a7c4450528
Sponsored by: Dell EMC Isilon
1782 lines
45 KiB
C
1782 lines
45 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Cryptographic Subsystem.
|
|
*
|
|
* This code is derived from the Openbsd Cryptographic Framework (OCF)
|
|
* that has the copyright shown below. Very little of the original
|
|
* code remains.
|
|
*/
|
|
|
|
/*-
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#define CRYPTO_TIMING /* enable timing support */
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <crypto/intake.h>
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform.h> /* XXX for M_XDATA */
|
|
|
|
#include <sys/kobj.h>
|
|
#include <sys/bus.h>
|
|
#include "cryptodev_if.h"
|
|
|
|
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
|
|
#include <machine/pcb.h>
|
|
#endif
|
|
|
|
SDT_PROVIDER_DEFINE(opencrypto);
|
|
|
|
/*
|
|
* Crypto drivers register themselves by allocating a slot in the
|
|
* crypto_drivers table with crypto_get_driverid() and then registering
|
|
* each algorithm they support with crypto_register() and crypto_kregister().
|
|
*/
|
|
static struct mtx crypto_drivers_mtx; /* lock on driver table */
|
|
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
|
|
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
|
|
#define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
|
|
|
|
/*
|
|
* Crypto device/driver capabilities structure.
|
|
*
|
|
* Synchronization:
|
|
* (d) - protected by CRYPTO_DRIVER_LOCK()
|
|
* (q) - protected by CRYPTO_Q_LOCK()
|
|
* Not tagged fields are read-only.
|
|
*/
|
|
struct cryptocap {
|
|
device_t cc_dev; /* (d) device/driver */
|
|
u_int32_t cc_sessions; /* (d) # of sessions */
|
|
u_int32_t cc_koperations; /* (d) # os asym operations */
|
|
/*
|
|
* Largest possible operator length (in bits) for each type of
|
|
* encryption algorithm. XXX not used
|
|
*/
|
|
u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
|
|
u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
|
|
u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
|
|
|
|
int cc_flags; /* (d) flags */
|
|
#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
|
|
int cc_qblocked; /* (q) symmetric q blocked */
|
|
int cc_kqblocked; /* (q) asymmetric q blocked */
|
|
};
|
|
static struct cryptocap *crypto_drivers = NULL;
|
|
static int crypto_drivers_num = 0;
|
|
|
|
/*
|
|
* There are two queues for crypto requests; one for symmetric (e.g.
|
|
* cipher) operations and one for asymmetric (e.g. MOD)operations.
|
|
* A single mutex is used to lock access to both queues. We could
|
|
* have one per-queue but having one simplifies handling of block/unblock
|
|
* operations.
|
|
*/
|
|
static int crp_sleep = 0;
|
|
static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
|
|
static TAILQ_HEAD(,cryptkop) crp_kq;
|
|
static struct mtx crypto_q_mtx;
|
|
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
|
|
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
|
|
|
|
/*
|
|
* Taskqueue used to dispatch the crypto requests
|
|
* that have the CRYPTO_F_ASYNC flag
|
|
*/
|
|
static struct taskqueue *crypto_tq;
|
|
|
|
/*
|
|
* Crypto seq numbers are operated on with modular arithmetic
|
|
*/
|
|
#define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
|
|
|
|
struct crypto_ret_worker {
|
|
struct mtx crypto_ret_mtx;
|
|
|
|
TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
|
|
TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
|
|
TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */
|
|
|
|
u_int32_t reorder_ops; /* total ordered sym jobs received */
|
|
u_int32_t reorder_cur_seq; /* current sym job dispatched */
|
|
|
|
struct proc *cryptoretproc;
|
|
};
|
|
static struct crypto_ret_worker *crypto_ret_workers = NULL;
|
|
|
|
#define CRYPTO_RETW(i) (&crypto_ret_workers[i])
|
|
#define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
|
|
#define FOREACH_CRYPTO_RETW(w) \
|
|
for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
|
|
|
|
#define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
|
|
#define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
|
|
#define CRYPTO_RETW_EMPTY(w) \
|
|
(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
|
|
|
|
static int crypto_workers_num = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
|
|
&crypto_workers_num, 0,
|
|
"Number of crypto workers used to dispatch crypto jobs");
|
|
|
|
static uma_zone_t cryptop_zone;
|
|
static uma_zone_t cryptodesc_zone;
|
|
|
|
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
|
|
SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
|
|
&crypto_userasymcrypto, 0,
|
|
"Enable/disable user-mode access to asymmetric crypto support");
|
|
int crypto_devallowsoft = 0; /* only use hardware crypto */
|
|
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
|
|
&crypto_devallowsoft, 0,
|
|
"Enable/disable use of software crypto by /dev/crypto");
|
|
|
|
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
|
|
|
|
static void crypto_proc(void);
|
|
static struct proc *cryptoproc;
|
|
static void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
|
|
static void crypto_destroy(void);
|
|
static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
|
|
static int crypto_kinvoke(struct cryptkop *krp, int flags);
|
|
static void crypto_task_invoke(void *ctx, int pending);
|
|
static void crypto_batch_enqueue(struct cryptop *crp);
|
|
|
|
static struct cryptostats cryptostats;
|
|
SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
|
|
cryptostats, "Crypto system statistics");
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static int crypto_timing = 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
|
|
&crypto_timing, 0, "Enable/disable crypto timing support");
