freebsd-skq/sys/vm/vm_pager.c
John Dyson b18bfc3da7 This set of commits to the VM system does the following, and contain
contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>,
Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me:

	More usage of the TAILQ macros.  Additional minor fix to queue.h.
	Performance enhancements to the pageout daemon.
		Addition of a wait in the case that the pageout daemon
		has to run immediately.
		Slightly modify the pageout algorithm.
	Significant revamp of the pmap/fork code:
		1) PTE's and UPAGES's are NO LONGER in the process's map.
		2) PTE's and UPAGES's reside in their own objects.
		3) TOTAL elimination of recursive page table pagefaults.
		4) The page directory now resides in the PTE object.
		5) Implemented pmap_copy, thereby speeding up fork time.
		6) Changed the pv entries so that the head is a pointer
		   and not an entire entry.
		7) Significant cleanup of pmap_protect, and pmap_remove.
		8) Removed significant amounts of machine dependent
		   fork code from vm_glue.  Pushed much of that code into
		   the machine dependent pmap module.
		9) Support more completely the reuse of already zeroed
		   pages (Page table pages and page directories) as being
		   already zeroed.
	Performance and code cleanups in vm_map:
		1) Improved and simplified allocation of map entries.
		2) Improved vm_map_copy code.
		3) Corrected some minor problems in the simplify code.
	Implemented splvm (combo of splbio and splimp.)  The VM code now
		seldom uses splhigh.
	Improved the speed of and simplified kmem_malloc.
	Minor mod to vm_fault to avoid using pre-zeroed pages in the case
		of objects with backing objects along with the already
		existant condition of having a vnode.  (If there is a backing
		object, there will likely be a COW...  With a COW, it isn't
		necessary to start with a pre-zeroed page.)
	Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00

364 lines
8.9 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_pager.c 8.6 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_pager.c,v 1.22 1996/05/03 21:01:53 phk Exp $
*/
/*
* Paging space routine stubs. Emulates a matchmaker-like interface
* for builtin pagers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/ucred.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
extern struct pagerops defaultpagerops;
extern struct pagerops swappagerops;
extern struct pagerops vnodepagerops;
extern struct pagerops devicepagerops;
static struct pagerops *pagertab[] = {
&defaultpagerops, /* OBJT_DEFAULT */
&swappagerops, /* OBJT_SWAP */
&vnodepagerops, /* OBJT_VNODE */
&devicepagerops, /* OBJT_DEVICE */
};
static int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
/*
* Kernel address space for mapping pages.
* Used by pagers where KVAs are needed for IO.
*
* XXX needs to be large enough to support the number of pending async
* cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
* (MAXPHYS == 64k) if you want to get the most efficiency.
*/
#define PAGER_MAP_SIZE (8 * 1024 * 1024)
int pager_map_size = PAGER_MAP_SIZE;
vm_map_t pager_map;
static int bswneeded;
static vm_offset_t swapbkva; /* swap buffers kva */
void
vm_pager_init()
{
struct pagerops **pgops;
/*
* Initialize known pagers
*/
for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
if (pgops && ((*pgops)->pgo_init != NULL))
(*(*pgops)->pgo_init) ();
}
void
vm_pager_bufferinit()
{
struct buf *bp;
int i;
bp = swbuf;
/*
* Now set up swap and physical I/O buffer headers.
*/
for (i = 0; i < nswbuf - 1; i++, bp++) {
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
bp->b_rcred = bp->b_wcred = NOCRED;
bp->b_vnbufs.le_next = NOLIST;
}
bp->b_rcred = bp->b_wcred = NOCRED;
bp->b_vnbufs.le_next = NOLIST;
swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
if (!swapbkva)
panic("Not enough pager_map VM space for physical buffers");
}
/*
* Allocate an instance of a pager of the given type.
* Size, protection and offset parameters are passed in for pagers that
* need to perform page-level validation (e.g. the device pager).
