830e53a5a5
This can be used to group all threads belonging to a single logical entity under a common kernel process. I am planning to use the new interface for ZFS threads. MFC after: 4 weeks
876 lines
21 KiB
C
876 lines
21 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2000 Doug Rabson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/unistd.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
|
|
static void *taskqueue_giant_ih;
|
|
static void *taskqueue_ih;
|
|
static void taskqueue_fast_enqueue(void *);
|
|
static void taskqueue_swi_enqueue(void *);
|
|
static void taskqueue_swi_giant_enqueue(void *);
|
|
|
|
struct taskqueue_busy {
|
|
struct task *tb_running;
|
|
TAILQ_ENTRY(taskqueue_busy) tb_link;
|
|
};
|
|
|
|
struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
|
|
|
|
struct taskqueue {
|
|
STAILQ_HEAD(, task) tq_queue;
|
|
taskqueue_enqueue_fn tq_enqueue;
|
|
void *tq_context;
|
|
char *tq_name;
|
|
TAILQ_HEAD(, taskqueue_busy) tq_active;
|
|
struct mtx tq_mutex;
|
|
struct thread **tq_threads;
|
|
int tq_tcount;
|
|
int tq_spin;
|
|
int tq_flags;
|
|
int tq_callouts;
|
|
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
|
|
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
|
|
};
|
|
|
|
#define TQ_FLAGS_ACTIVE (1 << 0)
|
|
#define TQ_FLAGS_BLOCKED (1 << 1)
|
|
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
|
|
|
|
#define DT_CALLOUT_ARMED (1 << 0)
|
|
#define DT_DRAIN_IN_PROGRESS (1 << 1)
|
|
|
|
#define TQ_LOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_lock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_lock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
|
|
|
|
#define TQ_UNLOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_unlock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_unlock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
|
|
|
|
void
|
|
_timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
|
|
int priority, task_fn_t func, void *context)
|
|
{
|
|
|
|
TASK_INIT(&timeout_task->t, priority, func, context);
|
|
callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
|
|
CALLOUT_RETURNUNLOCKED);
|
|
timeout_task->q = queue;
|
|
timeout_task->f = 0;
|
|
}
|
|
|
|
static __inline int
|
|
TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
|
|
int t)
|
|
{
|
|
if (tq->tq_spin)
|
|
return (msleep_spin(p, m, wm, t));
|
|
return (msleep(p, m, pri, wm, t));
|
|
}
|
|
|
|
static struct taskqueue *
|
|
_taskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context,
|
|
int mtxflags, const char *mtxname __unused)
|
|
{
|
|
struct taskqueue *queue;
|
|
char *tq_name;
|
|
|
|
tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
|
|
if (tq_name == NULL)
|
|
return (NULL);
|
|
|
|
queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
|
|
if (queue == NULL) {
|
|
free(tq_name, M_TASKQUEUE);
|
|
return (NULL);
|
|
}
|
|
|
|
snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
|
|
|
|
STAILQ_INIT(&queue->tq_queue);
|
|
TAILQ_INIT(&queue->tq_active);
|
|
queue->tq_enqueue = enqueue;
|
|
queue->tq_context = context;
|
|
queue->tq_name = tq_name;
|
|
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
|
|
queue->tq_flags |= TQ_FLAGS_ACTIVE;
|
|
if (enqueue == taskqueue_fast_enqueue ||
|
|
enqueue == taskqueue_swi_enqueue ||
|
|
enqueue == taskqueue_swi_giant_enqueue ||
|
|
enqueue == taskqueue_thread_enqueue)
|
|
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
|
|
mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
|
|
|
|
return (queue);
|
|
}
|
|
|
|
struct taskqueue *
|
|
taskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
|
|
return _taskqueue_create(name, mflags, enqueue, context,
|
|
MTX_DEF, name);
|
|
}
|
|
|
|
void
|
|
taskqueue_set_callback(struct taskqueue *queue,
|
|
enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
|
|
void *context)
|
|
{
|
|
|
|
KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
|
|
(cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
|
|
("Callback type %d not valid, must be %d-%d", cb_type,
|
|
TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
|
|
KASSERT((queue->tq_callbacks[cb_type] == NULL),
|
|
("Re-initialization of taskqueue callback?"));
|
|
|
|
queue->tq_callbacks[cb_type] = callback;
|
|
queue->tq_cb_contexts[cb_type] = context;
|
|
}
|
|
|
|
/*
|
|
* Signal a taskqueue thread to terminate.