|
|
#endif
|
|
|
|
/* Try to avoid directly exposing the key buffer as a symbol */
|
|
static struct keybuf *keybuf;
|
|
|
|
static struct keybuf empty_keybuf = {
|
|
.kb_nents = 0
|
|
};
|
|
|
|
/* Obtain the key buffer from boot metadata */
|
|
static void
|
|
keybuf_init(void)
|
|
{
|
|
caddr_t kmdp;
|
|
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
|
|
keybuf = (struct keybuf *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_KEYBUF);
|
|
|
|
if (keybuf == NULL)
|
|
keybuf = &empty_keybuf;
|
|
}
|
|
|
|
/* It'd be nice if we could store these in some kind of secure memory... */
|
|
struct keybuf * get_keybuf(void) {
|
|
|
|
return (keybuf);
|
|
}
|
|
|
|
static int
|
|
crypto_init(void)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
int error;
|
|
|
|
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
|
|
MTX_DEF|MTX_QUIET);
|
|
|
|
TAILQ_INIT(&crp_q);
|
|
TAILQ_INIT(&crp_kq);
|
|
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
|
|
|
|
cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
|
|
0, 0, 0, 0,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
|
|
0, 0, 0, 0,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
|
|
printf("crypto_init: cannot setup crypto zones\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
|
|
crypto_drivers = malloc(crypto_drivers_num *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
|
|
if (crypto_drivers == NULL) {
|
|
printf("crypto_init: cannot setup crypto drivers\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
|
|
crypto_workers_num = mp_ncpus;
|
|
|
|
crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
|
|
taskqueue_thread_enqueue, &crypto_tq);
|
|
if (crypto_tq == NULL) {
|
|
printf("crypto init: cannot setup crypto taskqueue\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
|
|
"crypto");
|
|
|
|
error = kproc_create((void (*)(void *)) crypto_proc, NULL,
|
|
&cryptoproc, 0, 0, "crypto");
|
|
if (error) {
|
|
printf("crypto_init: cannot start crypto thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
|
|
crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (crypto_ret_workers == NULL) {
|
|
error = ENOMEM;
|
|
printf("crypto_init: cannot allocate ret workers\n");
|
|
goto bad;
|
|
}
|
|
|
|
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
|
|
TAILQ_INIT(&ret_worker->crp_ret_q);
|
|
TAILQ_INIT(&ret_worker->crp_ret_kq);
|
|
|
|
ret_worker->reorder_ops = 0;
|
|
ret_worker->reorder_cur_seq = 0;
|
|
|
|
mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
|
|
|
|
error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
|
|
&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
|
|
if (error) {
|
|
printf("crypto_init: cannot start cryptoret thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
keybuf_init();
|
|
|
|
return 0;
|
|
bad:
|
|
crypto_destroy();
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Signal a crypto thread to terminate. We use the driver
|
|
* table lock to synchronize the sleep/wakeups so that we
|
|
* are sure the threads have terminated before we release
|
|
* the data structures they use. See crypto_finis below
|
|
* for the other half of this song-and-dance.
|
|
*/
|
|
static void
|
|
crypto_terminate(struct proc **pp, void *q)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
|
|
p = *pp;
|
|
*pp = NULL;
|
|
if (p) {
|
|
wakeup_one(q);
|
|
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
|
|
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
|
|
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
|
|
PROC_UNLOCK(p);
|
|
CRYPTO_DRIVER_LOCK();
|
|
}
|
|
}
|
|
|
|
static void
|
|
crypto_destroy(void)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
/*
|
|
* Terminate any crypto threads.
|
|
*/
|
|
if (crypto_tq != NULL)
|
|
taskqueue_drain_all(crypto_tq);
|
|
CRYPTO_DRIVER_LOCK();
|
|
crypto_terminate(&cryptoproc, &crp_q);
|
|
FOREACH_CRYPTO_RETW(ret_worker)
|
|
crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
/* XXX flush queues??? */
|
|
|
|
/*
|
|
* Reclaim dynamically allocated resources.
|
|
*/
|
|
if (crypto_drivers != NULL)
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
|
|
if (cryptodesc_zone != NULL)
|
|
uma_zdestroy(cryptodesc_zone);
|
|
if (cryptop_zone != NULL)
|
|
uma_zdestroy(cryptop_zone);
|
|
mtx_destroy(&crypto_q_mtx);
|
|
FOREACH_CRYPTO_RETW(ret_worker)
|
|
mtx_destroy(&ret_worker->crypto_ret_mtx);
|
|
free(crypto_ret_workers, M_CRYPTO_DATA);
|
|
if (crypto_tq != NULL)
|
|
taskqueue_free(crypto_tq);
|
|
mtx_destroy(&crypto_drivers_mtx);
|
|
}
|
|
|
|
static struct cryptocap *
|
|
crypto_checkdriver(u_int32_t hid)
|
|
{
|
|
if (crypto_drivers == NULL)
|
|
return NULL;
|
|
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
|
|
}
|
|
|
|
/*
|
|
* Compare a driver's list of supported algorithms against another
|
|
* list; return non-zero if all algorithms are supported.
|
|
*/
|
|
static int
|
|
driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
|
|
{
|
|
const struct cryptoini *cr;
|
|
|
|
/* See if all the algorithms are supported. */
|
|
for (cr = cri; cr; cr = cr->cri_next)
|
|
if (cap->cc_alg[cr->cri_alg] == 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Select a driver for a new session that supports the specified
|
|
* algorithms and, optionally, is constrained according to the flags.
|
|
* The algorithm we use here is pretty stupid; just use the
|
|
* first driver that supports all the algorithms we need. If there
|
|
* are multiple drivers we choose the driver with the fewest active
|
|
* sessions. We prefer hardware-backed drivers to software ones.
|
|
*
|
|
* XXX We need more smarts here (in real life too, but that's
|
|
* XXX another story altogether).
