beedaee94a
loading CTL. This may be useful in very low memory installations. MFC after: 3 days
13187 lines
347 KiB
C
13187 lines
347 KiB
C
/*-
|
|
* Copyright (c) 2003-2009 Silicon Graphics International Corp.
|
|
* Copyright (c) 2012 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Edward Tomasz Napierala
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/ctl.c#8 $
|
|
*/
|
|
/*
|
|
* CAM Target Layer, a SCSI device emulation subsystem.
|
|
*
|
|
* Author: Ken Merry <ken@FreeBSD.org>
|
|
*/
|
|
|
|
#define _CTL_C
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/types.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/ioccom.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_da.h>
|
|
#include <cam/ctl/ctl_io.h>
|
|
#include <cam/ctl/ctl.h>
|
|
#include <cam/ctl/ctl_frontend.h>
|
|
#include <cam/ctl/ctl_frontend_internal.h>
|
|
#include <cam/ctl/ctl_util.h>
|
|
#include <cam/ctl/ctl_backend.h>
|
|
#include <cam/ctl/ctl_ioctl.h>
|
|
#include <cam/ctl/ctl_ha.h>
|
|
#include <cam/ctl/ctl_private.h>
|
|
#include <cam/ctl/ctl_debug.h>
|
|
#include <cam/ctl/ctl_scsi_all.h>
|
|
#include <cam/ctl/ctl_error.h>
|
|
|
|
struct ctl_softc *control_softc = NULL;
|
|
|
|
/*
|
|
* The default is to run with CTL_DONE_THREAD turned on. Completed
|
|
* transactions are queued for processing by the CTL work thread. When
|
|
* CTL_DONE_THREAD is not defined, completed transactions are processed in
|
|
* the caller's context.
|
|
*/
|
|
#define CTL_DONE_THREAD
|
|
|
|
/*
|
|
* * Use the serial number and device ID provided by the backend, rather than
|
|
* * making up our own.
|
|
* */
|
|
#define CTL_USE_BACKEND_SN
|
|
|
|
/*
|
|
* Size and alignment macros needed for Copan-specific HA hardware. These
|
|
* can go away when the HA code is re-written, and uses busdma for any
|
|
* hardware.
|
|
*/
|
|
#define CTL_ALIGN_8B(target, source, type) \
|
|
if (((uint32_t)source & 0x7) != 0) \
|
|
target = (type)(source + (0x8 - ((uint32_t)source & 0x7)));\
|
|
else \
|
|
target = (type)source;
|
|
|
|
#define CTL_SIZE_8B(target, size) \
|
|
if ((size & 0x7) != 0) \
|
|
target = size + (0x8 - (size & 0x7)); \
|
|
else \
|
|
target = size;
|
|
|
|
#define CTL_ALIGN_8B_MARGIN 16
|
|
|
|
/*
|
|
* Template mode pages.
|
|
*/
|
|
|
|
/*
|
|
* Note that these are default values only. The actual values will be
|
|
* filled in when the user does a mode sense.
|
|
*/
|
|
static struct copan_power_subpage power_page_default = {
|
|
/*page_code*/ PWR_PAGE_CODE | SMPH_SPF,
|
|
/*subpage*/ PWR_SUBPAGE_CODE,
|
|
/*page_length*/ {(sizeof(struct copan_power_subpage) - 4) & 0xff00,
|
|
(sizeof(struct copan_power_subpage) - 4) & 0x00ff},
|
|
/*page_version*/ PWR_VERSION,
|
|
/* total_luns */ 26,
|
|
/* max_active_luns*/ PWR_DFLT_MAX_LUNS,
|
|
/*reserved*/ {0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
static struct copan_power_subpage power_page_changeable = {
|
|
/*page_code*/ PWR_PAGE_CODE | SMPH_SPF,
|
|
/*subpage*/ PWR_SUBPAGE_CODE,
|
|
/*page_length*/ {(sizeof(struct copan_power_subpage) - 4) & 0xff00,
|
|
(sizeof(struct copan_power_subpage) - 4) & 0x00ff},
|
|
/*page_version*/ 0,
|
|
/* total_luns */ 0,
|
|
/* max_active_luns*/ 0,
|
|
/*reserved*/ {0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
static struct copan_aps_subpage aps_page_default = {
|
|
APS_PAGE_CODE | SMPH_SPF, //page_code
|
|
APS_SUBPAGE_CODE, //subpage
|
|
{(sizeof(struct copan_aps_subpage) - 4) & 0xff00,
|
|
(sizeof(struct copan_aps_subpage) - 4) & 0x00ff}, //page_length
|
|
APS_VERSION, //page_version
|
|
0, //lock_active
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0} //reserved
|
|
};
|
|
|
|
static struct copan_aps_subpage aps_page_changeable = {
|
|
APS_PAGE_CODE | SMPH_SPF, //page_code
|
|
APS_SUBPAGE_CODE, //subpage
|
|
{(sizeof(struct copan_aps_subpage) - 4) & 0xff00,
|
|
(sizeof(struct copan_aps_subpage) - 4) & 0x00ff}, //page_length
|
|
0, //page_version
|
|
0, //lock_active
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0} //reserved
|
|
};
|
|
|
|
static struct copan_debugconf_subpage debugconf_page_default = {
|
|
DBGCNF_PAGE_CODE | SMPH_SPF, /* page_code */
|
|
DBGCNF_SUBPAGE_CODE, /* subpage */
|
|
{(sizeof(struct copan_debugconf_subpage) - 4) >> 8,
|
|
(sizeof(struct copan_debugconf_subpage) - 4) >> 0}, /* page_length */
|
|
DBGCNF_VERSION, /* page_version */
|
|
{CTL_TIME_IO_DEFAULT_SECS>>8,
|
|
CTL_TIME_IO_DEFAULT_SECS>>0}, /* ctl_time_io_secs */
|
|
};
|
|
|
|
static struct copan_debugconf_subpage debugconf_page_changeable = {
|
|
DBGCNF_PAGE_CODE | SMPH_SPF, /* page_code */
|
|
DBGCNF_SUBPAGE_CODE, /* subpage */
|
|
{(sizeof(struct copan_debugconf_subpage) - 4) >> 8,
|
|
(sizeof(struct copan_debugconf_subpage) - 4) >> 0}, /* page_length */
|
|
0, /* page_version */
|
|
{0xff,0xff}, /* ctl_time_io_secs */
|
|
};
|
|
|
|
static struct scsi_format_page format_page_default = {
|
|
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
|
|
/*page_length*/sizeof(struct scsi_format_page) - 2,
|
|
/*tracks_per_zone*/ {0, 0},
|
|
/*alt_sectors_per_zone*/ {0, 0},
|
|
/*alt_tracks_per_zone*/ {0, 0},
|
|
/*alt_tracks_per_lun*/ {0, 0},
|
|
/*sectors_per_track*/ {(CTL_DEFAULT_SECTORS_PER_TRACK >> 8) & 0xff,
|
|
CTL_DEFAULT_SECTORS_PER_TRACK & 0xff},
|
|
/*bytes_per_sector*/ {0, 0},
|
|
/*interleave*/ {0, 0},
|
|
/*track_skew*/ {0, 0},
|
|
/*cylinder_skew*/ {0, 0},
|
|
/*flags*/ SFP_HSEC,
|
|
/*reserved*/ {0, 0, 0}
|
|
};
|
|
|
|
static struct scsi_format_page format_page_changeable = {
|
|
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
|
|
/*page_length*/sizeof(struct scsi_format_page) - 2,
|
|
/*tracks_per_zone*/ {0, 0},
|
|
/*alt_sectors_per_zone*/ {0, 0},
|
|
/*alt_tracks_per_zone*/ {0, 0},
|
|
/*alt_tracks_per_lun*/ {0, 0},
|
|
/*sectors_per_track*/ {0, 0},
|
|
/*bytes_per_sector*/ {0, 0},
|
|
/*interleave*/ {0, 0},
|
|
/*track_skew*/ {0, 0},
|
|
/*cylinder_skew*/ {0, 0},
|
|
/*flags*/ 0,
|
|
/*reserved*/ {0, 0, 0}
|
|
};
|
|
|
|
static struct scsi_rigid_disk_page rigid_disk_page_default = {
|
|
/*page_code*/SMS_RIGID_DISK_PAGE,
|
|
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
|
|
/*cylinders*/ {0, 0, 0},
|
|
/*heads*/ CTL_DEFAULT_HEADS,
|
|
/*start_write_precomp*/ {0, 0, 0},
|
|
/*start_reduced_current*/ {0, 0, 0},
|
|
/*step_rate*/ {0, 0},
|
|
/*landing_zone_cylinder*/ {0, 0, 0},
|
|
/*rpl*/ SRDP_RPL_DISABLED,
|
|
/*rotational_offset*/ 0,
|
|
/*reserved1*/ 0,
|
|
/*rotation_rate*/ {(CTL_DEFAULT_ROTATION_RATE >> 8) & 0xff,
|
|
CTL_DEFAULT_ROTATION_RATE & 0xff},
|
|
/*reserved2*/ {0, 0}
|
|
};
|
|
|
|
static struct scsi_rigid_disk_page rigid_disk_page_changeable = {
|
|
/*page_code*/SMS_RIGID_DISK_PAGE,
|
|
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
|
|
/*cylinders*/ {0, 0, 0},
|
|
/*heads*/ 0,
|
|
/*start_write_precomp*/ {0, 0, 0},
|
|
/*start_reduced_current*/ {0, 0, 0},
|
|
/*step_rate*/ {0, 0},
|
|
/*landing_zone_cylinder*/ {0, 0, 0},
|
|
/*rpl*/ 0,
|
|
/*rotational_offset*/ 0,
|
|
/*reserved1*/ 0,
|
|
/*rotation_rate*/ {0, 0},
|
|
/*reserved2*/ {0, 0}
|
|
};
|
|
|
|
static struct scsi_caching_page caching_page_default = {
|
|
/*page_code*/SMS_CACHING_PAGE,
|
|
/*page_length*/sizeof(struct scsi_caching_page) - 2,
|
|
/*flags1*/ SCP_DISC | SCP_WCE,
|
|
/*ret_priority*/ 0,
|
|
/*disable_pf_transfer_len*/ {0xff, 0xff},
|
|
/*min_prefetch*/ {0, 0},
|
|
/*max_prefetch*/ {0xff, 0xff},
|
|
/*max_pf_ceiling*/ {0xff, 0xff},
|
|
/*flags2*/ 0,
|
|
/*cache_segments*/ 0,
|
|
/*cache_seg_size*/ {0, 0},
|
|
/*reserved*/ 0,
|
|
/*non_cache_seg_size*/ {0, 0, 0}
|
|
};
|
|
|
|
static struct scsi_caching_page caching_page_changeable = {
|
|
/*page_code*/SMS_CACHING_PAGE,
|
|
/*page_length*/sizeof(struct scsi_caching_page) - 2,
|
|
/*flags1*/ 0,
|
|
/*ret_priority*/ 0,
|
|
/*disable_pf_transfer_len*/ {0, 0},
|
|
/*min_prefetch*/ {0, 0},
|
|
/*max_prefetch*/ {0, 0},
|
|
/*max_pf_ceiling*/ {0, 0},
|
|
/*flags2*/ 0,
|
|
/*cache_segments*/ 0,
|
|
/*cache_seg_size*/ {0, 0},
|
|
/*reserved*/ 0,
|
|
/*non_cache_seg_size*/ {0, 0, 0}
|
|
};
|
|
|
|
static struct scsi_control_page control_page_default = {
|
|
/*page_code*/SMS_CONTROL_MODE_PAGE,
|
|
/*page_length*/sizeof(struct scsi_control_page) - 2,
|
|
/*rlec*/0,
|
|
/*queue_flags*/0,
|
|
/*eca_and_aen*/0,
|
|
/*reserved*/0,
|
|
/*aen_holdoff_period*/{0, 0}
|
|
};
|
|
|
|
static struct scsi_control_page control_page_changeable = {
|
|
/*page_code*/SMS_CONTROL_MODE_PAGE,
|
|
/*page_length*/sizeof(struct scsi_control_page) - 2,
|
|
/*rlec*/SCP_DSENSE,
|
|
/*queue_flags*/0,
|
|
/*eca_and_aen*/0,
|
|
/*reserved*/0,
|
|
/*aen_holdoff_period*/{0, 0}
|
|
};
|
|
|
|
|
|
/*
|
|
* XXX KDM move these into the softc.
