freebsd-skq/sys/netinet6/sctp6_usrreq.c
ae 0fb6ad528e Merge projects/ipsec into head/.
Small summary
 -------------

o Almost all IPsec releated code was moved into sys/netipsec.
o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel
  option IPSEC_SUPPORT added. It enables support for loading
  and unloading of ipsec.ko and tcpmd5.ko kernel modules.
o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by
  default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type
  support was removed. Added TCP/UDP checksum handling for
  inbound packets that were decapsulated by transport mode SAs.
  setkey(8) modified to show run-time NAT-T configuration of SA.
o New network pseudo interface if_ipsec(4) added. For now it is
  build as part of ipsec.ko module (or with IPSEC kernel).
  It implements IPsec virtual tunnels to create route-based VPNs.
o The network stack now invokes IPsec functions using special
  methods. The only one header file <netipsec/ipsec_support.h>
  should be included to declare all the needed things to work
  with IPsec.
o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed.
  Now these protocols are handled directly via IPsec methods.
o TCP_SIGNATURE support was reworked to be more close to RFC.
o PF_KEY SADB was reworked:
  - now all security associations stored in the single SPI namespace,
    and all SAs MUST have unique SPI.
  - several hash tables added to speed up lookups in SADB.
  - SADB now uses rmlock to protect access, and concurrent threads
    can do SA lookups in the same time.
  - many PF_KEY message handlers were reworked to reflect changes
    in SADB.
  - SADB_UPDATE message was extended to support new PF_KEY headers:
    SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They
    can be used by IKE daemon to change SA addresses.
o ipsecrequest and secpolicy structures were cardinally changed to
  avoid locking protection for ipsecrequest. Now we support
  only limited number (4) of bundled SAs, but they are supported
  for both INET and INET6.
o INPCB security policy cache was introduced. Each PCB now caches
  used security policies to avoid SP lookup for each packet.
o For inbound security policies added the mode, when the kernel does
  check for full history of applied IPsec transforms.
o References counting rules for security policies and security
  associations were changed. The proper SA locking added into xform
  code.
o xform code was also changed. Now it is possible to unregister xforms.
  tdb_xxx structures were changed and renamed to reflect changes in
  SADB/SPDB, and changed rules for locking and refcounting.

Reviewed by:	gnn, wblock
Obtained from:	Yandex LLC
Relnotes:	yes
Sponsored by:	Yandex LLC
Differential Revision:	https://reviews.freebsd.org/D9352
2017-02-06 08:49:57 +00:00

1191 lines
31 KiB
C

/*-
* Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
* Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <netinet/sctp_os.h>
#ifdef INET6
#include <sys/proc.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctp_header.h>
#include <netinet/sctp_var.h>
#include <netinet6/sctp6_var.h>
#include <netinet/sctp_sysctl.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_uio.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_indata.h>