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_select_driver(const struct cryptoini *cri, int flags)
|
|
{
|
|
struct cryptocap *cap, *best;
|
|
int match, hid;
|
|
|
|
CRYPTO_DRIVER_ASSERT();
|
|
|
|
/*
|
|
* Look first for hardware crypto devices if permitted.
|
|
*/
|
|
if (flags & CRYPTOCAP_F_HARDWARE)
|
|
match = CRYPTOCAP_F_HARDWARE;
|
|
else
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
best = NULL;
|
|
again:
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
cap = &crypto_drivers[hid];
|
|
/*
|
|
* If it's not initialized, is in the process of
|
|
* going away, or is not appropriate (hardware
|
|
* or software based on match), then skip.
|
|
*/
|
|
if (cap->cc_dev == NULL ||
|
|
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
|
|
(cap->cc_flags & match) == 0)
|
|
continue;
|
|
|
|
/* verify all the algorithms are supported. */
|
|
if (driver_suitable(cap, cri)) {
|
|
if (best == NULL ||
|
|
cap->cc_sessions < best->cc_sessions)
|
|
best = cap;
|
|
}
|
|
}
|
|
if (best == NULL && match == CRYPTOCAP_F_HARDWARE &&
|
|
(flags & CRYPTOCAP_F_SOFTWARE)) {
|
|
/* sort of an Algol 68-style for loop */
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
goto again;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
/*
|
|
* Create a new session. The crid argument specifies a crypto
|
|
* driver to use or constraints on a driver to select (hardware
|
|
* only, software only, either). Whatever driver is selected
|
|
* must be capable of the requested crypto algorithms.
|
|
*/
|
|
int
|
|
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
|
|
{
|
|
struct cryptocap *cap;
|
|
u_int32_t hid, lid;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
/*
|
|
* Use specified driver; verify it is capable.
|
|
*/
|
|
cap = crypto_checkdriver(crid);
|
|
if (cap != NULL && !driver_suitable(cap, cri))
|
|
cap = NULL;
|
|
} else {
|
|
/*
|
|
* No requested driver; select based on crid flags.
|
|
*/
|
|
cap = crypto_select_driver(cri, crid);
|
|
/*
|
|
* if NULL then can't do everything in one session.
|
|
* XXX Fix this. We need to inject a "virtual" session
|
|
* XXX layer right about here.
|
|
*/
|
|
}
|
|
if (cap != NULL) {
|
|
/* Call the driver initialization routine. */
|
|
hid = cap - crypto_drivers;
|
|
lid = hid; /* Pass the driver ID. */
|
|
err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
|
|
if (err == 0) {
|
|
(*sid) = (cap->cc_flags & 0xff000000)
|
|
| (hid & 0x00ffffff);
|
|
(*sid) <<= 32;
|
|
(*sid) |= (lid & 0xffffffff);
|
|
cap->cc_sessions++;
|
|
} else
|
|
CRYPTDEB("dev newsession failed: %d", err);
|
|
} else {
|
|
CRYPTDEB("no driver");
|
|
err = EOPNOTSUPP;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
crypto_remove(struct cryptocap *cap)
|
|
{
|
|
|
|
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
|
|
if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
|
|
bzero(cap, sizeof(*cap));
|
|
}
|
|
|
|
/*
|
|
* Delete an existing session (or a reserved session on an unregistered
|
|
* driver).
|
|
*/
|
|
int
|
|
crypto_freesession(u_int64_t sid)
|
|
{
|
|
struct cryptocap *cap;
|
|
u_int32_t hid;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
if (crypto_drivers == NULL) {
|
|
err = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* Determine two IDs. */
|
|
hid = CRYPTO_SESID2HID(sid);
|
|
|
|
if (hid >= crypto_drivers_num) {
|
|
err = ENOENT;
|
|
goto done;
|
|
}
|
|
cap = &crypto_drivers[hid];
|
|
|
|
if (cap->cc_sessions)
|
|
cap->cc_sessions--;
|
|
|
|
/* Call the driver cleanup routine, if available. */
|
|
err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
|
|
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
|
|
crypto_remove(cap);
|
|
|
|
done:
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Return an unused driver id. Used by drivers prior to registering
|
|
* support for the algorithms they handle.
|
|
*/
|
|
int32_t
|
|
crypto_get_driverid(device_t dev, int flags)
|
|
{
|
|
struct cryptocap *newdrv;
|
|
int i;
|
|
|
|
if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
printf("%s: no flags specified when registering driver\n",
|
|
device_get_nameunit(dev));
|
|
return -1;
|
|
}
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
for (i = 0; i < crypto_drivers_num; i++) {
|
|
if (crypto_drivers[i].cc_dev == NULL &&
|
|
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Out of entries, allocate some more. */
|
|
if (i == crypto_drivers_num) {
|
|
/* Be careful about wrap-around. */
|
|
if (2 * crypto_drivers_num <= crypto_drivers_num) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
printf("crypto: driver count wraparound!\n");
|
|
return -1;
|
|
}
|
|
|
|
newdrv = malloc(2 * crypto_drivers_num *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (newdrv == NULL) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
printf("crypto: no space to expand driver table!\n");
|
|
return -1;
|
|
}
|
|
|
|
bcopy(crypto_drivers, newdrv,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
|
|
crypto_drivers_num *= 2;
|
|
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
crypto_drivers = newdrv;
|
|
}
|
|
|
|
/* NB: state is zero'd on free */
|
|
crypto_drivers[i].cc_sessions = 1; /* Mark */
|
|
crypto_drivers[i].cc_dev = dev;
|
|
crypto_drivers[i].cc_flags = flags;
|
|
if (bootverbose)
|
|
printf("crypto: assign %s driver id %u, flags 0x%x\n",
|
|
device_get_nameunit(dev), i, flags);
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Lookup a driver by name. We match against the full device
|
|
* name and unit, and against just the name. The latter gives
|
|
* us a simple widlcarding by device name. On success return the
|
|
* driver/hardware identifier; otherwise return -1.