|
|
*/
|
|
static int rcv_sync_msg;
|
|
static int persis_offset;
|
|
static uint8_t ctl_pause_rtr;
|
|
static int ctl_is_single;
|
|
static int index_to_aps_page;
|
|
int ctl_disable = 0;
|
|
|
|
SYSCTL_NODE(_kern_cam, OID_AUTO, ctl, CTLFLAG_RD, 0, "CAM Target Layer");
|
|
SYSCTL_INT(_kern_cam_ctl, OID_AUTO, disable, CTLFLAG_RDTUN, &ctl_disable, 0,
|
|
"Disable CTL");
|
|
TUNABLE_INT("kern.cam.ctl.disable", &ctl_disable);
|
|
|
|
/*
|
|
* Serial number (0x80), device id (0x83), and supported pages (0x00)
|
|
*/
|
|
#define SCSI_EVPD_NUM_SUPPORTED_PAGES 3
|
|
|
|
static void ctl_isc_event_handler(ctl_ha_channel chanel, ctl_ha_event event,
|
|
int param);
|
|
static void ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest);
|
|
static void ctl_init(void);
|
|
void ctl_shutdown(void);
|
|
static int ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td);
|
|
static int ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td);
|
|
static void ctl_ioctl_online(void *arg);
|
|
static void ctl_ioctl_offline(void *arg);
|
|
static int ctl_ioctl_targ_enable(void *arg, struct ctl_id targ_id);
|
|
static int ctl_ioctl_targ_disable(void *arg, struct ctl_id targ_id);
|
|
static int ctl_ioctl_lun_enable(void *arg, struct ctl_id targ_id, int lun_id);
|
|
static int ctl_ioctl_lun_disable(void *arg, struct ctl_id targ_id, int lun_id);
|
|
static int ctl_ioctl_do_datamove(struct ctl_scsiio *ctsio);
|
|
static int ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio, int have_lock);
|
|
static int ctl_ioctl_submit_wait(union ctl_io *io);
|
|
static void ctl_ioctl_datamove(union ctl_io *io);
|
|
static void ctl_ioctl_done(union ctl_io *io);
|
|
static void ctl_ioctl_hard_startstop_callback(void *arg,
|
|
struct cfi_metatask *metatask);
|
|
static void ctl_ioctl_bbrread_callback(void *arg,struct cfi_metatask *metatask);
|
|
static int ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
|
|
struct ctl_ooa *ooa_hdr);
|
|
static int ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
|
|
struct thread *td);
|
|
uint32_t ctl_get_resindex(struct ctl_nexus *nexus);
|
|
uint32_t ctl_port_idx(int port_num);
|
|
#ifdef unused
|
|
static union ctl_io *ctl_malloc_io(ctl_io_type io_type, uint32_t targ_port,
|
|
uint32_t targ_target, uint32_t targ_lun,
|
|
int can_wait);
|
|
static void ctl_kfree_io(union ctl_io *io);
|
|
#endif /* unused */
|
|
static void ctl_free_io_internal(union ctl_io *io, int have_lock);
|
|
static int ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *lun,
|
|
struct ctl_be_lun *be_lun, struct ctl_id target_id);
|
|
static int ctl_free_lun(struct ctl_lun *lun);
|
|
static void ctl_create_lun(struct ctl_be_lun *be_lun);
|
|
/**
|
|
static void ctl_failover_change_pages(struct ctl_softc *softc,
|
|
struct ctl_scsiio *ctsio, int master);
|
|
**/
|
|
|
|
static int ctl_do_mode_select(union ctl_io *io);
|
|
static int ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun,
|
|
uint64_t res_key, uint64_t sa_res_key,
|
|
uint8_t type, uint32_t residx,
|
|
struct ctl_scsiio *ctsio,
|
|
struct scsi_per_res_out *cdb,
|
|
struct scsi_per_res_out_parms* param);
|
|
static void ctl_pro_preempt_other(struct ctl_lun *lun,
|
|
union ctl_ha_msg *msg);
|
|
static void ctl_hndl_per_res_out_on_other_sc(union ctl_ha_msg *msg);
|
|
static int ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len);
|
|
static int ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len);
|
|
static int ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len);
|
|
static int ctl_inquiry_evpd(struct ctl_scsiio *ctsio);
|
|
static int ctl_inquiry_std(struct ctl_scsiio *ctsio);
|
|
static int ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint32_t *len);
|
|
static ctl_action ctl_extent_check(union ctl_io *io1, union ctl_io *io2);
|
|
static ctl_action ctl_check_for_blockage(union ctl_io *pending_io,
|
|
union ctl_io *ooa_io);
|
|
static ctl_action ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
|
|
union ctl_io *starting_io);
|
|
static int ctl_check_blocked(struct ctl_lun *lun);
|
|
static int ctl_scsiio_lun_check(struct ctl_softc *ctl_softc,
|
|
struct ctl_lun *lun,
|
|
struct ctl_cmd_entry *entry,
|
|
struct ctl_scsiio *ctsio);
|
|
//static int ctl_check_rtr(union ctl_io *pending_io, struct ctl_softc *softc);
|
|
static void ctl_failover(void);
|
|
static int ctl_scsiio_precheck(struct ctl_softc *ctl_softc,
|
|
struct ctl_scsiio *ctsio);
|
|
static int ctl_scsiio(struct ctl_scsiio *ctsio);
|
|
|
|
static int ctl_bus_reset(struct ctl_softc *ctl_softc, union ctl_io *io);
|
|
static int ctl_target_reset(struct ctl_softc *ctl_softc, union ctl_io *io,
|
|
ctl_ua_type ua_type);
|
|
static int ctl_lun_reset(struct ctl_lun *lun, union ctl_io *io,
|
|
ctl_ua_type ua_type);
|
|
static int ctl_abort_task(union ctl_io *io);
|
|
static void ctl_run_task_queue(struct ctl_softc *ctl_softc);
|
|
#ifdef CTL_IO_DELAY
|
|
static void ctl_datamove_timer_wakeup(void *arg);
|
|
static void ctl_done_timer_wakeup(void *arg);
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
static void ctl_send_datamove_done(union ctl_io *io, int have_lock);
|
|
static void ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq);
|
|
static int ctl_datamove_remote_dm_write_cb(union ctl_io *io);
|
|
static void ctl_datamove_remote_write(union ctl_io *io);
|
|
static int ctl_datamove_remote_dm_read_cb(union ctl_io *io);
|
|
static void ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq);
|
|
static int ctl_datamove_remote_sgl_setup(union ctl_io *io);
|
|
static int ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
|
|
ctl_ha_dt_cb callback);
|
|
static void ctl_datamove_remote_read(union ctl_io *io);
|
|
static void ctl_datamove_remote(union ctl_io *io);
|
|
static int ctl_process_done(union ctl_io *io, int have_lock);
|
|
static void ctl_work_thread(void *arg);
|
|
|
|
/*
|
|
* Load the serialization table. This isn't very pretty, but is probably
|
|
* the easiest way to do it.
|
|
*/
|
|
#include "ctl_ser_table.c"
|
|
|
|
/*
|
|
* We only need to define open, close and ioctl routines for this driver.
|
|
*/
|
|
static struct cdevsw ctl_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = 0,
|
|
.d_open = ctl_open,
|
|
.d_close = ctl_close,
|
|
.d_ioctl = ctl_ioctl,
|
|
.d_name = "ctl",
|
|
};
|
|
|
|
|
|
MALLOC_DEFINE(M_CTL, "ctlmem", "Memory used for CTL");
|
|
|
|
/*
|
|
* If we have the CAM SIM, we may or may not have another SIM that will
|
|
* cause CTL to get initialized. If not, we need to initialize it.
|
|
*/
|
|
SYSINIT(ctl_init, SI_SUB_CONFIGURE, SI_ORDER_THIRD, ctl_init, NULL);
|
|
|
|
static void
|
|
ctl_isc_handler_finish_xfer(struct ctl_softc *ctl_softc,
|
|
union ctl_ha_msg *msg_info)
|
|
{
|
|
struct ctl_scsiio *ctsio;
|
|
|
|
if (msg_info->hdr.original_sc == NULL) {
|
|
printf("%s: original_sc == NULL!\n", __func__);
|
|
/* XXX KDM now what? */
|
|
return;
|
|
}
|
|
|
|
ctsio = &msg_info->hdr.original_sc->scsiio;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
|
|
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
|
|
ctsio->io_hdr.status = msg_info->hdr.status;
|
|
ctsio->scsi_status = msg_info->scsi.scsi_status;
|
|
ctsio->sense_len = msg_info->scsi.sense_len;
|
|
ctsio->sense_residual = msg_info->scsi.sense_residual;
|
|
ctsio->residual = msg_info->scsi.residual;
|
|
memcpy(&ctsio->sense_data, &msg_info->scsi.sense_data,
|
|
sizeof(ctsio->sense_data));
|
|
memcpy(&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes,
|
|
&msg_info->scsi.lbalen, sizeof(msg_info->scsi.lbalen));;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue, &ctsio->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
}
|
|
|
|
static void
|
|
ctl_isc_handler_finish_ser_only(struct ctl_softc *ctl_softc,
|
|
union ctl_ha_msg *msg_info)
|
|
{
|
|
struct ctl_scsiio *ctsio;
|
|
|
|
if (msg_info->hdr.serializing_sc == NULL) {
|
|
printf("%s: serializing_sc == NULL!\n", __func__);
|
|
/* XXX KDM now what? */
|
|
return;
|
|
}
|
|
|
|
ctsio = &msg_info->hdr.serializing_sc->scsiio;
|
|
#if 0
|
|
/*
|
|
* Attempt to catch the situation where an I/O has
|
|
* been freed, and we're using it again.
|
|
*/
|
|
if (ctsio->io_hdr.io_type == 0xff) {
|
|
union ctl_io *tmp_io;
|
|
tmp_io = (union ctl_io *)ctsio;
|
|
printf("%s: %p use after free!\n", __func__,
|
|
ctsio);
|
|
printf("%s: type %d msg %d cdb %x iptl: "
|
|
"%d:%d:%d:%d tag 0x%04x "
|
|
"flag %#x status %x\n",
|
|
__func__,
|
|
tmp_io->io_hdr.io_type,
|
|
tmp_io->io_hdr.msg_type,
|
|
tmp_io->scsiio.cdb[0],
|
|
tmp_io->io_hdr.nexus.initid.id,
|
|
tmp_io->io_hdr.nexus.targ_port,
|
|
tmp_io->io_hdr.nexus.targ_target.id,
|
|
tmp_io->io_hdr.nexus.targ_lun,
|
|
(tmp_io->io_hdr.io_type ==
|
|
CTL_IO_TASK) ?
|
|
tmp_io->taskio.tag_num :
|
|
tmp_io->scsiio.tag_num,
|
|
tmp_io->io_hdr.flags,
|
|
tmp_io->io_hdr.status);
|
|
}
|
|
#endif
|
|
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue, &ctsio->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
}
|
|
|
|
/*
|
|
* ISC (Inter Shelf Communication) event handler. Events from the HA
|
|
* subsystem come in here.
|
|
*/
|
|
static void
|
|
ctl_isc_event_handler(ctl_ha_channel channel, ctl_ha_event event, int param)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
union ctl_io *io;
|
|
struct ctl_prio *presio;
|
|
ctl_ha_status isc_status;
|
|
|
|
ctl_softc = control_softc;
|
|
io = NULL;
|
|
|
|
|
|
#if 0
|
|
printf("CTL: Isc Msg event %d\n", event);
|
|
#endif
|
|
if (event == CTL_HA_EVT_MSG_RECV) {
|
|
union ctl_ha_msg msg_info;
|
|
|
|
isc_status = ctl_ha_msg_recv(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), /*wait*/ 0);
|
|
#if 0
|
|
printf("CTL: msg_type %d\n", msg_info.msg_type);
|
|
#endif
|
|
if (isc_status != 0) {
|
|
printf("Error receiving message, status = %d\n",
|
|
isc_status);
|
|
return;
|
|
}
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
switch (msg_info.hdr.msg_type) {
|
|
case CTL_MSG_SERIALIZE:
|
|
#if 0
|
|
printf("Serialize\n");
|
|
#endif
|
|
io = ctl_alloc_io((void *)ctl_softc->othersc_pool);
|
|
if (io == NULL) {
|
|
printf("ctl_isc_event_handler: can't allocate "
|
|
"ctl_io!\n");
|
|
/* Bad Juju */
|
|
/* Need to set busy and send msg back */
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
msg_info.hdr.status = CTL_SCSI_ERROR;
|
|
msg_info.scsi.scsi_status = SCSI_STATUS_BUSY;
|
|
msg_info.scsi.sense_len = 0;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0) > CTL_HA_STATUS_SUCCESS){
|
|
}
|
|
goto bailout;
|
|
}
|
|
ctl_zero_io(io);
|
|
// populate ctsio from msg_info
|
|
io->io_hdr.io_type = CTL_IO_SCSI;
|
|
io->io_hdr.msg_type = CTL_MSG_SERIALIZE;
|
|
io->io_hdr.original_sc = msg_info.hdr.original_sc;
|
|
#if 0
|
|
printf("pOrig %x\n", (int)msg_info.original_sc);
|
|
#endif
|
|
io->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC |
|
|
CTL_FLAG_IO_ACTIVE;
|
|
/*
|
|
* If we're in serialization-only mode, we don't
|
|
* want to go through full done processing. Thus
|
|
* the COPY flag.