|
|
*/
|
|
static void
|
|
taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
|
|
{
|
|
|
|
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
|
|
wakeup(tq);
|
|
TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
taskqueue_free(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
|
|
taskqueue_terminate(queue->tq_threads, queue);
|
|
KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
|
|
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
|
|
mtx_destroy(&queue->tq_mutex);
|
|
free(queue->tq_threads, M_TASKQUEUE);
|
|
free(queue->tq_name, M_TASKQUEUE);
|
|
free(queue, M_TASKQUEUE);
|
|
}
|
|
|
|
static int
|
|
taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
|
|
{
|
|
struct task *ins;
|
|
struct task *prev;
|
|
|
|
KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
|
|
/*
|
|
* Count multiple enqueues.
|
|
*/
|
|
if (task->ta_pending) {
|
|
if (task->ta_pending < USHRT_MAX)
|
|
task->ta_pending++;
|
|
TQ_UNLOCK(queue);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Optimise the case when all tasks have the same priority.
|
|
*/
|
|
prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
|
|
if (!prev || prev->ta_priority >= task->ta_priority) {
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
|
|
} else {
|
|
prev = NULL;
|
|
for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
|
|
prev = ins, ins = STAILQ_NEXT(ins, ta_link))
|
|
if (ins->ta_priority < task->ta_priority)
|
|
break;
|
|
|
|
if (prev)
|
|
STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
|
|
else
|
|
STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
|
|
}
|
|
|
|
task->ta_pending = 1;
|
|
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
|
|
TQ_UNLOCK(queue);
|
|
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
|
|
queue->tq_enqueue(queue->tq_context);
|
|
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
|
|
TQ_UNLOCK(queue);
|
|
|
|
/* Return with lock released. */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue(struct taskqueue *queue, struct task *task)
|
|
{
|
|
int res;
|
|
|
|
TQ_LOCK(queue);
|
|
res = taskqueue_enqueue_locked(queue, task);
|
|
/* The lock is released inside. */
|
|
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
taskqueue_timeout_func(void *arg)
|
|
{
|
|
struct taskqueue *queue;
|
|
struct timeout_task *timeout_task;
|
|
|
|
timeout_task = arg;
|
|
queue = timeout_task->q;
|
|
KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
|
|
timeout_task->f &= ~DT_CALLOUT_ARMED;
|
|
queue->tq_callouts--;
|
|
taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
|
|
/* The lock is released inside. */
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
|
|
{
|
|
int res;
|
|
|
|
TQ_LOCK(queue);
|
|
KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
|
|
("Migrated queue"));
|
|
KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
|
|
timeout_task->q = queue;
|
|
res = timeout_task->t.ta_pending;
|
|
if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
|
|
/* Do nothing */
|
|
TQ_UNLOCK(queue);
|
|
res = -1;
|
|
} else if (sbt == 0) {
|
|
taskqueue_enqueue_locked(queue, &timeout_task->t);
|
|
/* The lock is released inside. */
|
|
} else {
|
|
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
|
|
res++;
|
|
} else {
|
|
queue->tq_callouts++;
|
|
timeout_task->f |= DT_CALLOUT_ARMED;
|
|
if (sbt < 0)
|
|
sbt = -sbt; /* Ignore overflow. */
|
|
}
|
|
if (sbt > 0) {
|
|
callout_reset_sbt(&timeout_task->c, sbt, pr,
|
|
taskqueue_timeout_func, timeout_task, flags);
|
|
}
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue_timeout(struct taskqueue *queue,
|
|
struct timeout_task *ttask, int ticks)
|
|
{
|
|
|
|
return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
|
|
0, 0));
|
|
}
|
|
|
|
static void
|
|
taskqueue_task_nop_fn(void *context, int pending)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Block until all currently queued tasks in this taskqueue
|
|
* have begun execution. Tasks queued during execution of
|
|
* this function are ignored.