|
|
*/
|
|
int
|
|
crypto_find_driver(const char *match)
|
|
{
|
|
int i, len = strlen(match);
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (i = 0; i < crypto_drivers_num; i++) {
|
|
device_t dev = crypto_drivers[i].cc_dev;
|
|
if (dev == NULL ||
|
|
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
|
|
continue;
|
|
if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
|
|
strncmp(match, device_get_name(dev), len) == 0)
|
|
break;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return i < crypto_drivers_num ? i : -1;
|
|
}
|
|
|
|
/*
|
|
* Return the device_t for the specified driver or NULL
|
|
* if the driver identifier is invalid.
|
|
*/
|
|
device_t
|
|
crypto_find_device_byhid(int hid)
|
|
{
|
|
struct cryptocap *cap = crypto_checkdriver(hid);
|
|
return cap != NULL ? cap->cc_dev : NULL;
|
|
}
|
|
|
|
/*
|
|
* Return the device/driver capabilities.
|
|
*/
|
|
int
|
|
crypto_getcaps(int hid)
|
|
{
|
|
struct cryptocap *cap = crypto_checkdriver(hid);
|
|
return cap != NULL ? cap->cc_flags : 0;
|
|
}
|
|
|
|
/*
|
|
* Register support for a key-related algorithm. This routine
|
|
* is called once for each algorithm supported a driver.
|
|
*/
|
|
int
|
|
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
if (bootverbose)
|
|
printf("crypto: %s registers key alg %u flags %u\n"
|
|
, device_get_nameunit(cap->cc_dev)
|
|
, kalg
|
|
, flags
|
|
);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Register support for a non-key-related algorithm. This routine
|
|
* is called once for each such algorithm supported by a driver.
|
|
*/
|
|
int
|
|
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
|
|
u_int32_t flags)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
/* NB: algorithms are in the range [1..max] */
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
cap->cc_max_op_len[alg] = maxoplen;
|
|
if (bootverbose)
|
|
printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
|
|
, device_get_nameunit(cap->cc_dev)
|
|
, alg
|
|
, flags
|
|
, maxoplen
|
|
);
|
|
cap->cc_sessions = 0; /* Unmark */
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
driver_finis(struct cryptocap *cap)
|
|
{
|
|
u_int32_t ses, kops;
|
|
|
|
CRYPTO_DRIVER_ASSERT();
|
|
|
|
ses = cap->cc_sessions;
|
|
kops = cap->cc_koperations;
|
|
bzero(cap, sizeof(*cap));
|
|
if (ses != 0 || kops != 0) {
|
|
/*
|
|
* If there are pending sessions,
|
|
* just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
cap->cc_koperations = kops;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto driver. If there are pending sessions using it,
|
|
* leave enough information around so that subsequent calls using those
|
|
* sessions will correctly detect the driver has been unregistered and
|
|
* reroute requests.
|
|
*/
|
|
int
|
|
crypto_unregister(u_int32_t driverid, int alg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int i, err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
|
|
cap->cc_alg[alg] != 0) {
|
|
cap->cc_alg[alg] = 0;
|
|
cap->cc_max_op_len[alg] = 0;
|
|
|
|
/* Was this the last algorithm ? */
|
|
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
|
|
if (cap->cc_alg[i] != 0)
|
|
break;
|
|
|
|
if (i == CRYPTO_ALGORITHM_MAX + 1)
|
|
driver_finis(cap);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister all algorithms associated with a crypto driver.
|
|
* If there are pending sessions using it, leave enough information
|
|
* around so that subsequent calls using those sessions will
|
|
* correctly detect the driver has been unregistered and reroute
|
|
* requests.
|
|
*/
|
|
int
|
|
crypto_unregister_all(u_int32_t driverid)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
driver_finis(cap);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Clear blockage on a driver. The what parameter indicates whether
|
|
* the driver is now ready for cryptop's and/or cryptokop's.
|
|
*/
|
|
int
|
|
crypto_unblock(u_int32_t driverid, int what)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
if (what & CRYPTO_SYMQ)
|
|
cap->cc_qblocked = 0;
|
|
if (what & CRYPTO_ASYMQ)
|
|
cap->cc_kqblocked = 0;
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Add a crypto request to a queue, to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_dispatch(struct cryptop *crp)
|
|
{
|
|
struct cryptocap *cap;
|
|
u_int32_t hid;
|
|
int result;
|
|
|
|
cryptostats.cs_ops++;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
binuptime(&crp->crp_tstamp);
|
|
#endif
|
|
|
|
crp->crp_retw_id = crp->crp_sid % crypto_workers_num;
|
|
|
|
if (CRYPTOP_ASYNC(crp)) {
|
|
if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
crp->crp_seq = ret_worker->reorder_ops++;
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
|
|
TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
|
|
taskqueue_enqueue(crypto_tq, &crp->crp_task);
|
|
return (0);
|
|
}
|
|
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
|
|
hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
|
|
/*
|
|
* Caller marked the request to be processed
|
|
* immediately; dispatch it directly to the
|
|
* driver unless the driver is currently blocked.