#include <netinet/sctp_timer.h>
#include <netinet/sctp_auth.h>
#include <netinet/sctp_input.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_bsd_addr.h>
#include <netinet/sctp_crc32.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
extern struct protosw inetsw[];
int
sctp6_input_with_port(struct mbuf **i_pak, int *offp, uint16_t port)
{
struct mbuf *m;
int iphlen;
uint32_t vrf_id;
uint8_t ecn_bits;
struct sockaddr_in6 src, dst;
struct ip6_hdr *ip6;
struct sctphdr *sh;
struct sctp_chunkhdr *ch;
int length, offset;
#if !defined(SCTP_WITH_NO_CSUM)
uint8_t compute_crc;
#endif
uint32_t mflowid;
uint8_t mflowtype;
uint16_t fibnum;
iphlen = *offp;
if (SCTP_GET_PKT_VRFID(*i_pak, vrf_id)) {
SCTP_RELEASE_PKT(*i_pak);
return (IPPROTO_DONE);
}
m = SCTP_HEADER_TO_CHAIN(*i_pak);
#ifdef SCTP_MBUF_LOGGING
/* Log in any input mbufs */
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) {
sctp_log_mbc(m, SCTP_MBUF_INPUT);
}
#endif
#ifdef SCTP_PACKET_LOGGING
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LAST_PACKET_TRACING) {
sctp_packet_log(m);
}
#endif
SCTPDBG(SCTP_DEBUG_CRCOFFLOAD,
"sctp6_input(): Packet of length %d received on %s with csum_flags 0x%b.\n",
m->m_pkthdr.len,
if_name(m->m_pkthdr.rcvif),
(int)m->m_pkthdr.csum_flags, CSUM_BITS);
mflowid = m->m_pkthdr.flowid;
mflowtype = M_HASHTYPE_GET(m);
fibnum = M_GETFIB(m);
SCTP_STAT_INCR(sctps_recvpackets);
SCTP_STAT_INCR_COUNTER64(sctps_inpackets);
/* Get IP, SCTP, and first chunk header together in the first mbuf. */
offset = iphlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
ip6 = mtod(m, struct ip6_hdr *);
IP6_EXTHDR_GET(sh, struct sctphdr *, m, iphlen,
(int)(sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr)));
if (sh == NULL) {
SCTP_STAT_INCR(sctps_hdrops);
return (IPPROTO_DONE);
}
ch = (struct sctp_chunkhdr *)((caddr_t)sh + sizeof(struct sctphdr));
offset -= sizeof(struct sctp_chunkhdr);
memset(&src, 0, sizeof(struct sockaddr_in6));
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(struct sockaddr_in6);
src.sin6_port = sh->src_port;
src.sin6_addr = ip6->ip6_src;
if (in6_setscope(&src.sin6_addr, m->m_pkthdr.rcvif, NULL) != 0) {
goto out;
}
memset(&dst, 0, sizeof(struct sockaddr_in6));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(struct sockaddr_in6);
dst.sin6_port = sh->dest_port;
dst.sin6_addr = ip6->ip6_dst;
if (in6_setscope(&dst.sin6_addr, m->m_pkthdr.rcvif, NULL) != 0) {
goto out;
}
length = ntohs(ip6->ip6_plen) + iphlen;
/* Validate mbuf chain length with IP payload length. */
if (SCTP_HEADER_LEN(m) != length) {
SCTPDBG(SCTP_DEBUG_INPUT1,
"sctp6_input() length:%d reported length:%d\n", length, SCTP_HEADER_LEN(m));
SCTP_STAT_INCR(sctps_hdrops);
goto out;
}
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
goto out;
}
ecn_bits = ((ntohl(ip6->ip6_flow) >> 20) & 0x000000ff);
#if defined(SCTP_WITH_NO_CSUM)
SCTP_STAT_INCR(sctps_recvnocrc);
#else
if (m->m_pkthdr.csum_flags & CSUM_SCTP_VALID) {
SCTP_STAT_INCR(sctps_recvhwcrc);
compute_crc = 0;
} else {
SCTP_STAT_INCR(sctps_recvswcrc);
compute_crc = 1;
}
#endif
sctp_common_input_processing(&m, iphlen, offset, length,
(struct sockaddr *)&src,
(struct sockaddr *)&dst,
sh, ch,