|
|
*/
|
|
static int
|
|
taskqueue_drain_tq_queue(struct taskqueue *queue)
|
|
{
|
|
struct task t_barrier;
|
|
|
|
if (STAILQ_EMPTY(&queue->tq_queue))
|
|
return (0);
|
|
|
|
/*
|
|
* Enqueue our barrier after all current tasks, but with
|
|
* the highest priority so that newly queued tasks cannot
|
|
* pass it. Because of the high priority, we can not use
|
|
* taskqueue_enqueue_locked directly (which drops the lock
|
|
* anyway) so just insert it at tail while we have the
|
|
* queue lock.
|
|
*/
|
|
TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
|
|
t_barrier.ta_pending = 1;
|
|
|
|
/*
|
|
* Once the barrier has executed, all previously queued tasks
|
|
* have completed or are currently executing.
|
|
*/
|
|
while (t_barrier.ta_pending != 0)
|
|
TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Block until all currently executing tasks for this taskqueue
|
|
* complete. Tasks that begin execution during the execution
|
|
* of this function are ignored.
|
|
*/
|
|
static int
|
|
taskqueue_drain_tq_active(struct taskqueue *queue)
|
|
{
|
|
struct taskqueue_busy tb_marker, *tb_first;
|
|
|
|
if (TAILQ_EMPTY(&queue->tq_active))
|
|
return (0);
|
|
|
|
/* Block taskq_terminate().*/
|
|
queue->tq_callouts++;
|
|
|
|
/*
|
|
* Wait for all currently executing taskqueue threads
|
|
* to go idle.
|
|
*/
|
|
tb_marker.tb_running = TB_DRAIN_WAITER;
|
|
TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
|
|
while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
|
|
TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
|
|
TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
|
|
|
|
/*
|
|
* Wakeup any other drain waiter that happened to queue up
|
|
* without any intervening active thread.
|
|
*/
|
|
tb_first = TAILQ_FIRST(&queue->tq_active);
|
|
if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
|
|
wakeup(tb_first);
|
|
|
|
/* Release taskqueue_terminate(). */
|
|
queue->tq_callouts--;
|
|
if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
wakeup_one(queue->tq_threads);
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
taskqueue_block(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags |= TQ_FLAGS_BLOCKED;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_unblock(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
|
|
if (!STAILQ_EMPTY(&queue->tq_queue))
|
|
queue->tq_enqueue(queue->tq_context);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
taskqueue_run_locked(struct taskqueue *queue)
|
|
{
|
|
struct taskqueue_busy tb;
|
|
struct taskqueue_busy *tb_first;
|
|
struct task *task;
|
|
int pending;
|
|
|
|
KASSERT(queue != NULL, ("tq is NULL"));
|
|
TQ_ASSERT_LOCKED(queue);
|
|
tb.tb_running = NULL;
|
|
|
|
while (STAILQ_FIRST(&queue->tq_queue)) {
|
|
TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
|
|
|
|
/*
|
|
* Carefully remove the first task from the queue and
|
|
* zero its pending count.
|
|
*/
|
|
task = STAILQ_FIRST(&queue->tq_queue);
|
|
KASSERT(task != NULL, ("task is NULL"));
|
|
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
|
|
pending = task->ta_pending;
|
|
task->ta_pending = 0;
|
|
tb.tb_running = task;
|
|
TQ_UNLOCK(queue);
|
|
|
|
KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
|
|
task->ta_func(task->ta_context, pending);
|
|
|
|
TQ_LOCK(queue);
|
|
tb.tb_running = NULL;
|
|
wakeup(task);
|
|
|
|
TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
|
|
tb_first = TAILQ_FIRST(&queue->tq_active);
|
|
if (tb_first != NULL &&
|
|
tb_first->tb_running == TB_DRAIN_WAITER)
|
|
wakeup(tb_first);
|
|
}
|
|
}
|
|
|
|
void
|
|
taskqueue_run(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
taskqueue_run_locked(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static int
|
|
task_is_running(struct taskqueue *queue, struct task *task)
|
|
{
|
|
struct taskqueue_busy *tb;
|
|
|
|
TQ_ASSERT_LOCKED(queue);
|
|
TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if (tb->tb_running == task)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Only use this function in single threaded contexts. It returns
|
|
* non-zero if the given task is either pending or running. Else the
|
|
* task is idle and can be queued again or freed.