|
|
*/
|
|
cap = crypto_checkdriver(hid);
|
|
/* Driver cannot disappeared when there is an active session. */
|
|
KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
|
|
if (!cap->cc_qblocked) {
|
|
result = crypto_invoke(cap, crp, 0);
|
|
if (result != ERESTART)
|
|
return (result);
|
|
/*
|
|
* The driver ran out of resources, put the request on
|
|
* the queue.
|
|
*/
|
|
}
|
|
}
|
|
crypto_batch_enqueue(crp);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
crypto_batch_enqueue(struct cryptop *crp)
|
|
{
|
|
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
CRYPTO_Q_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Add an asymetric crypto request to a queue,
|
|
* to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_kdispatch(struct cryptkop *krp)
|
|
{
|
|
int error;
|
|
|
|
cryptostats.cs_kops++;
|
|
|
|
error = crypto_kinvoke(krp, krp->krp_crid);
|
|
if (error == ERESTART) {
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
CRYPTO_Q_UNLOCK();
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Verify a driver is suitable for the specified operation.
|
|
*/
|
|
static __inline int
|
|
kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
|
|
{
|
|
return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
|
|
}
|
|
|
|
/*
|
|
* Select a driver for an asym operation. The driver must
|
|
* support the necessary algorithm. The caller can constrain
|
|
* which device is selected with the flags parameter. The
|
|
* algorithm we use here is pretty stupid; just use the first
|
|
* driver that supports the algorithms we need. If there are
|
|
* multiple suitable drivers we choose the driver with the
|
|
* fewest active operations. We prefer hardware-backed
|
|
* drivers to software ones when either may be used.
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_select_kdriver(const struct cryptkop *krp, int flags)
|
|
{
|
|
struct cryptocap *cap, *best;
|
|
int match, hid;
|
|
|
|
CRYPTO_DRIVER_ASSERT();
|
|
|
|
/*
|
|
* Look first for hardware crypto devices if permitted.
|
|
*/
|
|
if (flags & CRYPTOCAP_F_HARDWARE)
|
|
match = CRYPTOCAP_F_HARDWARE;
|
|
else
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
best = NULL;
|
|
again:
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
cap = &crypto_drivers[hid];
|
|
/*
|
|
* If it's not initialized, is in the process of
|
|
* going away, or is not appropriate (hardware
|
|
* or software based on match), then skip.
|
|
*/
|
|
if (cap->cc_dev == NULL ||
|
|
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
|
|
(cap->cc_flags & match) == 0)
|
|
continue;
|
|
|
|
/* verify all the algorithms are supported. */
|
|
if (kdriver_suitable(cap, krp)) {
|
|
if (best == NULL ||
|
|
cap->cc_koperations < best->cc_koperations)
|
|
best = cap;
|
|
}
|
|
}
|
|
if (best != NULL)
|
|
return best;
|
|
if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
|
|
/* sort of an Algol 68-style for loop */
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
goto again;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
/*
|
|
* Dispatch an asymmetric crypto request.
|
|
*/
|
|
static int
|
|
crypto_kinvoke(struct cryptkop *krp, int crid)
|
|
{
|
|
struct cryptocap *cap = NULL;
|
|
int error;
|
|
|
|
KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
|
|
KASSERT(krp->krp_callback != NULL,
|
|
("%s: krp->crp_callback == NULL", __func__));
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
cap = crypto_checkdriver(crid);
|
|
if (cap != NULL) {
|
|
/*
|
|
* Driver present, it must support the necessary
|
|
* algorithm and, if s/w drivers are excluded,
|
|
* it must be registered as hardware-backed.
|
|
*/
|
|
if (!kdriver_suitable(cap, krp) ||
|
|
(!crypto_devallowsoft &&
|
|
(cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
|
|
cap = NULL;
|
|
}
|
|
} else {
|
|
/*
|
|
* No requested driver; select based on crid flags.
|
|
*/
|
|
if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
|
|
crid &= ~CRYPTOCAP_F_SOFTWARE;
|
|
cap = crypto_select_kdriver(krp, crid);
|
|
}
|
|
if (cap != NULL && !cap->cc_kqblocked) {
|
|
krp->krp_hid = cap - crypto_drivers;
|
|
cap->cc_koperations++;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
|
|
CRYPTO_DRIVER_LOCK();
|
|
if (error == ERESTART) {
|
|
cap->cc_koperations--;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (error);
|
|
}
|
|
} else {
|
|
/*
|
|
* NB: cap is !NULL if device is blocked; in
|
|
* that case return ERESTART so the operation
|
|
* is resubmitted if possible.