#if !defined(SCTP_WITH_NO_CSUM)
compute_crc,
#endif
ecn_bits,
mflowtype, mflowid, fibnum,
vrf_id, port);
out:
if (m) {
sctp_m_freem(m);
}
return (IPPROTO_DONE);
}
int
sctp6_input(struct mbuf **i_pak, int *offp, int proto SCTP_UNUSED)
{
return (sctp6_input_with_port(i_pak, offp, 0));
}
void
sctp6_notify(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_nets *net,
uint8_t icmp6_type,
uint8_t icmp6_code,
uint16_t next_mtu)
{
#if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING)
struct socket *so;
#endif
int timer_stopped;
switch (icmp6_type) {
case ICMP6_DST_UNREACH:
if ((icmp6_code == ICMP6_DST_UNREACH_NOROUTE) ||
(icmp6_code == ICMP6_DST_UNREACH_ADMIN) ||
(icmp6_code == ICMP6_DST_UNREACH_BEYONDSCOPE) ||
(icmp6_code == ICMP6_DST_UNREACH_ADDR)) {
/* Mark the net unreachable. */
if (net->dest_state & SCTP_ADDR_REACHABLE) {
/* Ok that destination is not reachable */
net->dest_state &= ~SCTP_ADDR_REACHABLE;
net->dest_state &= ~SCTP_ADDR_PF;
sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN,
stcb, 0, (void *)net, SCTP_SO_NOT_LOCKED);
}
}
SCTP_TCB_UNLOCK(stcb);
break;
case ICMP6_PARAM_PROB:
/* Treat it like an ABORT. */
if (icmp6_code == ICMP6_PARAMPROB_NEXTHEADER) {
sctp_abort_notification(stcb, 1, 0, NULL, SCTP_SO_NOT_LOCKED);
#if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING)
so = SCTP_INP_SO(inp);
atomic_add_int(&stcb->asoc.refcnt, 1);
SCTP_TCB_UNLOCK(stcb);
SCTP_SOCKET_LOCK(so, 1);
SCTP_TCB_LOCK(stcb);
atomic_subtract_int(&stcb->asoc.refcnt, 1);
#endif
(void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC,
SCTP_FROM_SCTP_USRREQ + SCTP_LOC_2);
#if defined(__APPLE__) || defined(SCTP_SO_LOCK_TESTING)
SCTP_SOCKET_UNLOCK(so, 1);
#endif
} else {
SCTP_TCB_UNLOCK(stcb);
}
break;
case ICMP6_PACKET_TOO_BIG:
if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) {
timer_stopped = 1;
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net,
SCTP_FROM_SCTP_USRREQ + SCTP_LOC_1);
} else {
timer_stopped = 0;
}
/* Update the path MTU. */
if (net->mtu > next_mtu) {
net->mtu = next_mtu;
if (net->port) {
net->mtu -= sizeof(struct udphdr);
}
}
/* Update the association MTU */
if (stcb->asoc.smallest_mtu > next_mtu) {
sctp_pathmtu_adjustment(stcb, next_mtu);
}
/* Finally, start the PMTU timer if it was running before. */
if (timer_stopped) {
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net);
}
SCTP_TCB_UNLOCK(stcb);
break;
default:
SCTP_TCB_UNLOCK(stcb);
break;
}
}
void
sctp6_ctlinput(int cmd, struct sockaddr *pktdst, void *d)
{
struct ip6ctlparam *ip6cp;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sctphdr sh;
struct sockaddr_in6 src, dst;
if (pktdst->sa_family != AF_INET6 ||
pktdst->sa_len != sizeof(struct sockaddr_in6)) {
return;
}
if ((unsigned)cmd >= PRC_NCMDS) {
return;
}
if (PRC_IS_REDIRECT(cmd)) {
d = NULL;
} else if (inet6ctlerrmap[cmd] == 0) {
return;
}
/* If the parameter is from icmp6, decode it. */
if (d != NULL) {
ip6cp = (struct ip6ctlparam *)d;
} else {
ip6cp = (struct ip6ctlparam *)NULL;
}
if (ip6cp != NULL) {
/*
* XXX: We assume that when IPV6 is non NULL, M and OFF are
* valid.
*/
if (ip6cp->ip6c_m == NULL) {
return;
}
/*
* Check if we can safely examine the ports and the
* verification tag of the SCTP common header.