|
|
*/
|
|
int
|
|
taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
|
|
{
|
|
int retval;
|
|
|
|
TQ_LOCK(queue);
|
|
retval = task->ta_pending > 0 || task_is_running(queue, task);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
|
|
u_int *pendp)
|
|
{
|
|
|
|
if (task->ta_pending > 0)
|
|
STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
|
|
if (pendp != NULL)
|
|
*pendp = task->ta_pending;
|
|
task->ta_pending = 0;
|
|
return (task_is_running(queue, task) ? EBUSY : 0);
|
|
}
|
|
|
|
int
|
|
taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
|
|
{
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
error = taskqueue_cancel_locked(queue, task, pendp);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_cancel_timeout(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task, u_int *pendp)
|
|
{
|
|
u_int pending, pending1;
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
pending = !!(callout_stop(&timeout_task->c) > 0);
|
|
error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
|
|
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
|
|
timeout_task->f &= ~DT_CALLOUT_ARMED;
|
|
queue->tq_callouts--;
|
|
}
|
|
TQ_UNLOCK(queue);
|
|
|
|
if (pendp != NULL)
|
|
*pendp = pending + pending1;
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain(struct taskqueue *queue, struct task *task)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
while (task->ta_pending != 0 || task_is_running(queue, task))
|
|
TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain_all(struct taskqueue *queue)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
(void)taskqueue_drain_tq_queue(queue);
|
|
(void)taskqueue_drain_tq_active(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain_timeout(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task)
|
|
{
|
|
|
|
/*
|
|
* Set flag to prevent timer from re-starting during drain:
|
|
*/
|
|
TQ_LOCK(queue);
|
|
KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
|
|
("Drain already in progress"));
|
|
timeout_task->f |= DT_DRAIN_IN_PROGRESS;
|
|
TQ_UNLOCK(queue);
|
|
|
|
callout_drain(&timeout_task->c);
|
|
taskqueue_drain(queue, &timeout_task->t);
|
|
|
|
/*
|
|
* Clear flag to allow timer to re-start:
|
|
*/
|
|
TQ_LOCK(queue);
|
|
timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_quiesce(struct taskqueue *queue)
|
|
{
|
|
int ret;
|
|
|
|
TQ_LOCK(queue);
|
|
do {
|
|
ret = taskqueue_drain_tq_queue(queue);
|
|
if (ret == 0)
|
|
ret = taskqueue_drain_tq_active(queue);
|
|
} while (ret != 0);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_swi);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_giant_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_giant_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_giant_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_swi_giant);
|
|
}
|
|
|
|
static int
|
|
_taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, struct proc *p, const char *name, va_list ap)
|
|
{
|
|
char ktname[MAXCOMLEN + 1];
|
|
struct thread *td;
|
|
struct taskqueue *tq;
|
|
int i, error;
|
|
|
|
if (count <= 0)
|
|
return (EINVAL);
|
|
|
|
vsnprintf(ktname, sizeof(ktname), name, ap);
|
|
tq = *tqp;
|
|
|
|
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (tq->tq_threads == NULL) {
|
|
printf("%s: no memory for %s threads\n", __func__, ktname);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (count == 1)
|
|
error = kthread_add(taskqueue_thread_loop, tqp, p,
|
|
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
|
|
else
|
|
error = kthread_add(taskqueue_thread_loop, tqp, p,
|
|
&tq->tq_threads[i], RFSTOPPED, 0,
|
|
"%s_%d", ktname, i);
|
|
if (error) {
|
|
/* should be ok to continue, taskqueue_free will dtrt */
|
|
printf("%s: kthread_add(%s): error %d", __func__,
|
|
ktname, error);
|
|
tq->tq_threads[i] = NULL; /* paranoid */
|
|
} else
|
|
tq->tq_tcount++;
|
|
}
|
|
if (tq->tq_tcount == 0) {
|
|
free(tq->tq_threads, M_TASKQUEUE);
|
|
tq->tq_threads = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
if (tq->tq_threads[i] == NULL)
|
|
continue;
|
|
td = tq->tq_threads[i];
|
|
if (mask) {
|
|
error = cpuset_setthread(td->td_tid, mask);
|
|
/*
|
|
* Failing to pin is rarely an actual fatal error;
|
|
* it'll just affect performance.