|
|
*
|
|
* XXX KDM add another flag that is more specific.
|
|
*/
|
|
if (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)
|
|
io->io_hdr.flags |= CTL_FLAG_INT_COPY;
|
|
io->io_hdr.nexus = msg_info.hdr.nexus;
|
|
#if 0
|
|
printf("targ %d, port %d, iid %d, lun %d\n",
|
|
io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_lun);
|
|
#endif
|
|
io->scsiio.tag_num = msg_info.scsi.tag_num;
|
|
io->scsiio.tag_type = msg_info.scsi.tag_type;
|
|
memcpy(io->scsiio.cdb, msg_info.scsi.cdb,
|
|
CTL_MAX_CDBLEN);
|
|
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
|
|
struct ctl_cmd_entry *entry;
|
|
uint8_t opcode;
|
|
|
|
opcode = io->scsiio.cdb[0];
|
|
entry = &ctl_cmd_table[opcode];
|
|
io->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
|
|
io->io_hdr.flags |=
|
|
entry->flags & CTL_FLAG_DATA_MASK;
|
|
}
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&io->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
break;
|
|
|
|
/* Performed on the Originating SC, XFER mode only */
|
|
case CTL_MSG_DATAMOVE: {
|
|
struct ctl_sg_entry *sgl;
|
|
int i, j;
|
|
|
|
io = msg_info.hdr.original_sc;
|
|
if (io == NULL) {
|
|
printf("%s: original_sc == NULL!\n", __func__);
|
|
/* XXX KDM do something here */
|
|
break;
|
|
}
|
|
io->io_hdr.msg_type = CTL_MSG_DATAMOVE;
|
|
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
|
|
/*
|
|
* Keep track of this, we need to send it back over
|
|
* when the datamove is complete.
|
|
*/
|
|
io->io_hdr.serializing_sc = msg_info.hdr.serializing_sc;
|
|
|
|
if (msg_info.dt.sg_sequence == 0) {
|
|
/*
|
|
* XXX KDM we use the preallocated S/G list
|
|
* here, but we'll need to change this to
|
|
* dynamic allocation if we need larger S/G
|
|
* lists.
|
|
*/
|
|
if (msg_info.dt.kern_sg_entries >
|
|
sizeof(io->io_hdr.remote_sglist) /
|
|
sizeof(io->io_hdr.remote_sglist[0])) {
|
|
printf("%s: number of S/G entries "
|
|
"needed %u > allocated num %zd\n",
|
|
__func__,
|
|
msg_info.dt.kern_sg_entries,
|
|
sizeof(io->io_hdr.remote_sglist)/
|
|
sizeof(io->io_hdr.remote_sglist[0]));
|
|
|
|
/*
|
|
* XXX KDM send a message back to
|
|
* the other side to shut down the
|
|
* DMA. The error will come back
|
|
* through via the normal channel.
|
|
*/
|
|
break;
|
|
}
|
|
sgl = io->io_hdr.remote_sglist;
|
|
memset(sgl, 0,
|
|
sizeof(io->io_hdr.remote_sglist));
|
|
|
|
io->scsiio.kern_data_ptr = (uint8_t *)sgl;
|
|
|
|
io->scsiio.kern_sg_entries =
|
|
msg_info.dt.kern_sg_entries;
|
|
io->scsiio.rem_sg_entries =
|
|
msg_info.dt.kern_sg_entries;
|
|
io->scsiio.kern_data_len =
|
|
msg_info.dt.kern_data_len;
|
|
io->scsiio.kern_total_len =
|
|
msg_info.dt.kern_total_len;
|
|
io->scsiio.kern_data_resid =
|
|
msg_info.dt.kern_data_resid;
|
|
io->scsiio.kern_rel_offset =
|
|
msg_info.dt.kern_rel_offset;
|
|
/*
|
|
* Clear out per-DMA flags.
|
|
*/
|
|
io->io_hdr.flags &= ~CTL_FLAG_RDMA_MASK;
|
|
/*
|
|
* Add per-DMA flags that are set for this
|
|
* particular DMA request.
|
|
*/
|
|
io->io_hdr.flags |= msg_info.dt.flags &
|
|
CTL_FLAG_RDMA_MASK;
|
|
} else
|
|
sgl = (struct ctl_sg_entry *)
|
|
io->scsiio.kern_data_ptr;
|
|
|
|
for (i = msg_info.dt.sent_sg_entries, j = 0;
|
|
i < (msg_info.dt.sent_sg_entries +
|
|
msg_info.dt.cur_sg_entries); i++, j++) {
|
|
sgl[i].addr = msg_info.dt.sg_list[j].addr;
|
|
sgl[i].len = msg_info.dt.sg_list[j].len;
|
|
|
|
#if 0
|
|
printf("%s: L: %p,%d -> %p,%d j=%d, i=%d\n",
|
|
__func__,
|
|
msg_info.dt.sg_list[j].addr,
|
|
msg_info.dt.sg_list[j].len,
|
|
sgl[i].addr, sgl[i].len, j, i);
|
|
#endif
|
|
}
|
|
#if 0
|
|
memcpy(&sgl[msg_info.dt.sent_sg_entries],
|
|
msg_info.dt.sg_list,
|
|
sizeof(*sgl) * msg_info.dt.cur_sg_entries);
|
|
#endif
|
|
|
|
/*
|
|
* If this is the last piece of the I/O, we've got
|
|
* the full S/G list. Queue processing in the thread.
|
|
* Otherwise wait for the next piece.
|
|
*/
|
|
if (msg_info.dt.sg_last != 0) {
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&io->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
}
|
|
break;
|
|
}
|
|
/* Performed on the Serializing (primary) SC, XFER mode only */
|
|
case CTL_MSG_DATAMOVE_DONE: {
|
|
if (msg_info.hdr.serializing_sc == NULL) {
|
|
printf("%s: serializing_sc == NULL!\n",
|
|
__func__);
|
|
/* XXX KDM now what? */
|
|
break;
|
|
}
|
|
/*
|
|
* We grab the sense information here in case
|
|
* there was a failure, so we can return status
|
|
* back to the initiator.
|
|
*/
|
|
io = msg_info.hdr.serializing_sc;
|
|
io->io_hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
|
|
io->io_hdr.status = msg_info.hdr.status;
|
|
io->scsiio.scsi_status = msg_info.scsi.scsi_status;
|
|
io->scsiio.sense_len = msg_info.scsi.sense_len;
|
|
io->scsiio.sense_residual =msg_info.scsi.sense_residual;
|
|
io->io_hdr.port_status = msg_info.scsi.fetd_status;
|
|
io->scsiio.residual = msg_info.scsi.residual;
|
|
memcpy(&io->scsiio.sense_data,&msg_info.scsi.sense_data,
|
|
sizeof(io->scsiio.sense_data));
|
|
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&io->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
break;
|
|
}
|
|
|
|
/* Preformed on Originating SC, SER_ONLY mode */
|
|
case CTL_MSG_R2R:
|
|
io = msg_info.hdr.original_sc;
|
|
if (io == NULL) {
|
|
printf("%s: Major Bummer\n", __func__);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return;
|
|
} else {
|
|
#if 0
|
|
printf("pOrig %x\n",(int) ctsio);
|
|
#endif
|
|
}
|
|
io->io_hdr.msg_type = CTL_MSG_R2R;
|
|
io->io_hdr.serializing_sc = msg_info.hdr.serializing_sc;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&io->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
break;
|
|
|
|
/*
|
|
* Performed on Serializing(i.e. primary SC) SC in SER_ONLY
|
|
* mode.
|
|
* Performed on the Originating (i.e. secondary) SC in XFER
|
|
* mode
|
|
*/
|
|
case CTL_MSG_FINISH_IO:
|
|
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER)
|
|
ctl_isc_handler_finish_xfer(ctl_softc,
|
|
&msg_info);
|
|
else
|
|
ctl_isc_handler_finish_ser_only(ctl_softc,
|
|
&msg_info);
|
|
break;
|
|
|
|
/* Preformed on Originating SC */
|
|
case CTL_MSG_BAD_JUJU:
|
|
io = msg_info.hdr.original_sc;
|
|
if (io == NULL) {
|
|
printf("%s: Bad JUJU!, original_sc is NULL!\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
ctl_copy_sense_data(&msg_info, io);
|
|
/*
|
|
* IO should have already been cleaned up on other
|
|
* SC so clear this flag so we won't send a message
|
|
* back to finish the IO there.
|
|
*/
|
|
io->io_hdr.flags &= ~CTL_FLAG_SENT_2OTHER_SC;
|
|
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
|
|
|
|
/* io = msg_info.hdr.serializing_sc; */
|
|
io->io_hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&io->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
break;
|
|
|
|
/* Handle resets sent from the other side */
|
|
case CTL_MSG_MANAGE_TASKS: {
|
|
struct ctl_taskio *taskio;
|
|
taskio = (struct ctl_taskio *)ctl_alloc_io(
|
|
(void *)ctl_softc->othersc_pool);
|
|
if (taskio == NULL) {
|
|
printf("ctl_isc_event_handler: can't allocate "
|
|
"ctl_io!\n");
|
|
/* Bad Juju */
|
|
/* should I just call the proper reset func
|
|
here??? */
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
goto bailout;
|
|
}
|
|
ctl_zero_io((union ctl_io *)taskio);
|
|
taskio->io_hdr.io_type = CTL_IO_TASK;
|
|
taskio->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC;
|
|
taskio->io_hdr.nexus = msg_info.hdr.nexus;
|
|
taskio->task_action = msg_info.task.task_action;
|
|
taskio->tag_num = msg_info.task.tag_num;
|
|
taskio->tag_type = msg_info.task.tag_type;
|
|
#ifdef CTL_TIME_IO
|
|
taskio->io_hdr.start_time = time_uptime;
|
|
getbintime(&taskio->io_hdr.start_bt);
|
|
#if 0
|
|
cs_prof_gettime(&taskio->io_hdr.start_ticks);
|
|
#endif
|
|
#endif /* CTL_TIME_IO */
|
|
STAILQ_INSERT_TAIL(&ctl_softc->task_queue,
|
|
&taskio->io_hdr, links);
|
|
ctl_softc->flags |= CTL_FLAG_TASK_PENDING;
|
|
ctl_wakeup_thread();
|
|
break;
|
|
}
|
|
/* Persistent Reserve action which needs attention */
|
|
case CTL_MSG_PERS_ACTION:
|
|
presio = (struct ctl_prio *)ctl_alloc_io(
|
|
(void *)ctl_softc->othersc_pool);
|
|
if (presio == NULL) {
|
|
printf("ctl_isc_event_handler: can't allocate "
|
|
"ctl_io!\n");
|
|
/* Bad Juju */
|
|
/* Need to set busy and send msg back */
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
goto bailout;
|
|
}
|
|
ctl_zero_io((union ctl_io *)presio);
|
|
presio->io_hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
presio->pr_msg = msg_info.pr;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
|
|
&presio->io_hdr, links);
|
|
ctl_wakeup_thread();
|
|
break;
|
|
case CTL_MSG_SYNC_FE:
|
|
rcv_sync_msg = 1;
|
|
break;
|
|
case CTL_MSG_APS_LOCK: {
|
|
// It's quicker to execute this then to
|
|
// queue it.