*/
if (ip6cp->ip6c_m->m_pkthdr.len <
(int32_t)(ip6cp->ip6c_off + offsetof(struct sctphdr, checksum))) {
return;
}
/* Copy out the port numbers and the verification tag. */
bzero(&sh, sizeof(sh));
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off,
sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t),
(caddr_t)&sh);
memset(&src, 0, sizeof(struct sockaddr_in6));
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(struct sockaddr_in6);
src.sin6_port = sh.src_port;
src.sin6_addr = ip6cp->ip6c_ip6->ip6_src;
if (in6_setscope(&src.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) {
return;
}
memset(&dst, 0, sizeof(struct sockaddr_in6));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(struct sockaddr_in6);
dst.sin6_port = sh.dest_port;
dst.sin6_addr = ip6cp->ip6c_ip6->ip6_dst;
if (in6_setscope(&dst.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) {
return;
}
inp = NULL;
net = NULL;
stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst,
(struct sockaddr *)&src,
&inp, &net, 1, SCTP_DEFAULT_VRFID);
if ((stcb != NULL) &&
(net != NULL) &&
(inp != NULL)) {
/* Check the verification tag */
if (ntohl(sh.v_tag) != 0) {
/*
* This must be the verification tag used
* for sending out packets. We don't
* consider packets reflecting the
* verification tag.
*/
if (ntohl(sh.v_tag) != stcb->asoc.peer_vtag) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
if (ip6cp->ip6c_m->m_pkthdr.len >=
ip6cp->ip6c_off + sizeof(struct sctphdr) +
sizeof(struct sctp_chunkhdr) +
offsetof(struct sctp_init, a_rwnd)) {
/*
* In this case we can check if we
* got an INIT chunk and if the
* initiate tag matches.
*/
uint32_t initiate_tag;
uint8_t chunk_type;
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off +
sizeof(struct sctphdr),
sizeof(uint8_t),
(caddr_t)&chunk_type);
m_copydata(ip6cp->ip6c_m,
ip6cp->ip6c_off +
sizeof(struct sctphdr) +
sizeof(struct sctp_chunkhdr),
sizeof(uint32_t),
(caddr_t)&initiate_tag);
if ((chunk_type != SCTP_INITIATION) ||
(ntohl(initiate_tag) != stcb->asoc.my_vtag)) {
SCTP_TCB_UNLOCK(stcb);
return;
}
} else {
SCTP_TCB_UNLOCK(stcb);
return;
}
}
sctp6_notify(inp, stcb, net,
ip6cp->ip6c_icmp6->icmp6_type,
ip6cp->ip6c_icmp6->icmp6_code,
(uint16_t)ntohl(ip6cp->ip6c_icmp6->icmp6_mtu));
} else {
if ((stcb == NULL) && (inp != NULL)) {
/* reduce inp's ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
}
}
}
/*
* this routine can probably be collasped into the one in sctp_userreq.c
* since they do the same thing and now we lookup with a sockaddr
*/
static int
sctp6_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in6 addrs[2];
struct sctp_inpcb *inp;
struct sctp_nets *net;
struct sctp_tcb *stcb;
int error;
uint32_t vrf_id;
vrf_id = SCTP_DEFAULT_VRFID;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
if (req->newlen != sizeof(addrs)) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
if (req->oldlen != sizeof(struct ucred)) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
stcb = sctp_findassociation_addr_sa(sin6tosa(&addrs[1]),
sin6tosa(&addrs[0]),
&inp, &net, 1, vrf_id);
if (stcb == NULL || inp == NULL || inp->sctp_socket == NULL) {
if ((inp != NULL) && (stcb == NULL)) {
/* reduce ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
goto cred_can_cont;
}
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT);
error = ENOENT;
goto out;
}
SCTP_TCB_UNLOCK(stcb);
/*
* We use the write lock here, only since in the error leg we need
* it. If we used RLOCK, then we would have to
* wlock/decr/unlock/rlock. Which in theory could create a hole.
* Better to use higher wlock.
*/
SCTP_INP_WLOCK(inp);
cred_can_cont:
error = cr_canseesocket(req->td->td_ucred, inp->sctp_socket);
if (error) {
SCTP_INP_WUNLOCK(inp);
goto out;
}
cru2x(inp->sctp_socket->so_cred, &xuc);
SCTP_INP_WUNLOCK(inp);
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
out:
return (error);
}
SYSCTL_PROC(_net_inet6_sctp6, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW,
0, 0,
sctp6_getcred, "S,ucred", "Get the ucred of a SCTP6 connection");
/* This is the same as the sctp_abort() could be made common */
static void
sctp6_abort(struct socket *so)
{
struct sctp_inpcb *inp;
uint32_t flags;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return;
}
sctp_must_try_again:
flags = inp->sctp_flags;
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 17);
#endif
if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) &&
(atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 16);
#endif
sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT,
SCTP_CALLED_AFTER_CMPSET_OFCLOSE);
SOCK_LOCK(so);
SCTP_SB_CLEAR(so->so_snd);
/*
* same for the rcv ones, they are only here for the
* accounting/select.