|
|
*/
|
|
error = (cap == NULL) ? ENODEV : ERESTART;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
if (error) {
|
|
krp->krp_status = error;
|
|
crypto_kdone(krp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static void
|
|
crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
|
|
{
|
|
struct bintime now, delta;
|
|
struct timespec t;
|
|
uint64_t u;
|
|
|
|
binuptime(&now);
|
|
u = now.frac;
|
|
delta.frac = now.frac - bt->frac;
|
|
delta.sec = now.sec - bt->sec;
|
|
if (u < delta.frac)
|
|
delta.sec--;
|
|
bintime2timespec(&delta, &t);
|
|
timespecadd(&ts->acc, &t);
|
|
if (timespeccmp(&t, &ts->min, <))
|
|
ts->min = t;
|
|
if (timespeccmp(&t, &ts->max, >))
|
|
ts->max = t;
|
|
ts->count++;
|
|
|
|
*bt = now;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
crypto_task_invoke(void *ctx, int pending)
|
|
{
|
|
struct cryptocap *cap;
|
|
struct cryptop *crp;
|
|
int hid, result;
|
|
|
|
crp = (struct cryptop *)ctx;
|
|
|
|
hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
cap = crypto_checkdriver(hid);
|
|
|
|
result = crypto_invoke(cap, crp, 0);
|
|
if (result == ERESTART)
|
|
crypto_batch_enqueue(crp);
|
|
}
|
|
|
|
/*
|
|
* Dispatch a crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
|
|
{
|
|
|
|
KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
|
|
KASSERT(crp->crp_callback != NULL,
|
|
("%s: crp->crp_callback == NULL", __func__));
|
|
KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
|
|
#endif
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
|
|
struct cryptodesc *crd;
|
|
u_int64_t nid;
|
|
|
|
/*
|
|
* Driver has unregistered; migrate the session and return
|
|
* an error to the caller so they'll resubmit the op.
|
|
*
|
|
* XXX: What if there are more already queued requests for this
|
|
* session?
|
|
*/
|
|
crypto_freesession(crp->crp_sid);
|
|
|
|
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
|
|
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
|
|
|
|
/* XXX propagate flags from initial session? */
|
|
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
|
|
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
|
|
crp->crp_sid = nid;
|
|
|
|
crp->crp_etype = EAGAIN;
|
|
crypto_done(crp);
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* Invoke the driver to process the request.
|
|
*/
|
|
return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a set of crypto descriptors.
|
|
*/
|
|
void
|
|
crypto_freereq(struct cryptop *crp)
|
|
{
|
|
struct cryptodesc *crd;
|
|
|
|
if (crp == NULL)
|
|
return;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
struct cryptop *crp2;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_FOREACH(crp2, &crp_q, crp_next) {
|
|
KASSERT(crp2 != crp,
|
|
("Freeing cryptop from the crypto queue (%p).",
|
|
crp));
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
|
|
KASSERT(crp2 != crp,
|
|
("Freeing cryptop from the return queue (%p).",
|
|
crp));
|
|
}
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
while ((crd = crp->crp_desc) != NULL) {
|
|
crp->crp_desc = crd->crd_next;
|
|
uma_zfree(cryptodesc_zone, crd);
|
|
}
|
|
uma_zfree(cryptop_zone, crp);
|
|
}
|
|
|
|
/*
|
|
* Acquire a set of crypto descriptors.
|
|
*/
|
|
struct cryptop *
|
|
crypto_getreq(int num)
|
|
{
|
|
struct cryptodesc *crd;
|
|
struct cryptop *crp;
|
|
|
|
crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
|
|
if (crp != NULL) {
|
|
while (num--) {
|
|
crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
|
|
if (crd == NULL) {
|
|
crypto_freereq(crp);
|
|
return NULL;
|
|
}
|
|
|
|
crd->crd_next = crp->crp_desc;
|
|
crp->crp_desc = crd;
|
|
}
|
|
}
|
|
return crp;
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_done(struct cryptop *crp)
|
|
{
|
|
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
|
|
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
if (crp->crp_etype != 0)
|
|
cryptostats.cs_errs++;
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
|
|
#endif
|
|
/*
|
|
* CBIMM means unconditionally do the callback immediately;
|
|
* CBIFSYNC means do the callback immediately only if the
|
|
* operation was done synchronously. Both are used to avoid
|
|
* doing extraneous context switches; the latter is mostly
|
|
* used with the software crypto driver.
|
|
*/
|
|
if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
|
|
((crp->crp_flags & CRYPTO_F_CBIMM) ||
|
|
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
|
|
(CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC)))) {
|
|
/*
|
|
* Do the callback directly. This is ok when the
|
|
* callback routine does very little (e.g. the
|
|
* /dev/crypto callback method just does a wakeup).
|
|
*/
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crp->crp_callback(crp);
|
|
} else {
|
|
struct crypto_ret_worker *ret_worker;
|
|
bool wake;
|
|
|
|
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
|
|
wake = false;
|
|
|
|
/*
|
|
* Normal case; queue the callback for the thread.