|
|
struct ctl_lun *lun;
|
|
struct ctl_page_index *page_index;
|
|
struct copan_aps_subpage *current_sp;
|
|
|
|
lun = ctl_softc->ctl_luns[msg_info.hdr.nexus.targ_lun];
|
|
page_index = &lun->mode_pages.index[index_to_aps_page];
|
|
current_sp = (struct copan_aps_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len * CTL_PAGE_CURRENT));
|
|
|
|
current_sp->lock_active = msg_info.aps.lock_flag;
|
|
break;
|
|
}
|
|
default:
|
|
printf("How did I get here?\n");
|
|
}
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
} else if (event == CTL_HA_EVT_MSG_SENT) {
|
|
if (param != CTL_HA_STATUS_SUCCESS) {
|
|
printf("Bad status from ctl_ha_msg_send status %d\n",
|
|
param);
|
|
}
|
|
return;
|
|
} else if (event == CTL_HA_EVT_DISCONNECT) {
|
|
printf("CTL: Got a disconnect from Isc\n");
|
|
return;
|
|
} else {
|
|
printf("ctl_isc_event_handler: Unknown event %d\n", event);
|
|
return;
|
|
}
|
|
|
|
bailout:
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest)
|
|
{
|
|
struct scsi_sense_data *sense;
|
|
|
|
sense = &dest->scsiio.sense_data;
|
|
bcopy(&src->scsi.sense_data, sense, sizeof(*sense));
|
|
dest->scsiio.scsi_status = src->scsi.scsi_status;
|
|
dest->scsiio.sense_len = src->scsi.sense_len;
|
|
dest->io_hdr.status = src->hdr.status;
|
|
}
|
|
|
|
static void
|
|
ctl_init(void)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_io_pool *internal_pool, *emergency_pool, *other_pool;
|
|
struct ctl_frontend *fe;
|
|
struct ctl_lun *lun;
|
|
uint8_t sc_id =0;
|
|
#if 0
|
|
int i;
|
|
#endif
|
|
int retval;
|
|
//int isc_retval;
|
|
|
|
retval = 0;
|
|
ctl_pause_rtr = 0;
|
|
rcv_sync_msg = 0;
|
|
|
|
/* If we're disabled, don't initialize. */
|
|
if (ctl_disable != 0)
|
|
return;
|
|
|
|
control_softc = malloc(sizeof(*control_softc), M_DEVBUF, M_WAITOK);
|
|
softc = control_softc;
|
|
|
|
memset(softc, 0, sizeof(*softc));
|
|
|
|
softc->dev = make_dev(&ctl_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600,
|
|
"cam/ctl");
|
|
|
|
softc->dev->si_drv1 = softc;
|
|
|
|
/*
|
|
* By default, return a "bad LUN" peripheral qualifier for unknown
|
|
* LUNs. The user can override this default using the tunable or
|
|
* sysctl. See the comment in ctl_inquiry_std() for more details.
|
|
*/
|
|
softc->inquiry_pq_no_lun = 1;
|
|
TUNABLE_INT_FETCH("kern.cam.ctl.inquiry_pq_no_lun",
|
|
&softc->inquiry_pq_no_lun);
|
|
sysctl_ctx_init(&softc->sysctl_ctx);
|
|
softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_kern_cam), OID_AUTO, "ctl",
|
|
CTLFLAG_RD, 0, "CAM Target Layer");
|
|
|
|
if (softc->sysctl_tree == NULL) {
|
|
printf("%s: unable to allocate sysctl tree\n", __func__);
|
|
destroy_dev(softc->dev);
|
|
free(control_softc, M_DEVBUF);
|
|
control_softc = NULL;
|
|
return;
|
|
}
|
|
|
|
SYSCTL_ADD_INT(&softc->sysctl_ctx,
|
|
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
|
|
"inquiry_pq_no_lun", CTLFLAG_RW,
|
|
&softc->inquiry_pq_no_lun, 0,
|
|
"Report no lun possible for invalid LUNs");
|
|
|
|
mtx_init(&softc->ctl_lock, "CTL mutex", NULL, MTX_DEF);
|
|
softc->open_count = 0;
|
|
|
|
/*
|
|
* Default to actually sending a SYNCHRONIZE CACHE command down to
|
|
* the drive.
|
|
*/
|
|
softc->flags = CTL_FLAG_REAL_SYNC;
|
|
|
|
/*
|
|
* In Copan's HA scheme, the "master" and "slave" roles are
|
|
* figured out through the slot the controller is in. Although it
|
|
* is an active/active system, someone has to be in charge.
|
|
*/
|
|
#ifdef NEEDTOPORT
|
|
scmicro_rw(SCMICRO_GET_SHELF_ID, &sc_id);
|
|
#endif
|
|
|
|
if (sc_id == 0) {
|
|
softc->flags |= CTL_FLAG_MASTER_SHELF;
|
|
persis_offset = 0;
|
|
} else
|
|
persis_offset = CTL_MAX_INITIATORS;
|
|
|
|
/*
|
|
* XXX KDM need to figure out where we want to get our target ID
|
|
* and WWID. Is it different on each port?
|
|
*/
|
|
softc->target.id = 0;
|
|
softc->target.wwid[0] = 0x12345678;
|
|
softc->target.wwid[1] = 0x87654321;
|
|
STAILQ_INIT(&softc->lun_list);
|
|
STAILQ_INIT(&softc->pending_lun_queue);
|
|
STAILQ_INIT(&softc->task_queue);
|
|
STAILQ_INIT(&softc->incoming_queue);
|
|
STAILQ_INIT(&softc->rtr_queue);
|
|
STAILQ_INIT(&softc->done_queue);
|
|
STAILQ_INIT(&softc->isc_queue);
|
|
STAILQ_INIT(&softc->fe_list);
|
|
STAILQ_INIT(&softc->be_list);
|
|
STAILQ_INIT(&softc->io_pools);
|
|
|
|
lun = &softc->lun;
|
|
|
|
/*
|
|
* We don't bother calling these with ctl_lock held here, because,
|
|
* in theory, no one else can try to do anything while we're in our
|
|
* module init routine.
|
|
*/
|
|
if (ctl_pool_create(softc, CTL_POOL_INTERNAL, CTL_POOL_ENTRIES_INTERNAL,
|
|
&internal_pool)!= 0){
|
|
printf("ctl: can't allocate %d entry internal pool, "
|
|
"exiting\n", CTL_POOL_ENTRIES_INTERNAL);
|
|
return;
|
|
}
|
|
|
|
if (ctl_pool_create(softc, CTL_POOL_EMERGENCY,
|
|
CTL_POOL_ENTRIES_EMERGENCY, &emergency_pool) != 0) {
|
|
printf("ctl: can't allocate %d entry emergency pool, "
|
|
"exiting\n", CTL_POOL_ENTRIES_EMERGENCY);
|
|
ctl_pool_free(softc, internal_pool);
|
|
return;
|
|
}
|
|
|
|
if (ctl_pool_create(softc, CTL_POOL_4OTHERSC, CTL_POOL_ENTRIES_OTHER_SC,
|
|
&other_pool) != 0)
|
|
{
|
|
printf("ctl: can't allocate %d entry other SC pool, "
|
|
"exiting\n", CTL_POOL_ENTRIES_OTHER_SC);
|
|
ctl_pool_free(softc, internal_pool);
|
|
ctl_pool_free(softc, emergency_pool);
|
|
return;
|
|
}
|
|
|
|
softc->internal_pool = internal_pool;
|
|
softc->emergency_pool = emergency_pool;
|
|
softc->othersc_pool = other_pool;
|
|
|
|
ctl_pool_acquire(internal_pool);
|
|
ctl_pool_acquire(emergency_pool);
|
|
ctl_pool_acquire(other_pool);
|
|
|
|
/*
|
|
* We used to allocate a processor LUN here. The new scheme is to
|
|
* just let the user allocate LUNs as he sees fit.
|
|
*/
|
|
#if 0
|
|
mtx_lock(&softc->ctl_lock);
|
|
ctl_alloc_lun(softc, lun, /*be_lun*/NULL, /*target*/softc->target);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
#endif
|
|
|
|
if (kproc_create(ctl_work_thread, softc, &softc->work_thread, 0, 0,
|
|
"ctl_thrd") != 0) {
|
|
printf("error creating CTL work thread!\n");
|
|
ctl_free_lun(lun);
|
|
ctl_pool_free(softc, internal_pool);
|
|
ctl_pool_free(softc, emergency_pool);
|
|
ctl_pool_free(softc, other_pool);
|
|
return;
|
|
}
|
|
printf("ctl: CAM Target Layer loaded\n");
|
|
|
|
/*
|
|
* Initialize the initiator and portname mappings
|
|
*/
|
|
memset(softc->wwpn_iid, 0, sizeof(softc->wwpn_iid));
|
|
|
|
/*
|
|
* Initialize the ioctl front end.
|
|
*/
|
|
fe = &softc->ioctl_info.fe;
|
|
sprintf(softc->ioctl_info.port_name, "CTL ioctl");
|
|
fe->port_type = CTL_PORT_IOCTL;
|
|
fe->num_requested_ctl_io = 100;
|
|
fe->port_name = softc->ioctl_info.port_name;
|
|
fe->port_online = ctl_ioctl_online;
|
|
fe->port_offline = ctl_ioctl_offline;
|
|
fe->onoff_arg = &softc->ioctl_info;
|
|
fe->targ_enable = ctl_ioctl_targ_enable;
|
|
fe->targ_disable = ctl_ioctl_targ_disable;
|
|
fe->lun_enable = ctl_ioctl_lun_enable;
|
|
fe->lun_disable = ctl_ioctl_lun_disable;
|
|
fe->targ_lun_arg = &softc->ioctl_info;
|
|
fe->fe_datamove = ctl_ioctl_datamove;
|
|
fe->fe_done = ctl_ioctl_done;
|
|
fe->max_targets = 15;
|
|
fe->max_target_id = 15;
|
|
|
|
if (ctl_frontend_register(&softc->ioctl_info.fe,
|
|
(softc->flags & CTL_FLAG_MASTER_SHELF)) != 0) {
|
|
printf("ctl: ioctl front end registration failed, will "
|
|
"continue anyway\n");
|
|
}
|
|
|
|
#ifdef CTL_IO_DELAY
|
|
if (sizeof(struct callout) > CTL_TIMER_BYTES) {
|
|
printf("sizeof(struct callout) %zd > CTL_TIMER_BYTES %zd\n",
|
|
sizeof(struct callout), CTL_TIMER_BYTES);
|
|
return;
|
|
}
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
}
|
|
|
|
void
|
|
ctl_shutdown(void)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_lun *lun, *next_lun;
|
|
struct ctl_io_pool *pool, *next_pool;
|
|
|
|
softc = (struct ctl_softc *)control_softc;
|
|
|
|
if (ctl_frontend_deregister(&softc->ioctl_info.fe) != 0)
|
|
printf("ctl: ioctl front end deregistration failed\n");
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
/*
|
|
* Free up each LUN.
|
|
*/
|
|
for (lun = STAILQ_FIRST(&softc->lun_list); lun != NULL; lun = next_lun){
|
|
next_lun = STAILQ_NEXT(lun, links);
|
|
ctl_free_lun(lun);
|
|
}
|
|
|
|
/*
|
|
* This will rip the rug out from under any FETDs or anyone else
|
|
* that has a pool allocated. Since we increment our module
|
|
* refcount any time someone outside the main CTL module allocates
|
|
* a pool, we shouldn't have any problems here. The user won't be
|
|
* able to unload the CTL module until client modules have
|
|
* successfully unloaded.
|
|
*/
|
|
for (pool = STAILQ_FIRST(&softc->io_pools); pool != NULL;
|
|
pool = next_pool) {
|
|
next_pool = STAILQ_NEXT(pool, links);
|
|
ctl_pool_free(softc, pool);
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
#if 0
|
|
ctl_shutdown_thread(softc->work_thread);
|
|
#endif
|
|
|
|
mtx_destroy(&softc->ctl_lock);
|
|
|
|
destroy_dev(softc->dev);
|
|
|
|
sysctl_ctx_free(&softc->sysctl_ctx);
|
|
|
|
free(control_softc, M_DEVBUF);
|
|
control_softc = NULL;
|
|
|
|
printf("ctl: CAM Target Layer unloaded\n");
|
|
}
|
|
|
|
/*
|
|
* XXX KDM should we do some access checks here? Bump a reference count to
|
|
* prevent a CTL module from being unloaded while someone has it open?
|
|
*/
|
|
static int
|
|
ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_port_enable(ctl_port_type port_type)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_frontend *fe;
|
|
|
|
if (ctl_is_single == 0) {
|
|
union ctl_ha_msg msg_info;
|
|
int isc_retval;
|
|
|
|
#if 0
|
|
printf("%s: HA mode, synchronizing frontend enable\n",
|
|
__func__);
|
|
#endif
|
|
msg_info.hdr.msg_type = CTL_MSG_SYNC_FE;
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 1 )) > CTL_HA_STATUS_SUCCESS) {
|
|
printf("Sync msg send error retval %d\n", isc_retval);
|
|
}
|
|
if (!rcv_sync_msg) {
|
|
isc_retval=ctl_ha_msg_recv(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 1);
|
|
}
|
|
#if 0
|
|
printf("CTL:Frontend Enable\n");
|
|
} else {
|
|
printf("%s: single mode, skipping frontend synchronization\n",
|
|
__func__);
|
|
#endif
|
|
}
|
|
|
|
softc = control_softc;
|
|
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
if (port_type & fe->port_type)
|
|
{
|
|
#if 0
|
|
printf("port %d\n", fe->targ_port);
|
|
#endif
|
|
ctl_frontend_online(fe);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_port_disable(ctl_port_type port_type)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_frontend *fe;
|
|
|
|
softc = control_softc;
|
|
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
if (port_type & fe->port_type)
|
|
ctl_frontend_offline(fe);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns 0 for success, 1 for failure.