*/
SCTP_SB_CLEAR(so->so_rcv);
/* Now null out the reference, we are completely detached. */
so->so_pcb = NULL;
SOCK_UNLOCK(so);
} else {
flags = inp->sctp_flags;
if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) {
goto sctp_must_try_again;
}
}
return;
}
static int
sctp6_attach(struct socket *so, int proto SCTP_UNUSED, struct thread *p SCTP_UNUSED)
{
struct in6pcb *inp6;
int error;
struct sctp_inpcb *inp;
uint32_t vrf_id = SCTP_DEFAULT_VRFID;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp != NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = SCTP_SORESERVE(so, SCTP_BASE_SYSCTL(sctp_sendspace), SCTP_BASE_SYSCTL(sctp_recvspace));
if (error)
return (error);
}
error = sctp_inpcb_alloc(so, vrf_id);
if (error)
return (error);
inp = (struct sctp_inpcb *)so->so_pcb;
SCTP_INP_WLOCK(inp);
inp->sctp_flags |= SCTP_PCB_FLAGS_BOUND_V6; /* I'm v6! */
inp6 = (struct in6pcb *)inp;
inp6->inp_vflag |= INP_IPV6;
inp6->in6p_hops = -1; /* use kernel default */
inp6->in6p_cksum = -1; /* just to be sure */
#ifdef INET
/*
* XXX: ugly!! IPv4 TTL initialization is necessary for an IPv6
* socket as well, because the socket may be bound to an IPv6
* wildcard address, which may match an IPv4-mapped IPv6 address.
*/
inp6->inp_ip_ttl = MODULE_GLOBAL(ip_defttl);
#endif
/*
* Hmm what about the IPSEC stuff that is missing here but in
* sctp_attach()?
*/
SCTP_INP_WUNLOCK(inp);
return (0);
}
static int
sctp6_bind(struct socket *so, struct sockaddr *addr, struct thread *p)
{
struct sctp_inpcb *inp;
struct in6pcb *inp6;
int error;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
if (addr) {
switch (addr->sa_family) {
#ifdef INET
case AF_INET:
if (addr->sa_len != sizeof(struct sockaddr_in)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
break;
#endif
#ifdef INET6
case AF_INET6:
if (addr->sa_len != sizeof(struct sockaddr_in6)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
break;
#endif
default:
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
}
inp6 = (struct in6pcb *)inp;
inp6->inp_vflag &= ~INP_IPV4;
inp6->inp_vflag |= INP_IPV6;
if ((addr != NULL) && (SCTP_IPV6_V6ONLY(inp6) == 0)) {
switch (addr->sa_family) {
#ifdef INET
case AF_INET:
/* binding v4 addr to v6 socket, so reset flags */
inp6->inp_vflag |= INP_IPV4;
inp6->inp_vflag &= ~INP_IPV6;
break;
#endif
#ifdef INET6
case AF_INET6:
{
struct sockaddr_in6 *sin6_p;
sin6_p = (struct sockaddr_in6 *)addr;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) {
inp6->inp_vflag |= INP_IPV4;
}
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, sin6_p);
inp6->inp_vflag |= INP_IPV4;
inp6->inp_vflag &= ~INP_IPV6;
error = sctp_inpcb_bind(so, (struct sockaddr *)&sin, NULL, p);
return (error);
}
#endif
break;
}
#endif
default:
break;
}
} else if (addr != NULL) {
struct sockaddr_in6 *sin6_p;
/* IPV6_V6ONLY socket */
#ifdef INET
if (addr->sa_family == AF_INET) {
/* can't bind v4 addr to v6 only socket! */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
#endif
sin6_p = (struct sockaddr_in6 *)addr;
if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
/* can't bind v4-mapped addrs either! */
/* NOTE: we don't support SIIT */
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
}
error = sctp_inpcb_bind(so, addr, NULL, p);
return (error);
}
static void
sctp6_close(struct socket *so)
{
sctp_close(so);
}
/* This could be made common with sctp_detach() since they are identical */
static
int
sctp6_disconnect(struct socket *so)
{
return (sctp_disconnect(so));
}
int
sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *p);
static int
sctp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *p)
{
struct sctp_inpcb *inp;
struct in6pcb *inp6;
#ifdef INET
struct sockaddr_in6 *sin6;
#endif /* INET */
/* No SPL needed since sctp_output does this */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
if (control) {
SCTP_RELEASE_PKT(control);
control = NULL;
}
SCTP_RELEASE_PKT(m);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
inp6 = (struct in6pcb *)inp;
/*
* For the TCP model we may get a NULL addr, if we are a connected
* socket thats ok.