|
|
*/
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
|
|
struct cryptop *tmp;
|
|
|
|
TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
|
|
cryptop_q, crp_next) {
|
|
if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
|
|
TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
|
|
tmp, crp, crp_next);
|
|
break;
|
|
}
|
|
}
|
|
if (tmp == NULL) {
|
|
TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
|
|
crp, crp_next);
|
|
}
|
|
|
|
if (crp->crp_seq == ret_worker->reorder_cur_seq)
|
|
wake = true;
|
|
}
|
|
else {
|
|
if (CRYPTO_RETW_EMPTY(ret_worker))
|
|
wake = true;
|
|
|
|
TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
|
|
}
|
|
|
|
if (wake)
|
|
wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_kdone(struct cryptkop *krp)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
struct cryptocap *cap;
|
|
|
|
if (krp->krp_status != 0)
|
|
cryptostats.cs_kerrs++;
|
|
CRYPTO_DRIVER_LOCK();
|
|
/* XXX: What if driver is loaded in the meantime? */
|
|
if (krp->krp_hid < crypto_drivers_num) {
|
|
cap = &crypto_drivers[krp->krp_hid];
|
|
KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
|
|
cap->cc_koperations--;
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
|
|
crypto_remove(cap);
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
ret_worker = CRYPTO_RETW(0);
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
if (CRYPTO_RETW_EMPTY(ret_worker))
|
|
wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
|
|
TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
|
|
int
|
|
crypto_getfeat(int *featp)
|
|
{
|
|
int hid, kalg, feat = 0;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
const struct cryptocap *cap = &crypto_drivers[hid];
|
|
|
|
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
!crypto_devallowsoft) {
|
|
continue;
|
|
}
|
|
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
|
|
if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
|
|
feat |= 1 << kalg;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
*featp = feat;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Terminate a thread at module unload. The process that
|
|
* initiated this is waiting for us to signal that we're gone;
|
|
* wake it up and exit. We use the driver table lock to insure
|
|
* we don't do the wakeup before they're waiting. There is no
|
|
* race here because the waiter sleeps on the proc lock for the
|
|
* thread so it gets notified at the right time because of an
|
|
* extra wakeup that's done in exit1().
|
|
*/
|
|
static void
|
|
crypto_finis(void *chan)
|
|
{
|
|
CRYPTO_DRIVER_LOCK();
|
|
wakeup_one(chan);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
kproc_exit(0);
|
|
}
|
|
|
|
/*
|
|
* Crypto thread, dispatches crypto requests.
|
|
*/
|
|
static void
|
|
crypto_proc(void)
|
|
{
|
|
struct cryptop *crp, *submit;
|
|
struct cryptkop *krp;
|
|
struct cryptocap *cap;
|
|
u_int32_t hid;
|
|
int result, hint;
|
|
|
|
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
|
|
fpu_kern_thread(FPU_KERN_NORMAL);
|
|
#endif
|
|
|
|
CRYPTO_Q_LOCK();
|
|
for (;;) {
|
|
/*
|
|
* Find the first element in the queue that can be
|
|
* processed and look-ahead to see if multiple ops
|
|
* are ready for the same driver.
|
|
*/
|
|
submit = NULL;
|
|
hint = 0;
|
|
TAILQ_FOREACH(crp, &crp_q, crp_next) {
|
|
hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
cap = crypto_checkdriver(hid);
|
|
/*
|
|
* Driver cannot disappeared when there is an active
|
|
* session.
|
|
*/
|
|
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
|
|
__func__, __LINE__));
|
|
if (cap == NULL || cap->cc_dev == NULL) {
|
|
/* Op needs to be migrated, process it. */
|
|
if (submit == NULL)
|
|
submit = crp;
|
|
break;
|
|
}
|
|
if (!cap->cc_qblocked) {
|
|
if (submit != NULL) {
|
|
/*
|
|
* We stop on finding another op,
|
|
* regardless whether its for the same
|
|
* driver or not. We could keep
|
|
* searching the queue but it might be
|
|
* better to just use a per-driver
|
|
* queue instead.
|
|
*/
|
|
if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
|
|
hint = CRYPTO_HINT_MORE;
|
|
break;
|
|
} else {
|
|
submit = crp;
|
|
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
|
|
break;
|
|
/* keep scanning for more are q'd */
|
|
}
|
|
}
|
|
}
|
|
if (submit != NULL) {
|
|
TAILQ_REMOVE(&crp_q, submit, crp_next);
|
|
hid = CRYPTO_SESID2HID(submit->crp_sid);
|
|
cap = crypto_checkdriver(hid);
|
|
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
|
|
__func__, __LINE__));
|
|
result = crypto_invoke(cap, submit, hint);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
}
|
|
}
|
|
|
|
/* As above, but for key ops */
|
|
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
|
|
cap = crypto_checkdriver(krp->krp_hid);
|
|
if (cap == NULL || cap->cc_dev == NULL) {
|
|
/*
|
|
* Operation needs to be migrated, invalidate
|
|
* the assigned device so it will reselect a
|
|
* new one below. Propagate the original
|
|
* crid selection flags if supplied.
|
|
*/
|
|
krp->krp_hid = krp->krp_crid &
|
|
(CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
|
|
if (krp->krp_hid == 0)
|
|
krp->krp_hid =
|
|
CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
|
|
break;
|
|
}
|
|
if (!cap->cc_kqblocked)
|
|
break;
|
|
}
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(&crp_kq, krp, krp_next);
|
|
result = crypto_kinvoke(krp, krp->krp_hid);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
}
|
|
|
|
if (submit == NULL && krp == NULL) {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more ops to process.
|
|
* This happens either by submission or by a driver
|
|
* becoming unblocked and notifying us through
|
|
* crypto_unblock. Note that when we wakeup we
|
|
* start processing each queue again from the
|
|
* front. It's not clear that it's important to
|
|
* preserve this ordering since ops may finish
|
|
* out of order if dispatched to different devices
|
|
* and some become blocked while others do not.
|
|
*/
|
|
crp_sleep = 1;
|
|
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
|
|
crp_sleep = 0;
|
|
if (cryptoproc == NULL)
|
|
break;
|
|
cryptostats.cs_intrs++;
|
|
}
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
crypto_finis(&crp_q);
|
|
}
|
|
|
|
/*
|
|
* Crypto returns thread, does callbacks for processed crypto requests.