|
|
* Currently the only failure mode is if there aren't enough entries
|
|
* allocated. So, in case of a failure, look at num_entries_dropped,
|
|
* reallocate and try again.
|
|
*/
|
|
int
|
|
ctl_port_list(struct ctl_port_entry *entries, int num_entries_alloced,
|
|
int *num_entries_filled, int *num_entries_dropped,
|
|
ctl_port_type port_type, int no_virtual)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_frontend *fe;
|
|
int entries_dropped, entries_filled;
|
|
int retval;
|
|
int i;
|
|
|
|
softc = control_softc;
|
|
|
|
retval = 0;
|
|
entries_filled = 0;
|
|
entries_dropped = 0;
|
|
|
|
i = 0;
|
|
mtx_lock(&softc->ctl_lock);
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
struct ctl_port_entry *entry;
|
|
|
|
if ((fe->port_type & port_type) == 0)
|
|
continue;
|
|
|
|
if ((no_virtual != 0)
|
|
&& (fe->virtual_port != 0))
|
|
continue;
|
|
|
|
if (entries_filled >= num_entries_alloced) {
|
|
entries_dropped++;
|
|
continue;
|
|
}
|
|
entry = &entries[i];
|
|
|
|
entry->port_type = fe->port_type;
|
|
strlcpy(entry->port_name, fe->port_name,
|
|
sizeof(entry->port_name));
|
|
entry->physical_port = fe->physical_port;
|
|
entry->virtual_port = fe->virtual_port;
|
|
entry->wwnn = fe->wwnn;
|
|
entry->wwpn = fe->wwpn;
|
|
|
|
i++;
|
|
entries_filled++;
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
if (entries_dropped > 0)
|
|
retval = 1;
|
|
|
|
*num_entries_dropped = entries_dropped;
|
|
*num_entries_filled = entries_filled;
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_online(void *arg)
|
|
{
|
|
struct ctl_ioctl_info *ioctl_info;
|
|
|
|
ioctl_info = (struct ctl_ioctl_info *)arg;
|
|
|
|
ioctl_info->flags |= CTL_IOCTL_FLAG_ENABLED;
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_offline(void *arg)
|
|
{
|
|
struct ctl_ioctl_info *ioctl_info;
|
|
|
|
ioctl_info = (struct ctl_ioctl_info *)arg;
|
|
|
|
ioctl_info->flags &= ~CTL_IOCTL_FLAG_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* Remove an initiator by port number and initiator ID.
|
|
* Returns 0 for success, 1 for failure.
|
|
* Assumes the caller does NOT hold the CTL lock.
|
|
*/
|
|
int
|
|
ctl_remove_initiator(int32_t targ_port, uint32_t iid)
|
|
{
|
|
struct ctl_softc *softc;
|
|
|
|
softc = control_softc;
|
|
|
|
if ((targ_port < 0)
|
|
|| (targ_port > CTL_MAX_PORTS)) {
|
|
printf("%s: invalid port number %d\n", __func__, targ_port);
|
|
return (1);
|
|
}
|
|
if (iid > CTL_MAX_INIT_PER_PORT) {
|
|
printf("%s: initiator ID %u > maximun %u!\n",
|
|
__func__, iid, CTL_MAX_INIT_PER_PORT);
|
|
return (1);
|
|
}
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
softc->wwpn_iid[targ_port][iid].in_use = 0;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add an initiator to the initiator map.
|
|
* Returns 0 for success, 1 for failure.
|
|
* Assumes the caller does NOT hold the CTL lock.
|
|
*/
|
|
int
|
|
ctl_add_initiator(uint64_t wwpn, int32_t targ_port, uint32_t iid)
|
|
{
|
|
struct ctl_softc *softc;
|
|
int retval;
|
|
|
|
softc = control_softc;
|
|
|
|
retval = 0;
|
|
|
|
if ((targ_port < 0)
|
|
|| (targ_port > CTL_MAX_PORTS)) {
|
|
printf("%s: invalid port number %d\n", __func__, targ_port);
|
|
return (1);
|
|
}
|
|
if (iid > CTL_MAX_INIT_PER_PORT) {
|
|
printf("%s: WWPN %#jx initiator ID %u > maximun %u!\n",
|
|
__func__, wwpn, iid, CTL_MAX_INIT_PER_PORT);
|
|
return (1);
|
|
}
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
if (softc->wwpn_iid[targ_port][iid].in_use != 0) {
|
|
/*
|
|
* We don't treat this as an error.
|
|
*/
|
|
if (softc->wwpn_iid[targ_port][iid].wwpn == wwpn) {
|
|
printf("%s: port %d iid %u WWPN %#jx arrived again?\n",
|
|
__func__, targ_port, iid, (uintmax_t)wwpn);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* This is an error, but what do we do about it? The
|
|
* driver is telling us we have a new WWPN for this
|
|
* initiator ID, so we pretty much need to use it.
|
|
*/
|
|
printf("%s: port %d iid %u WWPN %#jx arrived, WWPN %#jx is "
|
|
"still at that address\n", __func__, targ_port, iid,
|
|
(uintmax_t)wwpn,
|
|
(uintmax_t)softc->wwpn_iid[targ_port][iid].wwpn);
|
|
|
|
/*
|
|
* XXX KDM clear have_ca and ua_pending on each LUN for
|
|
* this initiator.
|
|
*/
|
|
}
|
|
softc->wwpn_iid[targ_port][iid].in_use = 1;
|
|
softc->wwpn_iid[targ_port][iid].iid = iid;
|
|
softc->wwpn_iid[targ_port][iid].wwpn = wwpn;
|
|
softc->wwpn_iid[targ_port][iid].port = targ_port;
|
|
|
|
bailout:
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* XXX KDM should we pretend to do something in the target/lun
|
|
* enable/disable functions?
|
|
*/
|
|
static int
|
|
ctl_ioctl_targ_enable(void *arg, struct ctl_id targ_id)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ctl_ioctl_targ_disable(void *arg, struct ctl_id targ_id)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ctl_ioctl_lun_enable(void *arg, struct ctl_id targ_id, int lun_id)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ctl_ioctl_lun_disable(void *arg, struct ctl_id targ_id, int lun_id)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Data movement routine for the CTL ioctl frontend port.
|
|
*/
|
|
static int
|
|
ctl_ioctl_do_datamove(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_sg_entry *ext_sglist, *kern_sglist;
|
|
struct ctl_sg_entry ext_entry, kern_entry;
|
|
int ext_sglen, ext_sg_entries, kern_sg_entries;
|
|
int ext_sg_start, ext_offset;
|
|
int len_to_copy, len_copied;
|
|
int kern_watermark, ext_watermark;
|
|
int ext_sglist_malloced;
|
|
int i, j;
|
|
|
|
ext_sglist_malloced = 0;
|
|
ext_sg_start = 0;
|
|
ext_offset = 0;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove\n"));
|
|
|
|
/*
|
|
* If this flag is set, fake the data transfer.
|
|
*/
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_NO_DATAMOVE) {
|
|
ctsio->ext_data_filled = ctsio->ext_data_len;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* To simplify things here, if we have a single buffer, stick it in
|
|
* a S/G entry and just make it a single entry S/G list.
|
|
*/
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_EDPTR_SGLIST) {
|
|
int len_seen;
|
|
|
|
ext_sglen = ctsio->ext_sg_entries * sizeof(*ext_sglist);
|
|
|
|
ext_sglist = (struct ctl_sg_entry *)malloc(ext_sglen, M_CTL,
|
|
M_WAITOK);
|
|
if (ext_sglist == NULL) {
|
|
ctl_set_internal_failure(ctsio,
|
|
/*sks_valid*/ 0,
|
|
/*retry_count*/ 0);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ext_sglist_malloced = 1;
|
|
if (copyin(ctsio->ext_data_ptr, ext_sglist,
|
|
ext_sglen) != 0) {
|
|
ctl_set_internal_failure(ctsio,
|
|
/*sks_valid*/ 0,
|
|
/*retry_count*/ 0);
|
|
goto bailout;
|
|
}
|
|
ext_sg_entries = ctsio->ext_sg_entries;
|
|
len_seen = 0;
|
|
for (i = 0; i < ext_sg_entries; i++) {
|
|
if ((len_seen + ext_sglist[i].len) >=
|
|
ctsio->ext_data_filled) {
|
|
ext_sg_start = i;
|
|
ext_offset = ctsio->ext_data_filled - len_seen;
|
|
break;
|
|
}
|
|
len_seen += ext_sglist[i].len;
|
|
}
|
|
} else {
|
|
ext_sglist = &ext_entry;
|
|
ext_sglist->addr = ctsio->ext_data_ptr;
|
|
ext_sglist->len = ctsio->ext_data_len;
|
|
ext_sg_entries = 1;
|
|
ext_sg_start = 0;
|
|
ext_offset = ctsio->ext_data_filled;
|
|
}
|
|
|
|
if (ctsio->kern_sg_entries > 0) {
|
|
kern_sglist = (struct ctl_sg_entry *)ctsio->kern_data_ptr;
|
|
kern_sg_entries = ctsio->kern_sg_entries;
|
|
} else {
|
|
kern_sglist = &kern_entry;
|
|
kern_sglist->addr = ctsio->kern_data_ptr;
|
|
kern_sglist->len = ctsio->kern_data_len;
|
|
kern_sg_entries = 1;
|
|
}
|
|
|
|
|
|
kern_watermark = 0;
|
|
ext_watermark = ext_offset;
|
|
len_copied = 0;
|
|
for (i = ext_sg_start, j = 0;
|
|
i < ext_sg_entries && j < kern_sg_entries;) {
|
|
uint8_t *ext_ptr, *kern_ptr;
|
|
|
|
len_to_copy = ctl_min(ext_sglist[i].len - ext_watermark,
|
|
kern_sglist[j].len - kern_watermark);
|
|
|
|
ext_ptr = (uint8_t *)ext_sglist[i].addr;
|
|
ext_ptr = ext_ptr + ext_watermark;
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
|
|
/*
|
|
* XXX KDM fix this!
|
|
*/
|
|
panic("need to implement bus address support");
|
|
#if 0
|
|
kern_ptr = bus_to_virt(kern_sglist[j].addr);
|
|
#endif
|
|
} else
|
|
kern_ptr = (uint8_t *)kern_sglist[j].addr;
|
|
kern_ptr = kern_ptr + kern_watermark;
|
|
|
|
kern_watermark += len_to_copy;
|
|
ext_watermark += len_to_copy;
|
|
|
|
if ((ctsio->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
|
|
CTL_FLAG_DATA_IN) {
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: copying %d "
|
|
"bytes to user\n", len_to_copy));
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: from %p "
|
|
"to %p\n", kern_ptr, ext_ptr));
|
|
if (copyout(kern_ptr, ext_ptr, len_to_copy) != 0) {
|
|
ctl_set_internal_failure(ctsio,
|
|
/*sks_valid*/ 0,
|
|
/*retry_count*/ 0);
|
|
goto bailout;
|
|
}
|
|
} else {
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: copying %d "
|
|
"bytes from user\n", len_to_copy));
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: from %p "
|
|
"to %p\n", ext_ptr, kern_ptr));
|
|
if (copyin(ext_ptr, kern_ptr, len_to_copy)!= 0){
|
|
ctl_set_internal_failure(ctsio,
|
|
/*sks_valid*/ 0,
|
|
/*retry_count*/0);
|
|
goto bailout;
|
|
}
|
|
}
|
|
|
|
len_copied += len_to_copy;
|
|
|
|
if (ext_sglist[i].len == ext_watermark) {
|
|
i++;
|
|
ext_watermark = 0;
|
|
}
|
|
|
|
if (kern_sglist[j].len == kern_watermark) {
|
|
j++;
|
|
kern_watermark = 0;
|
|
}
|
|
}
|
|
|
|
ctsio->ext_data_filled += len_copied;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: ext_sg_entries: %d, "
|
|
"kern_sg_entries: %d\n", ext_sg_entries,
|
|
kern_sg_entries));
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: ext_data_len = %d, "
|
|
"kern_data_len = %d\n", ctsio->ext_data_len,
|
|
ctsio->kern_data_len));
|
|
|
|
|
|
/* XXX KDM set residual?? */
|
|
bailout:
|
|
|
|
if (ext_sglist_malloced != 0)
|
|
free(ext_sglist, M_CTL);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Serialize a command that went down the "wrong" side, and so was sent to
|
|
* this controller for execution. The logic is a little different than the
|
|
* standard case in ctl_scsiio_precheck(). Errors in this case need to get
|
|
* sent back to the other side, but in the success case, we execute the
|
|
* command on this side (XFER mode) or tell the other side to execute it
|
|
* (SER_ONLY mode).