*/
if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) &&
(addr == NULL)) {
goto connected_type;
}
if (addr == NULL) {
SCTP_RELEASE_PKT(m);
if (control) {
SCTP_RELEASE_PKT(control);
control = NULL;
}
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EDESTADDRREQ);
return (EDESTADDRREQ);
}
#ifdef INET
sin6 = (struct sockaddr_in6 *)addr;
if (SCTP_IPV6_V6ONLY(inp6)) {
/*
* if IPV6_V6ONLY flag, we discard datagrams destined to a
* v4 addr or v4-mapped addr
*/
if (addr->sa_family == AF_INET) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
}
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
struct sockaddr_in sin;
/* convert v4-mapped into v4 addr and send */
in6_sin6_2_sin(&sin, sin6);
return (sctp_sendm(so, flags, m, (struct sockaddr *)&sin, control, p));
}
#endif /* INET */
connected_type:
/* now what about control */
if (control) {
if (inp->control) {
SCTP_PRINTF("huh? control set?\n");
SCTP_RELEASE_PKT(inp->control);
inp->control = NULL;
}
inp->control = control;
}
/* Place the data */
if (inp->pkt) {
SCTP_BUF_NEXT(inp->pkt_last) = m;
inp->pkt_last = m;
} else {
inp->pkt_last = inp->pkt = m;
}
if (
/* FreeBSD and MacOSX uses a flag passed */
((flags & PRUS_MORETOCOME) == 0)
) {
/*
* note with the current version this code will only be used
* by OpenBSD, NetBSD and FreeBSD have methods for
* re-defining sosend() to use sctp_sosend(). One can
* optionaly switch back to this code (by changing back the
* defininitions but this is not advisable.
*/
int ret;
ret = sctp_output(inp, inp->pkt, addr, inp->control, p, flags);
inp->pkt = NULL;
inp->control = NULL;
return (ret);
} else {
return (0);
}
}
static int
sctp6_connect(struct socket *so, struct sockaddr *addr, struct thread *p)
{
uint32_t vrf_id;
int error = 0;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
#ifdef INET
struct in6pcb *inp6;
struct sockaddr_in6 *sin6;
union sctp_sockstore store;
#endif
#ifdef INET
inp6 = (struct in6pcb *)so->so_pcb;
#endif
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET);
return (ECONNRESET); /* I made the same as TCP since we are
* not setup? */
}
if (addr == NULL) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
switch (addr->sa_family) {
#ifdef INET
case AF_INET:
if (addr->sa_len != sizeof(struct sockaddr_in)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
break;
#endif
#ifdef INET6
case AF_INET6:
if (addr->sa_len != sizeof(struct sockaddr_in6)) {
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
break;
#endif
default:
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
vrf_id = inp->def_vrf_id;
SCTP_ASOC_CREATE_LOCK(inp);
SCTP_INP_RLOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) ==
SCTP_PCB_FLAGS_UNBOUND) {
/* Bind a ephemeral port */
SCTP_INP_RUNLOCK(inp);
error = sctp6_bind(so, NULL, p);
if (error) {
SCTP_ASOC_CREATE_UNLOCK(inp);
return (error);
}
SCTP_INP_RLOCK(inp);
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
SCTP_INP_RUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EADDRINUSE);
return (EADDRINUSE);
}
#ifdef INET
sin6 = (struct sockaddr_in6 *)addr;
if (SCTP_IPV6_V6ONLY(inp6)) {
/*
* if IPV6_V6ONLY flag, ignore connections destined to a v4
* addr or v4-mapped addr
*/
if (addr->sa_family == AF_INET) {
SCTP_INP_RUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
SCTP_INP_RUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
