OCIC)
change |= UPS_C_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_SUSP)
status |= UPS_SUSPEND;
if (x & UHCI_PORTSC_LSDA)
status |= UPS_LOW_SPEED;
status |= UPS_PORT_POWER;
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
err = uhci_portreset(sc, index);
goto ret;
case UHF_PORT_POWER:
/* Pretend we turned on power */
err = USBD_NORMAL_COMPLETION;
goto ret;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
err = USBD_IOERROR;
goto ret;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
xfer->actlen = totlen;
err = USBD_NORMAL_COMPLETION;
ret:
xfer->status = err;
s = splusb();
uhci_transfer_complete(xfer);
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
void
uhci_root_ctrl_abort(usbd_xfer_handle xfer)
{
/* Nothing to do, all transfers are synchronous. */
}
/* Close the root pipe. */
void
uhci_root_ctrl_close(usbd_pipe_handle pipe)
{
DPRINTF(("uhci_root_ctrl_close\n"));
}
/* Abort a root interrupt request. */
void
uhci_root_intr_abort(usbd_xfer_handle xfer)
{
uhci_softc_t *sc = (uhci_softc_t *)xfer->pipe->device->bus;
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub, xfer);
sc->sc_intr_xfer = NULL;
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("uhci_root_intr_abort: remove\n"));
xfer->pipe->intrxfer = 0;
}
xfer->status = USBD_CANCELLED;
#ifdef DIAGNOSTIC
UXFER(xfer)->iinfo.isdone = 1;
#endif
uhci_transfer_complete(xfer);
}
usbd_status
uhci_root_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return (uhci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(usbd_xfer_handle xfer)
{
usbd_pipe_handle pipe = xfer->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
DPRINTFN(3, ("uhci_root_intr_start: xfer=%p len=%d flags=%d\n",
xfer, xfer->length, xfer->flags));
if (sc->sc_dying)
return (USBD_IOERROR);
sc->sc_ival = MS_TO_TICKS(xfer->pipe->endpoint->edesc->bInterval);
usb_callout(sc->sc_poll_handle, sc->sc_ival, uhci_poll_hub, xfer);
sc->sc_intr_xfer = xfer;
return (USBD_IN_PROGRESS);
}
/* Close the root interrupt pipe. */
void
uhci_root_intr_close(usbd_pipe_handle pipe)
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
usb_uncallout(sc->sc_poll_handle, uhci_poll_hub, sc->sc_intr_xfer);
sc->sc_intr_xfer = NULL;
DPRINTF(("uhci_root_intr_close\n"));
}