|
|
*/
|
|
static int
|
|
ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio, int have_lock)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
union ctl_ha_msg msg_info;
|
|
struct ctl_lun *lun;
|
|
int retval = 0;
|
|
|
|
ctl_softc = control_softc;
|
|
if (have_lock == 0)
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
lun = ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun];
|
|
if (lun==NULL)
|
|
{
|
|
/*
|
|
* Why isn't LUN defined? The other side wouldn't
|
|
* send a cmd if the LUN is undefined.
|
|
*/
|
|
printf("%s: Bad JUJU!, LUN is NULL!\n", __func__);
|
|
|
|
/* "Logical unit not supported" */
|
|
ctl_set_sense_data(&msg_info.scsi.sense_data,
|
|
lun,
|
|
/*sense_format*/SSD_TYPE_NONE,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
|
|
/*asc*/ 0x25,
|
|
/*ascq*/ 0x00,
|
|
SSD_ELEM_NONE);
|
|
|
|
msg_info.scsi.sense_len = SSD_FULL_SIZE;
|
|
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
|
|
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return(1);
|
|
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
|
|
|
|
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
|
|
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr, ctl_ooaq,
|
|
ooa_links))) {
|
|
case CTL_ACTION_BLOCK:
|
|
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
|
|
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
|
|
blocked_links);
|
|
break;
|
|
case CTL_ACTION_PASS:
|
|
case CTL_ACTION_SKIP:
|
|
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
|
|
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
|
|
&ctsio->io_hdr, links);
|
|
} else {
|
|
|
|
/* send msg back to other side */
|
|
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = (union ctl_io *)ctsio;
|
|
msg_info.hdr.msg_type = CTL_MSG_R2R;
|
|
#if 0
|
|
printf("2. pOrig %x\n", (int)msg_info.hdr.original_sc);
|
|
#endif
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
}
|
|
break;
|
|
case CTL_ACTION_OVERLAP:
|
|
/* OVERLAPPED COMMANDS ATTEMPTED */
|
|
ctl_set_sense_data(&msg_info.scsi.sense_data,
|
|
lun,
|
|
/*sense_format*/SSD_TYPE_NONE,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
|
|
/*asc*/ 0x4E,
|
|
/*ascq*/ 0x00,
|
|
SSD_ELEM_NONE);
|
|
|
|
msg_info.scsi.sense_len = SSD_FULL_SIZE;
|
|
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
|
|
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
#if 0
|
|
printf("BAD JUJU:Major Bummer Overlap\n");
|
|
#endif
|
|
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
|
|
retval = 1;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
break;
|
|
case CTL_ACTION_OVERLAP_TAG:
|
|
/* TAGGED OVERLAPPED COMMANDS (NN = QUEUE TAG) */
|
|
ctl_set_sense_data(&msg_info.scsi.sense_data,
|
|
lun,
|
|
/*sense_format*/SSD_TYPE_NONE,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
|
|
/*asc*/ 0x4D,
|
|
/*ascq*/ ctsio->tag_num & 0xff,
|
|
SSD_ELEM_NONE);
|
|
|
|
msg_info.scsi.sense_len = SSD_FULL_SIZE;
|
|
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
|
|
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
#if 0
|
|
printf("BAD JUJU:Major Bummer Overlap Tag\n");
|
|
#endif
|
|
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
|
|
retval = 1;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
break;
|
|
case CTL_ACTION_ERROR:
|
|
default:
|
|
/* "Internal target failure" */
|
|
ctl_set_sense_data(&msg_info.scsi.sense_data,
|
|
lun,
|
|
/*sense_format*/SSD_TYPE_NONE,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_HARDWARE_ERROR,
|
|
/*asc*/ 0x44,
|
|
/*ascq*/ 0x00,
|
|
SSD_ELEM_NONE);
|
|
|
|
msg_info.scsi.sense_len = SSD_FULL_SIZE;
|
|
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
|
|
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
#if 0
|
|
printf("BAD JUJU:Major Bummer HW Error\n");
|
|
#endif
|
|
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
|
|
retval = 1;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
|
|
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
break;
|
|
}
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ctl_ioctl_submit_wait(union ctl_io *io)
|
|
{
|
|
struct ctl_fe_ioctl_params params;
|
|
ctl_fe_ioctl_state last_state;
|
|
int done, retval;
|
|
|
|
retval = 0;
|
|
|
|
bzero(¶ms, sizeof(params));
|
|
|
|
mtx_init(¶ms.ioctl_mtx, "ctliocmtx", NULL, MTX_DEF);
|
|
cv_init(¶ms.sem, "ctlioccv");
|
|
params.state = CTL_IOCTL_INPROG;
|
|
last_state = params.state;
|
|
|
|
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr = ¶ms;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_ioctl_submit_wait\n"));
|
|
|
|
/* This shouldn't happen */
|
|
if ((retval = ctl_queue(io)) != CTL_RETVAL_COMPLETE)
|
|
return (retval);
|
|
|
|
done = 0;
|
|
|
|
do {
|
|
mtx_lock(¶ms.ioctl_mtx);
|
|
/*
|
|
* Check the state here, and don't sleep if the state has
|
|
* already changed (i.e. wakeup has already occured, but we
|
|
* weren't waiting yet).
|
|
*/
|
|
if (params.state == last_state) {
|
|
/* XXX KDM cv_wait_sig instead? */
|
|
cv_wait(¶ms.sem, ¶ms.ioctl_mtx);
|
|
}
|
|
last_state = params.state;
|
|
|
|
switch (params.state) {
|
|
case CTL_IOCTL_INPROG:
|
|
/* Why did we wake up? */
|
|
/* XXX KDM error here? */
|
|
mtx_unlock(¶ms.ioctl_mtx);
|
|
break;
|
|
case CTL_IOCTL_DATAMOVE:
|
|
CTL_DEBUG_PRINT(("got CTL_IOCTL_DATAMOVE\n"));
|
|
|
|
/*
|
|
* change last_state back to INPROG to avoid
|
|
* deadlock on subsequent data moves.
|
|
*/
|
|
params.state = last_state = CTL_IOCTL_INPROG;
|
|
|
|
mtx_unlock(¶ms.ioctl_mtx);
|
|
ctl_ioctl_do_datamove(&io->scsiio);
|
|
/*
|
|
* Note that in some cases, most notably writes,
|
|
* this will queue the I/O and call us back later.
|
|
* In other cases, generally reads, this routine
|
|
* will immediately call back and wake us up,
|
|
* probably using our own context.
|
|
*/
|
|
io->scsiio.be_move_done(io);
|
|
break;
|
|
case CTL_IOCTL_DONE:
|
|
mtx_unlock(¶ms.ioctl_mtx);
|
|
CTL_DEBUG_PRINT(("got CTL_IOCTL_DONE\n"));
|
|
done = 1;
|
|
break;
|
|
default:
|
|
mtx_unlock(¶ms.ioctl_mtx);
|
|
/* XXX KDM error here? */
|
|
break;
|
|
}
|
|
} while (done == 0);
|
|
|
|
mtx_destroy(¶ms.ioctl_mtx);
|
|
cv_destroy(¶ms.sem);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_datamove(union ctl_io *io)
|
|
{
|
|
struct ctl_fe_ioctl_params *params;
|
|
|
|
params = (struct ctl_fe_ioctl_params *)
|
|
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr;
|
|
|
|
mtx_lock(¶ms->ioctl_mtx);
|
|
params->state = CTL_IOCTL_DATAMOVE;
|
|
cv_broadcast(¶ms->sem);
|
|
mtx_unlock(¶ms->ioctl_mtx);
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_done(union ctl_io *io)
|
|
{
|
|
struct ctl_fe_ioctl_params *params;
|
|
|
|
params = (struct ctl_fe_ioctl_params *)
|
|
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr;
|
|
|
|
mtx_lock(¶ms->ioctl_mtx);
|
|
params->state = CTL_IOCTL_DONE;
|
|
cv_broadcast(¶ms->sem);
|
|
mtx_unlock(¶ms->ioctl_mtx);
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_hard_startstop_callback(void *arg, struct cfi_metatask *metatask)
|
|
{
|
|
struct ctl_fe_ioctl_startstop_info *sd_info;
|
|
|
|
sd_info = (struct ctl_fe_ioctl_startstop_info *)arg;
|
|
|
|
sd_info->hs_info.status = metatask->status;
|
|
sd_info->hs_info.total_luns = metatask->taskinfo.startstop.total_luns;
|
|
sd_info->hs_info.luns_complete =
|
|
metatask->taskinfo.startstop.luns_complete;
|
|
sd_info->hs_info.luns_failed = metatask->taskinfo.startstop.luns_failed;
|
|
|
|
cv_broadcast(&sd_info->sem);
|
|
}
|
|
|
|
static void
|
|
ctl_ioctl_bbrread_callback(void *arg, struct cfi_metatask *metatask)
|
|
{
|
|
struct ctl_fe_ioctl_bbrread_info *fe_bbr_info;
|
|
|
|
fe_bbr_info = (struct ctl_fe_ioctl_bbrread_info *)arg;
|
|
|
|
mtx_lock(fe_bbr_info->lock);
|
|
fe_bbr_info->bbr_info->status = metatask->status;
|
|
fe_bbr_info->bbr_info->bbr_status = metatask->taskinfo.bbrread.status;
|
|
fe_bbr_info->wakeup_done = 1;
|
|
mtx_unlock(fe_bbr_info->lock);
|
|
|
|
cv_broadcast(&fe_bbr_info->sem);
|
|
}
|
|
|
|
/*
|
|
* Must be called with the ctl_lock held.
|
|
* Returns 0 for success, errno for failure.
|
|
*/
|
|
static int
|
|
ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
|
|
struct ctl_ooa *ooa_hdr)
|
|
{
|
|
union ctl_io *io;
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); (io != NULL);
|
|
(*cur_fill_num)++, io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,
|
|
ooa_links)) {
|
|
struct ctl_ooa_entry *cur_entry, entry;
|
|
|
|
/*
|
|
* If we've got more than we can fit, just count the
|
|
* remaining entries.