}
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/* convert v4-mapped into v4 addr */
in6_sin6_2_sin(&store.sin, sin6);
addr = &store.sa;
}
#endif /* INET */
/* Now do we connect? */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else {
SCTP_INP_RUNLOCK(inp);
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp, addr, NULL, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
if (stcb != NULL) {
/* Already have or am bring up an association */
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_TCB_UNLOCK(stcb);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EALREADY);
return (EALREADY);
}
/* We are GOOD to go */
stcb = sctp_aloc_assoc(inp, addr, &error, 0, vrf_id,
inp->sctp_ep.pre_open_stream_count,
inp->sctp_ep.port, p);
SCTP_ASOC_CREATE_UNLOCK(inp);
if (stcb == NULL) {
/* Gak! no memory */
return (error);
}
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED;
/* Set the connected flag so we can queue data */
soisconnecting(so);
}
stcb->asoc.state = SCTP_STATE_COOKIE_WAIT;
(void)SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
/* initialize authentication parameters for the assoc */
sctp_initialize_auth_params(inp, stcb);
sctp_send_initiate(inp, stcb, SCTP_SO_LOCKED);
SCTP_TCB_UNLOCK(stcb);
return (error);
}
static int
sctp6_getaddr(struct socket *so, struct sockaddr **addr)
{
struct sockaddr_in6 *sin6;
struct sctp_inpcb *inp;
uint32_t vrf_id;
struct sctp_ifa *sctp_ifa;
int error;
/*
* Do the malloc first in case it blocks.
*/
SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof(*sin6));
if (sin6 == NULL)
return (ENOMEM);
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET);
return (ECONNRESET);
}
SCTP_INP_RLOCK(inp);
sin6->sin6_port = inp->sctp_lport;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* For the bound all case you get back 0 */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
struct sctp_tcb *stcb;
struct sockaddr_in6 *sin_a6;
struct sctp_nets *net;
int fnd;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT);
return (ENOENT);
}
fnd = 0;
sin_a6 = NULL;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a6 = (struct sockaddr_in6 *)&net->ro._l_addr;
if (sin_a6 == NULL)
/* this will make coverity happy */
continue;
if (sin_a6->sin6_family == AF_INET6) {
fnd = 1;
break;
}
}
if ((!fnd) || (sin_a6 == NULL)) {
/* punt */
SCTP_INP_RUNLOCK(inp);
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT);
return (ENOENT);
}
vrf_id = inp->def_vrf_id;
sctp_ifa = sctp_source_address_selection(inp, stcb, (sctp_route_t *)&net->ro, net, 0, vrf_id);
if (sctp_ifa) {
sin6->sin6_addr = sctp_ifa->address.sin6.sin6_addr;
}
} else {
/* For the bound all case you get back 0 */
memset(&sin6->sin6_addr, 0, sizeof(sin6->sin6_addr));
}
} else {
/* Take the first IPv6 address in the list */
struct sctp_laddr *laddr;
int fnd = 0;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa->address.sa.sa_family == AF_INET6) {
struct sockaddr_in6 *sin_a;
sin_a = &laddr->ifa->address.sin6;
sin6->sin6_addr = sin_a->sin6_addr;
fnd = 1;
break;
}
}
if (!fnd) {
SCTP_FREE_SONAME(sin6);
SCTP_INP_RUNLOCK(inp);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT);
return (ENOENT);
}
}
SCTP_INP_RUNLOCK(inp);
/* Scoping things for v6 */
if ((error = sa6_recoverscope(sin6)) != 0) {
SCTP_FREE_SONAME(sin6);
return (error);
}
(*addr) = (struct sockaddr *)sin6;