|
|
*/
|
|
if (error)
|
|
printf("%s: curthread=%llu: can't pin; "
|
|
"error=%d\n",
|
|
__func__,
|
|
(unsigned long long) td->td_tid,
|
|
error);
|
|
}
|
|
thread_lock(td);
|
|
sched_prio(td, pri);
|
|
sched_add(td, SRQ_BORING);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
|
|
const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
|
|
struct proc *proc, const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
static inline void
|
|
taskqueue_run_callback(struct taskqueue *tq,
|
|
enum taskqueue_callback_type cb_type)
|
|
{
|
|
taskqueue_callback_fn tq_callback;
|
|
|
|
TQ_ASSERT_UNLOCKED(tq);
|
|
tq_callback = tq->tq_callbacks[cb_type];
|
|
if (tq_callback != NULL)
|
|
tq_callback(tq->tq_cb_contexts[cb_type]);
|
|
}
|
|
|
|
void
|
|
taskqueue_thread_loop(void *arg)
|
|
{
|
|
struct taskqueue **tqp, *tq;
|
|
|
|
tqp = arg;
|
|
tq = *tqp;
|
|
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
|
|
TQ_LOCK(tq);
|
|
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
|
|
/* XXX ? */
|
|
taskqueue_run_locked(tq);
|
|
/*
|
|
* Because taskqueue_run() can drop tq_mutex, we need to
|
|
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
|
|
* meantime, which means we missed a wakeup.
|
|
*/
|
|
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
break;
|
|
TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
|
|
}
|
|
taskqueue_run_locked(tq);
|
|
/*
|
|
* This thread is on its way out, so just drop the lock temporarily
|
|
* in order to call the shutdown callback. This allows the callback
|
|
* to look at the taskqueue, even just before it dies.
|
|
*/
|
|
TQ_UNLOCK(tq);
|
|
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
|
|
TQ_LOCK(tq);
|
|
|
|
/* rendezvous with thread that asked us to terminate */
|
|
tq->tq_tcount--;
|
|
wakeup_one(tq->tq_threads);
|
|
TQ_UNLOCK(tq);
|
|
kthread_exit();
|
|
}
|
|
|
|
void
|
|
taskqueue_thread_enqueue(void *context)
|
|
{
|
|
struct taskqueue **tqp, *tq;
|
|
|
|
tqp = context;
|
|
tq = *tqp;
|
|
wakeup_any(tq);
|
|
}
|
|
|
|
TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
|
|
swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
|
|
INTR_MPSAFE, &taskqueue_ih));
|
|
|
|
TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
|
|
swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
|
|
NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
|
|
|
|
TASKQUEUE_DEFINE_THREAD(thread);
|
|
|
|
struct taskqueue *
|
|
taskqueue_create_fast(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
return _taskqueue_create(name, mflags, enqueue, context,
|
|
MTX_SPIN, "fast_taskqueue");
|
|
}
|
|
|
|
static void *taskqueue_fast_ih;
|
|
|
|
static void
|
|
taskqueue_fast_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_fast_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_fast_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_fast);
|
|
}
|
|
|
|
TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
|
|
swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
|
|
SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
|
|
|
|
int
|
|
taskqueue_member(struct taskqueue *queue, struct thread *td)
|
|
{
|
|
int i, j, ret = 0;
|
|
|
|
for (i = 0, j = 0; ; i++) {
|
|
if (queue->tq_threads[i] == NULL)
|
|
continue;
|
|
if (queue->tq_threads[i] == td) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (++j >= queue->tq_tcount)
|
|
break;
|
|
}
|
|
return (ret);
|
|
}
|