|
|
*/
|
|
if (*cur_fill_num >= ooa_hdr->alloc_num)
|
|
continue;
|
|
|
|
cur_entry = &ooa_hdr->entries[*cur_fill_num];
|
|
|
|
bzero(&entry, sizeof(entry));
|
|
|
|
entry.tag_num = io->scsiio.tag_num;
|
|
entry.lun_num = lun->lun;
|
|
#ifdef CTL_TIME_IO
|
|
entry.start_bt = io->io_hdr.start_bt;
|
|
#endif
|
|
bcopy(io->scsiio.cdb, entry.cdb, io->scsiio.cdb_len);
|
|
entry.cdb_len = io->scsiio.cdb_len;
|
|
if (io->io_hdr.flags & CTL_FLAG_BLOCKED)
|
|
entry.cmd_flags |= CTL_OOACMD_FLAG_BLOCKED;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_DMA_INPROG)
|
|
entry.cmd_flags |= CTL_OOACMD_FLAG_DMA;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_ABORT)
|
|
entry.cmd_flags |= CTL_OOACMD_FLAG_ABORT;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_IS_WAS_ON_RTR)
|
|
entry.cmd_flags |= CTL_OOACMD_FLAG_RTR;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED)
|
|
entry.cmd_flags |= CTL_OOACMD_FLAG_DMA_QUEUED;
|
|
|
|
retval = copyout(&entry, cur_entry, sizeof(entry));
|
|
|
|
if (retval != 0)
|
|
break;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static void *
|
|
ctl_copyin_alloc(void *user_addr, int len, char *error_str,
|
|
size_t error_str_len)
|
|
{
|
|
void *kptr;
|
|
|
|
kptr = malloc(len, M_CTL, M_WAITOK | M_ZERO);
|
|
if (kptr == NULL) {
|
|
snprintf(error_str, error_str_len, "Cannot allocate %d bytes",
|
|
len);
|
|
return (NULL);
|
|
}
|
|
|
|
if (copyin(user_addr, kptr, len) != 0) {
|
|
snprintf(error_str, error_str_len, "Error copying %d bytes "
|
|
"from user address %p to kernel address %p", len,
|
|
user_addr, kptr);
|
|
free(kptr, M_CTL);
|
|
return (NULL);
|
|
}
|
|
|
|
return (kptr);
|
|
}
|
|
|
|
static void
|
|
ctl_free_args(int num_be_args, struct ctl_be_arg *be_args)
|
|
{
|
|
int i;
|
|
|
|
if (be_args == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < num_be_args; i++) {
|
|
free(be_args[i].kname, M_CTL);
|
|
free(be_args[i].kvalue, M_CTL);
|
|
}
|
|
|
|
free(be_args, M_CTL);
|
|
}
|
|
|
|
static struct ctl_be_arg *
|
|
ctl_copyin_args(int num_be_args, struct ctl_be_arg *be_args,
|
|
char *error_str, size_t error_str_len)
|
|
{
|
|
struct ctl_be_arg *args;
|
|
int i;
|
|
|
|
args = ctl_copyin_alloc(be_args, num_be_args * sizeof(*be_args),
|
|
error_str, error_str_len);
|
|
|
|
if (args == NULL)
|
|
goto bailout;
|
|
|
|
for (i = 0; i < num_be_args; i++) {
|
|
uint8_t *tmpptr;
|
|
|
|
args[i].kname = ctl_copyin_alloc(args[i].name,
|
|
args[i].namelen, error_str, error_str_len);
|
|
if (args[i].kname == NULL)
|
|
goto bailout;
|
|
|
|
if (args[i].kname[args[i].namelen - 1] != '\0') {
|
|
snprintf(error_str, error_str_len, "Argument %d "
|
|
"name is not NUL-terminated", i);
|
|
goto bailout;
|
|
}
|
|
|
|
args[i].kvalue = NULL;
|
|
|
|
tmpptr = ctl_copyin_alloc(args[i].value,
|
|
args[i].vallen, error_str, error_str_len);
|
|
if (tmpptr == NULL)
|
|
goto bailout;
|
|
|
|
args[i].kvalue = tmpptr;
|
|
|
|
if ((args[i].flags & CTL_BEARG_ASCII)
|
|
&& (tmpptr[args[i].vallen - 1] != '\0')) {
|
|
snprintf(error_str, error_str_len, "Argument %d "
|
|
"value is not NUL-terminated", i);
|
|
goto bailout;
|
|
}
|
|
}
|
|
|
|
return (args);
|
|
bailout:
|
|
|
|
ctl_free_args(num_be_args, args);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Escape characters that are illegal or not recommended in XML.
|
|
*/
|
|
int
|
|
ctl_sbuf_printf_esc(struct sbuf *sb, char *str)
|
|
{
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
for (; *str; str++) {
|
|
switch (*str) {
|
|
case '&':
|
|
retval = sbuf_printf(sb, "&");
|
|
break;
|
|
case '>':
|
|
retval = sbuf_printf(sb, ">");
|
|
break;
|
|
case '<':
|
|
retval = sbuf_printf(sb, "<");
|
|
break;
|
|
default:
|
|
retval = sbuf_putc(sb, *str);
|
|
break;
|
|
}
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
|
|
struct thread *td)
|
|
{
|
|
struct ctl_softc *softc;
|
|
int retval;
|
|
|
|
softc = control_softc;
|
|
|
|
retval = 0;
|
|
|
|
switch (cmd) {
|
|
case CTL_IO: {
|
|
union ctl_io *io;
|
|
void *pool_tmp;
|
|
|
|
/*
|
|
* If we haven't been "enabled", don't allow any SCSI I/O
|
|
* to this FETD.
|
|
*/
|
|
if ((softc->ioctl_info.flags & CTL_IOCTL_FLAG_ENABLED) == 0) {
|
|
retval = -EPERM;
|
|
break;
|
|
}
|
|
|
|
io = ctl_alloc_io(softc->ioctl_info.fe.ctl_pool_ref);
|
|
if (io == NULL) {
|
|
printf("ctl_ioctl: can't allocate ctl_io!\n");
|
|
retval = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Need to save the pool reference so it doesn't get
|
|
* spammed by the user's ctl_io.
|
|
*/
|
|
pool_tmp = io->io_hdr.pool;
|
|
|
|
memcpy(io, (void *)addr, sizeof(*io));
|
|
|
|
io->io_hdr.pool = pool_tmp;
|
|
/*
|
|
* No status yet, so make sure the status is set properly.
|
|
*/
|
|
io->io_hdr.status = CTL_STATUS_NONE;
|
|
|
|
/*
|
|
* The user sets the initiator ID, target and LUN IDs.
|
|
*/
|
|
io->io_hdr.nexus.targ_port = softc->ioctl_info.fe.targ_port;
|
|
io->io_hdr.flags |= CTL_FLAG_USER_REQ;
|
|
if ((io->io_hdr.io_type == CTL_IO_SCSI)
|
|
&& (io->scsiio.tag_type != CTL_TAG_UNTAGGED))
|
|
io->scsiio.tag_num = softc->ioctl_info.cur_tag_num++;
|
|
|
|
retval = ctl_ioctl_submit_wait(io);
|
|
|
|
if (retval != 0) {
|
|
ctl_free_io(io);
|
|
break;
|
|
}
|
|
|
|
memcpy((void *)addr, io, sizeof(*io));
|
|
|
|
/* return this to our pool */
|
|
ctl_free_io(io);
|
|
|
|
break;
|
|
}
|
|
case CTL_ENABLE_PORT:
|
|
case CTL_DISABLE_PORT:
|
|
case CTL_SET_PORT_WWNS: {
|
|
struct ctl_frontend *fe;
|
|
struct ctl_port_entry *entry;
|
|
|
|
entry = (struct ctl_port_entry *)addr;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
int action, done;
|
|
|
|
action = 0;
|
|
done = 0;
|
|
|
|
if ((entry->port_type == CTL_PORT_NONE)
|
|
&& (entry->targ_port == fe->targ_port)) {
|
|
/*
|
|
* If the user only wants to enable or
|
|
* disable or set WWNs on a specific port,
|
|
* do the operation and we're done.
|
|
*/
|
|
action = 1;
|
|
done = 1;
|
|
} else if (entry->port_type & fe->port_type) {
|
|
/*
|
|
* Compare the user's type mask with the
|
|
* particular frontend type to see if we
|
|
* have a match.
|
|
*/
|
|
action = 1;
|
|
done = 0;
|
|
|
|
/*
|
|
* Make sure the user isn't trying to set
|
|
* WWNs on multiple ports at the same time.
|
|
*/
|
|
if (cmd == CTL_SET_PORT_WWNS) {
|
|
printf("%s: Can't set WWNs on "
|
|
"multiple ports\n", __func__);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
if (action != 0) {
|
|
/*
|
|
* XXX KDM we have to drop the lock here,
|
|
* because the online/offline operations
|
|
* can potentially block. We need to
|
|
* reference count the frontends so they
|
|
* can't go away,
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
if (cmd == CTL_ENABLE_PORT)
|
|
ctl_frontend_online(fe);
|
|
else if (cmd == CTL_DISABLE_PORT)
|
|
ctl_frontend_offline(fe);
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
if (cmd == CTL_SET_PORT_WWNS)
|
|
ctl_frontend_set_wwns(fe,
|
|
(entry->flags & CTL_PORT_WWNN_VALID) ?
|
|
1 : 0, entry->wwnn,
|
|
(entry->flags & CTL_PORT_WWPN_VALID) ?
|
|
1 : 0, entry->wwpn);
|
|
}
|
|
if (done != 0)
|
|
break;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
break;
|
|
}
|
|
case CTL_GET_PORT_LIST: {
|
|
struct ctl_frontend *fe;
|
|
struct ctl_port_list *list;
|
|
int i;
|
|
|
|
list = (struct ctl_port_list *)addr;
|
|
|
|
if (list->alloc_len != (list->alloc_num *
|
|
sizeof(struct ctl_port_entry))) {
|
|
printf("%s: CTL_GET_PORT_LIST: alloc_len %u != "
|
|
"alloc_num %u * sizeof(struct ctl_port_entry) "
|
|
"%zu\n", __func__, list->alloc_len,
|
|
list->alloc_num, sizeof(struct ctl_port_entry));
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
list->fill_len = 0;
|
|
list->fill_num = 0;
|
|
list->dropped_num = 0;
|
|
i = 0;
|
|
mtx_lock(&softc->ctl_lock);
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
struct ctl_port_entry entry, *list_entry;
|
|
|
|
if (list->fill_num >= list->alloc_num) {
|
|
list->dropped_num++;
|
|
continue;
|
|
}
|
|
|
|
entry.port_type = fe->port_type;
|
|
strlcpy(entry.port_name, fe->port_name,
|
|
sizeof(entry.port_name));
|
|
entry.targ_port = fe->targ_port;
|
|
entry.physical_port = fe->physical_port;
|
|
entry.virtual_port = fe->virtual_port;
|
|
entry.wwnn = fe->wwnn;
|
|
entry.wwpn = fe->wwpn;
|
|
if (fe->status & CTL_PORT_STATUS_ONLINE)
|
|
entry.online = 1;
|
|
else
|
|
entry.online = 0;
|
|
|
|
list_entry = &list->entries[i];
|
|
|
|
retval = copyout(&entry, list_entry, sizeof(entry));
|
|
if (retval != 0) {
|
|
printf("%s: CTL_GET_PORT_LIST: copyout "
|
|
"returned %d\n", __func__, retval);
|
|
break;
|
|
}
|
|
i++;
|
|
list->fill_num++;
|
|
list->fill_len += sizeof(entry);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
/*
|
|
* If this is non-zero, we had a copyout fault, so there's
|
|
* probably no point in attempting to set the status inside
|
|
* the structure.