return (0);
}
static int
sctp6_peeraddr(struct socket *so, struct sockaddr **addr)
{
struct sockaddr_in6 *sin6;
int fnd;
struct sockaddr_in6 *sin_a6;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
int error;
/* Do the malloc first in case it blocks. */
SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6);
if (sin6 == NULL)
return (ENOMEM);
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
inp = (struct sctp_inpcb *)so->so_pcb;
if ((inp == NULL) ||
((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
/* UDP type and listeners will drop out here */
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOTCONN);
return (ENOTCONN);
}
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
if (stcb == NULL) {
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ECONNRESET);
return (ECONNRESET);
}
fnd = 0;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a6 = (struct sockaddr_in6 *)&net->ro._l_addr;
if (sin_a6->sin6_family == AF_INET6) {
fnd = 1;
sin6->sin6_port = stcb->rport;
sin6->sin6_addr = sin_a6->sin6_addr;
break;
}
}
SCTP_TCB_UNLOCK(stcb);
if (!fnd) {
/* No IPv4 address */
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, ENOENT);
return (ENOENT);
}
if ((error = sa6_recoverscope(sin6)) != 0) {
SCTP_FREE_SONAME(sin6);
SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, error);
return (error);
}
*addr = (struct sockaddr *)sin6;
return (0);
}
static int
sctp6_in6getaddr(struct socket *so, struct sockaddr **nam)
{
struct in6pcb *inp6 = sotoin6pcb(so);
int error;
if (inp6 == NULL) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
/* allow v6 addresses precedence */
error = sctp6_getaddr(so, nam);
#ifdef INET
if (error) {
struct sockaddr_in6 *sin6;
/* try v4 next if v6 failed */
error = sctp_ingetaddr(so, nam);
if (error) {
return (error);
}
SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6);
if (sin6 == NULL) {
SCTP_FREE_SONAME(*nam);
return (ENOMEM);
}
in6_sin_2_v4mapsin6((struct sockaddr_in *)*nam, sin6);
SCTP_FREE_SONAME(*nam);
*nam = (struct sockaddr *)sin6;
}
#endif
return (error);
}
static int
sctp6_getpeeraddr(struct socket *so, struct sockaddr **nam)
{
struct in6pcb *inp6 = sotoin6pcb(so);
int error;
if (inp6 == NULL) {
SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP6_USRREQ, EINVAL);
return (EINVAL);
}
/* allow v6 addresses precedence */
error = sctp6_peeraddr(so, nam);
#ifdef INET
if (error) {
struct sockaddr_in6 *sin6;
/* try v4 next if v6 failed */
error = sctp_peeraddr(so, nam);
if (error) {
return (error);
}
SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6);
if (sin6 == NULL) {
SCTP_FREE_SONAME(*nam);
return (ENOMEM);
}
in6_sin_2_v4mapsin6((struct sockaddr_in *)*nam, sin6);
SCTP_FREE_SONAME(*nam);
*nam = (struct sockaddr *)sin6;
}
#endif
return (error);
}
struct pr_usrreqs sctp6_usrreqs = {
.pru_abort = sctp6_abort,
.pru_accept = sctp_accept,
.pru_attach = sctp6_attach,
.pru_bind = sctp6_bind,
.pru_connect = sctp6_connect,
.pru_control = in6_control,
.pru_close = sctp6_close,
.pru_detach = sctp6_close,
.pru_sopoll = sopoll_generic,
.pru_flush = sctp_flush,
.pru_disconnect = sctp6_disconnect,
.pru_listen = sctp_listen,
.pru_peeraddr = sctp6_getpeeraddr,
.pru_send = sctp6_send,
.pru_shutdown = sctp_shutdown,
.pru_sockaddr = sctp6_in6getaddr,
.pru_sosend = sctp_sosend,
.pru_soreceive = sctp_soreceive
};
#endif