|
|
* Callbacks are done here, rather than in the crypto drivers, because
|
|
* callbacks typically are expensive and would slow interrupt handling.
|
|
*/
|
|
static void
|
|
crypto_ret_proc(struct crypto_ret_worker *ret_worker)
|
|
{
|
|
struct cryptop *crpt;
|
|
struct cryptkop *krpt;
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
for (;;) {
|
|
/* Harvest return q's for completed ops */
|
|
crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
|
|
if (crpt != NULL) {
|
|
if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
|
|
TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
|
|
ret_worker->reorder_cur_seq++;
|
|
} else {
|
|
crpt = NULL;
|
|
}
|
|
}
|
|
|
|
if (crpt == NULL) {
|
|
crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
|
|
if (crpt != NULL)
|
|
TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
|
|
}
|
|
|
|
krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
|
|
if (krpt != NULL)
|
|
TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
|
|
|
|
if (crpt != NULL || krpt != NULL) {
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
/*
|
|
* Run callbacks unlocked.
|
|
*/
|
|
if (crpt != NULL) {
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crpt->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crpt->crp_callback(crpt);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crpt->crp_callback(crpt);
|
|
}
|
|
if (krpt != NULL)
|
|
krpt->krp_callback(krpt);
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
} else {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more returns to process.
|
|
*/
|
|
msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
|
|
"crypto_ret_wait", 0);
|
|
if (ret_worker->cryptoretproc == NULL)
|
|
break;
|
|
cryptostats.cs_rets++;
|
|
}
|
|
}
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
|
|
crypto_finis(&ret_worker->crp_ret_q);
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_show_drivers(void)
|
|
{
|
|
int hid;
|
|
|
|
db_printf("%12s %4s %4s %8s %2s %2s\n"
|
|
, "Device"
|
|
, "Ses"
|
|
, "Kops"
|
|
, "Flags"
|
|
, "QB"
|
|
, "KB"
|
|
);
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
const struct cryptocap *cap = &crypto_drivers[hid];
|
|
if (cap->cc_dev == NULL)
|
|
continue;
|
|
db_printf("%-12s %4u %4u %08x %2u %2u\n"
|
|
, device_get_nameunit(cap->cc_dev)
|
|
, cap->cc_sessions
|
|
, cap->cc_koperations
|
|
, cap->cc_flags
|
|
, cap->cc_qblocked
|
|
, cap->cc_kqblocked
|
|
);
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(crypto, db_show_crypto)
|
|
{
|
|
struct cryptop *crp;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
db_show_drivers();
|
|
db_printf("\n");
|
|
|
|
db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
|
|
"HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
|
|
"Desc", "Callback");
|
|
TAILQ_FOREACH(crp, &crp_q, crp_next) {
|
|
db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
|
|
, (int) CRYPTO_SESID2HID(crp->crp_sid)
|
|
, (int) CRYPTO_SESID2CAPS(crp->crp_sid)
|
|
, crp->crp_ilen, crp->crp_olen
|
|
, crp->crp_etype
|
|
, crp->crp_flags
|
|
, crp->crp_desc
|
|
, crp->crp_callback
|
|
);
|
|
}
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
db_printf("\n%8s %4s %4s %4s %8s\n",
|
|
"ret_worker", "HID", "Etype", "Flags", "Callback");
|
|
if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
|
|
TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
|
|
db_printf("%8td %4u %4u %04x %8p\n"
|
|
, CRYPTO_RETW_ID(ret_worker)
|
|
, (int) CRYPTO_SESID2HID(crp->crp_sid)
|
|
, crp->crp_etype
|
|
, crp->crp_flags
|
|
, crp->crp_callback
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
|
|
{
|
|
struct cryptkop *krp;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
db_show_drivers();
|
|
db_printf("\n");
|
|
|
|
db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
|
|
"Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
|
|
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
|
|
db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
|
|
, krp->krp_op
|
|
, krp->krp_status
|
|
, krp->krp_iparams, krp->krp_oparams
|
|
, krp->krp_crid, krp->krp_hid
|
|
, krp->krp_callback
|
|
);
|
|
}
|
|
|
|
ret_worker = CRYPTO_RETW(0);
|
|
if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
|
|
db_printf("%4s %5s %8s %4s %8s\n",
|
|
"Op", "Status", "CRID", "HID", "Callback");
|
|
TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
|
|
db_printf("%4u %5u %08x %4u %8p\n"
|
|
, krp->krp_op
|
|
, krp->krp_status
|
|
, krp->krp_crid, krp->krp_hid
|
|
, krp->krp_callback
|
|
);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int crypto_modevent(module_t mod, int type, void *unused);
|
|
|
|
/*
|
|
* Initialization code, both for static and dynamic loading.
|
|
* Note this is not invoked with the usual MODULE_DECLARE
|
|
* mechanism but instead is listed as a dependency by the
|
|
* cryptosoft driver. This guarantees proper ordering of
|
|
* calls on module load/unload.
|
|
*/
|
|
int
|
|
crypto_modevent(module_t mod, int type, void *unused)
|
|
{
|
|
int error = EINVAL;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
error = crypto_init();
|
|
if (error == 0 && bootverbose)
|
|
printf("crypto: <crypto core>\n");
|
|
break;
|
|
case MOD_UNLOAD:
|
|
/*XXX disallow if active sessions */
|
|
error = 0;
|
|
crypto_destroy();
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
MODULE_VERSION(crypto, 1);
|
|
MODULE_DEPEND(crypto, zlib, 1, 1, 1);
|