*/
vm_object_t
vm_pager_allocate(type, handle, size, prot, off)
objtype_t type;
void *handle;
vm_size_t size;
vm_prot_t prot;
vm_ooffset_t off;
{
struct pagerops *ops;
ops = pagertab[type];
if (ops)
return ((*ops->pgo_alloc) (handle, size, prot, off));
return (NULL);
}
void
vm_pager_deallocate(object)
vm_object_t object;
{
(*pagertab[object->type]->pgo_dealloc) (object);
}
int
vm_pager_get_pages(object, m, count, reqpage)
vm_object_t object;
vm_page_t *m;
int count;
int reqpage;
{
return ((*pagertab[object->type]->pgo_getpages)(object, m, count, reqpage));
}
int
vm_pager_put_pages(object, m, count, sync, rtvals)
vm_object_t object;
vm_page_t *m;
int count;
boolean_t sync;
int *rtvals;
{
return ((*pagertab[object->type]->pgo_putpages)(object, m, count, sync, rtvals));
}
boolean_t
vm_pager_has_page(object, offset, before, after)
vm_object_t object;
vm_pindex_t offset;
int *before;
int *after;
{
return ((*pagertab[object->type]->pgo_haspage) (object, offset, before, after));
}
/*
* Called by pageout daemon before going back to sleep.
* Gives pagers a chance to clean up any completed async pageing operations.
*/
void
vm_pager_sync()
{
struct pagerops **pgops;
for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
if (pgops && ((*pgops)->pgo_sync != NULL))
(*(*pgops)->pgo_sync) ();
}
vm_offset_t
vm_pager_map_page(m)
vm_page_t m;
{
vm_offset_t kva;
kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
return (kva);
}
void
vm_pager_unmap_page(kva)
vm_offset_t kva;
{
pmap_kremove(kva);
kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
}
vm_object_t
vm_pager_object_lookup(pg_list, handle)
register struct pagerlst *pg_list;
void *handle;
{
register vm_object_t object;
for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
if (object->handle == handle)
return (object);
return (NULL);
}
/*
* This routine loses a reference to the object -
* thus a reference must be gained before calling.
*/
int
pager_cache(object, should_cache)
vm_object_t object;
boolean_t should_cache;
{
if (object == NULL)
return (KERN_INVALID_ARGUMENT);
if (should_cache)
object->flags |= OBJ_CANPERSIST;
else
object->flags &= ~OBJ_CANPERSIST;
vm_object_deallocate(object);
return (KERN_SUCCESS);
}
/*
* allocate a physical buffer
*/
struct buf *
getpbuf()
{
int s;
struct buf *bp;
s = splbio();
/* get a bp from the swap buffer header pool */
while ((bp = TAILQ_FIRST(&bswlist)) == NULL) {
bswneeded = 1;
tsleep(&bswneeded, PVM, "wswbuf", 0);
}
TAILQ_REMOVE(&bswlist, bp, b_freelist);
splx(s);
bzero(bp, sizeof *bp);
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
bp->b_vnbufs.le_next = NOLIST;
return bp;
}
/*
* allocate a physical buffer, if one is available
*/
struct buf *
trypbuf()
{
int s;
struct buf *bp;
s = splbio();
if ((bp = TAILQ_FIRST(&bswlist)) == NULL) {
splx(s);
return NULL;
}
TAILQ_REMOVE(&bswlist, bp, b_freelist);
splx(s);
bzero(bp, sizeof *bp);
bp->b_rcred = NOCRED;
bp->b_wcred = NOCRED;
bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
bp->b_vnbufs.le_next = NOLIST;
return bp;
}
/*
* release a physical buffer
*/
void
relpbuf(bp)
struct buf *bp;
{
int s;
s = splbio();
if (bp->b_rcred != NOCRED) {
crfree(bp->b_rcred);
bp->b_rcred = NOCRED;
}
if (bp->b_wcred != NOCRED) {
crfree(bp->b_wcred);
bp->b_wcred = NOCRED;
}
if (bp->b_vp)
pbrelvp(bp);
if (bp->b_flags & B_WANTED)
wakeup(bp);
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
if (bswneeded) {
bswneeded = 0;
wakeup(&bswneeded);
}
splx(s);
}