|
|
*/
|
|
if (retval != 0)
|
|
break;
|
|
|
|
if (list->dropped_num > 0)
|
|
list->status = CTL_PORT_LIST_NEED_MORE_SPACE;
|
|
else
|
|
list->status = CTL_PORT_LIST_OK;
|
|
break;
|
|
}
|
|
case CTL_DUMP_OOA: {
|
|
struct ctl_lun *lun;
|
|
union ctl_io *io;
|
|
char printbuf[128];
|
|
struct sbuf sb;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
printf("Dumping OOA queues:\n");
|
|
STAILQ_FOREACH(lun, &softc->lun_list, links) {
|
|
for (io = (union ctl_io *)TAILQ_FIRST(
|
|
&lun->ooa_queue); io != NULL;
|
|
io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,
|
|
ooa_links)) {
|
|
sbuf_new(&sb, printbuf, sizeof(printbuf),
|
|
SBUF_FIXEDLEN);
|
|
sbuf_printf(&sb, "LUN %jd tag 0x%04x%s%s%s%s: ",
|
|
(intmax_t)lun->lun,
|
|
io->scsiio.tag_num,
|
|
(io->io_hdr.flags &
|
|
CTL_FLAG_BLOCKED) ? "" : " BLOCKED",
|
|
(io->io_hdr.flags &
|
|
CTL_FLAG_DMA_INPROG) ? " DMA" : "",
|
|
(io->io_hdr.flags &
|
|
CTL_FLAG_ABORT) ? " ABORT" : "",
|
|
(io->io_hdr.flags &
|
|
CTL_FLAG_IS_WAS_ON_RTR) ? " RTR" : "");
|
|
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
|
|
sbuf_finish(&sb);
|
|
printf("%s\n", sbuf_data(&sb));
|
|
}
|
|
}
|
|
printf("OOA queues dump done\n");
|
|
mtx_unlock(&softc->ctl_lock);
|
|
break;
|
|
}
|
|
case CTL_GET_OOA: {
|
|
struct ctl_lun *lun;
|
|
struct ctl_ooa *ooa_hdr;
|
|
uint32_t cur_fill_num;
|
|
|
|
ooa_hdr = (struct ctl_ooa *)addr;
|
|
|
|
if ((ooa_hdr->alloc_len == 0)
|
|
|| (ooa_hdr->alloc_num == 0)) {
|
|
printf("%s: CTL_GET_OOA: alloc len %u and alloc num %u "
|
|
"must be non-zero\n", __func__,
|
|
ooa_hdr->alloc_len, ooa_hdr->alloc_num);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (ooa_hdr->alloc_len != (ooa_hdr->alloc_num *
|
|
sizeof(struct ctl_ooa_entry))) {
|
|
printf("%s: CTL_GET_OOA: alloc len %u must be alloc "
|
|
"num %d * sizeof(struct ctl_ooa_entry) %zd\n",
|
|
__func__, ooa_hdr->alloc_len,
|
|
ooa_hdr->alloc_num,sizeof(struct ctl_ooa_entry));
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (((ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) == 0)
|
|
&& ((ooa_hdr->lun_num > CTL_MAX_LUNS)
|
|
|| (softc->ctl_luns[ooa_hdr->lun_num] == NULL))) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
printf("%s: CTL_GET_OOA: invalid LUN %ju\n",
|
|
__func__, (uintmax_t)ooa_hdr->lun_num);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
|
|
cur_fill_num = 0;
|
|
|
|
if (ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) {
|
|
STAILQ_FOREACH(lun, &softc->lun_list, links) {
|
|
retval = ctl_ioctl_fill_ooa(lun, &cur_fill_num,
|
|
ooa_hdr);
|
|
if (retval != 0)
|
|
break;
|
|
}
|
|
if (retval != 0) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
break;
|
|
}
|
|
} else {
|
|
lun = softc->ctl_luns[ooa_hdr->lun_num];
|
|
|
|
retval = ctl_ioctl_fill_ooa(lun, &cur_fill_num,ooa_hdr);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
ooa_hdr->fill_num = min(cur_fill_num, ooa_hdr->alloc_num);
|
|
ooa_hdr->fill_len = ooa_hdr->fill_num *
|
|
sizeof(struct ctl_ooa_entry);
|
|
|
|
getbintime(&ooa_hdr->cur_bt);
|
|
|
|
if (cur_fill_num > ooa_hdr->alloc_num) {
|
|
ooa_hdr->dropped_num = cur_fill_num -ooa_hdr->alloc_num;
|
|
ooa_hdr->status = CTL_OOA_NEED_MORE_SPACE;
|
|
} else {
|
|
ooa_hdr->dropped_num = 0;
|
|
ooa_hdr->status = CTL_OOA_OK;
|
|
}
|
|
break;
|
|
}
|
|
case CTL_CHECK_OOA: {
|
|
union ctl_io *io;
|
|
struct ctl_lun *lun;
|
|
struct ctl_ooa_info *ooa_info;
|
|
|
|
|
|
ooa_info = (struct ctl_ooa_info *)addr;
|
|
|
|
if (ooa_info->lun_id >= CTL_MAX_LUNS) {
|
|
ooa_info->status = CTL_OOA_INVALID_LUN;
|
|
break;
|
|
}
|
|
mtx_lock(&softc->ctl_lock);
|
|
lun = softc->ctl_luns[ooa_info->lun_id];
|
|
if (lun == NULL) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ooa_info->status = CTL_OOA_INVALID_LUN;
|
|
break;
|
|
}
|
|
|
|
ooa_info->num_entries = 0;
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
|
|
io != NULL; io = (union ctl_io *)TAILQ_NEXT(
|
|
&io->io_hdr, ooa_links)) {
|
|
ooa_info->num_entries++;
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ooa_info->status = CTL_OOA_SUCCESS;
|
|
|
|
break;
|
|
}
|
|
case CTL_HARD_START:
|
|
case CTL_HARD_STOP: {
|
|
struct ctl_fe_ioctl_startstop_info ss_info;
|
|
struct cfi_metatask *metatask;
|
|
struct mtx hs_mtx;
|
|
|
|
mtx_init(&hs_mtx, "HS Mutex", NULL, MTX_DEF);
|
|
|
|
cv_init(&ss_info.sem, "hard start/stop cv" );
|
|
|
|
metatask = cfi_alloc_metatask(/*can_wait*/ 1);
|
|
if (metatask == NULL) {
|
|
retval = ENOMEM;
|
|
mtx_destroy(&hs_mtx);
|
|
break;
|
|
}
|
|
|
|
if (cmd == CTL_HARD_START)
|
|
metatask->tasktype = CFI_TASK_STARTUP;
|
|
else
|
|
metatask->tasktype = CFI_TASK_SHUTDOWN;
|
|
|
|
metatask->callback = ctl_ioctl_hard_startstop_callback;
|
|
metatask->callback_arg = &ss_info;
|
|
|
|
cfi_action(metatask);
|
|
|
|
/* Wait for the callback */
|
|
mtx_lock(&hs_mtx);
|
|
cv_wait_sig(&ss_info.sem, &hs_mtx);
|
|
mtx_unlock(&hs_mtx);
|
|
|
|
/*
|
|
* All information has been copied from the metatask by the
|
|
* time cv_broadcast() is called, so we free the metatask here.
|
|
*/
|
|
cfi_free_metatask(metatask);
|
|
|
|
memcpy((void *)addr, &ss_info.hs_info, sizeof(ss_info.hs_info));
|
|
|
|
mtx_destroy(&hs_mtx);
|
|
break;
|
|
}
|
|
case CTL_BBRREAD: {
|
|
struct ctl_bbrread_info *bbr_info;
|
|
struct ctl_fe_ioctl_bbrread_info fe_bbr_info;
|
|
struct mtx bbr_mtx;
|
|
struct cfi_metatask *metatask;
|
|
|
|
bbr_info = (struct ctl_bbrread_info *)addr;
|
|
|
|
bzero(&fe_bbr_info, sizeof(fe_bbr_info));
|
|
|
|
bzero(&bbr_mtx, sizeof(bbr_mtx));
|
|
mtx_init(&bbr_mtx, "BBR Mutex", NULL, MTX_DEF);
|
|
|
|
fe_bbr_info.bbr_info = bbr_info;
|
|
fe_bbr_info.lock = &bbr_mtx;
|
|
|
|
cv_init(&fe_bbr_info.sem, "BBR read cv");
|
|
metatask = cfi_alloc_metatask(/*can_wait*/ 1);
|
|
|
|
if (metatask == NULL) {
|
|
mtx_destroy(&bbr_mtx);
|
|
cv_destroy(&fe_bbr_info.sem);
|
|
retval = ENOMEM;
|
|
break;
|
|
}
|
|
metatask->tasktype = CFI_TASK_BBRREAD;
|
|
metatask->callback = ctl_ioctl_bbrread_callback;
|
|
metatask->callback_arg = &fe_bbr_info;
|
|
metatask->taskinfo.bbrread.lun_num = bbr_info->lun_num;
|
|
metatask->taskinfo.bbrread.lba = bbr_info->lba;
|
|
metatask->taskinfo.bbrread.len = bbr_info->len;
|
|
|
|
cfi_action(metatask);
|
|
|
|
mtx_lock(&bbr_mtx);
|
|
while (fe_bbr_info.wakeup_done == 0)
|
|
cv_wait_sig(&fe_bbr_info.sem, &bbr_mtx);
|
|
mtx_unlock(&bbr_mtx);
|
|
|
|
bbr_info->status = metatask->status;
|
|
bbr_info->bbr_status = metatask->taskinfo.bbrread.status;
|
|
bbr_info->scsi_status = metatask->taskinfo.bbrread.scsi_status;
|
|
memcpy(&bbr_info->sense_data,
|
|
&metatask->taskinfo.bbrread.sense_data,
|
|
ctl_min(sizeof(bbr_info->sense_data),
|
|
sizeof(metatask->taskinfo.bbrread.sense_data)));
|
|
|
|
cfi_free_metatask(metatask);
|
|
|
|
mtx_destroy(&bbr_mtx);
|
|
cv_destroy(&fe_bbr_info.sem);
|
|
|
|
break;
|
|
}
|
|
case CTL_DELAY_IO: {
|
|
struct ctl_io_delay_info *delay_info;
|
|
#ifdef CTL_IO_DELAY
|
|
struct ctl_lun *lun;
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
delay_info = (struct ctl_io_delay_info *)addr;
|
|
|
|
#ifdef CTL_IO_DELAY
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
if ((delay_info->lun_id > CTL_MAX_LUNS)
|
|
|| (softc->ctl_luns[delay_info->lun_id] == NULL)) {
|
|
delay_info->status = CTL_DELAY_STATUS_INVALID_LUN;
|
|
} else {
|
|
lun = softc->ctl_luns[delay_info->lun_id];
|
|
|
|
delay_info->status = CTL_DELAY_STATUS_OK;
|
|
|
|
switch (delay_info->delay_type) {
|
|
case CTL_DELAY_TYPE_CONT:
|
|
break;
|
|
case CTL_DELAY_TYPE_ONESHOT:
|
|
break;
|
|
default:
|
|
delay_info->status =
|
|
CTL_DELAY_STATUS_INVALID_TYPE;
|
|
break;
|
|
}
|
|
|
|
switch (delay_info->delay_loc) {
|
|
case CTL_DELAY_LOC_DATAMOVE:
|
|
lun->delay_info.datamove_type =
|
|
delay_info->delay_type;
|
|
lun->delay_info.datamove_delay =
|
|
delay_info->delay_secs;
|
|
break;
|
|
case CTL_DELAY_LOC_DONE:
|
|
lun->delay_info.done_type =
|
|
delay_info->delay_type;
|
|
lun->delay_info.done_delay =
|
|
delay_info->delay_secs;
|
|
break;
|
|
default:
|
|
delay_info->status =
|
|
CTL_DELAY_STATUS_INVALID_LOC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
#else
|
|
delay_info->status = CTL_DELAY_STATUS_NOT_IMPLEMENTED;
|
|
#endif /* CTL_IO_DELAY */
|
|
break;
|
|
}
|
|
case CTL_REALSYNC_SET: {
|
|
int *syncstate;
|
|
|
|
syncstate = (int *)addr;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
switch (*syncstate) {
|
|
case 0:
|
|
softc->flags &= ~CTL_FLAG_REAL_SYNC;
|
|
break;
|
|
case 1:
|
|
softc->flags |= CTL_FLAG_REAL_SYNC;
|
|
break;
|
|
default:
|
|
retval = -EINVAL;
|
|
break;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
break;
|
|
}
|
|
case CTL_REALSYNC_GET: {
|
|
int *syncstate;
|
|
|
|
syncstate = (int*)addr;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (softc->flags & CTL_FLAG_REAL_SYNC)
|
|
*syncstate = 1;
|
|
else
|
|
*syncstate = 0;
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
break;
|
|
}
|
|
case CTL_SETSYNC:
|
|
case CTL_GETSYNC: {
|
|
struct ctl_sync_info *sync_info;
|
|
struct ctl_lun *lun;
|
|
|
|
sync_info = (struct ctl_sync_info *)addr;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
lun = softc->ctl_luns[sync_info->lun_id];
|
|
if (lun == NULL) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
sync_info->status = CTL_GS_SYNC_NO_LUN;
|
|
}
|
|
/*
|
|
* Get or set the sync interval. We're not bounds checking
|
|
* in the set case, hopefully the user won't do something
|
|
* silly.
|
|
*/
|
|
if (cmd == CTL_GETSYNC)
|
|
sync_info->sync_interval = lun->sync_interval;
|
|
else
|
|
lun->sync_interval = sync_info->sync_interval;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
sync_info->status = CTL_GS_SYNC_OK;
|
|
|
|
break;
|
|
}
|
|
case CTL_GETSTATS: {
|
|
struct ctl_stats *stats;
|
|
struct ctl_lun *lun;
|
|
int i;
|
|
|
|
stats = (struct ctl_stats *)addr;
|
|
|
|
if ((sizeof(struct ctl_lun_io_stats) * softc->num_luns) >
|
|
stats->alloc_len) {
|
|
stats->status = CTL_SS_NEED_MORE_SPACE;
|
|
stats->num_luns = softc->num_luns;
|
|
break;
|
|
}
|
|
/*
|
|
* XXX KDM no locking here. If the LUN list changes,
|
|
* things can blow up.
|
|
*/
|
|
for (i = 0, lun = STAILQ_FIRST(&softc->lun_list); lun != NULL;
|
|
i++, lun = STAILQ_NEXT(lun, links)) {
|
|
retval = copyout(&lun->stats, &stats->lun_stats[i],
|
|
sizeof(lun->stats));
|
|
if (retval != 0)
|
|
break;
|
|
}
|
|
stats->num_luns = softc->num_luns;
|
|
stats->fill_len = sizeof(struct ctl_lun_io_stats) *
|
|
softc->num_luns;
|
|
stats->status = CTL_SS_OK;
|
|
#ifdef CTL_TIME_IO
|
|
stats->flags = CTL_STATS_FLAG_TIME_VALID;
|
|
#else
|
|
stats->flags = CTL_STATS_FLAG_NONE;
|
|
#endif
|
|
getnanouptime(&stats->timestamp);
|
|
break;
|
|
}
|
|
case CTL_ERROR_INJECT: {
|
|
struct ctl_error_desc *err_desc, *new_err_desc;
|
|
struct ctl_lun *lun;
|
|
|
|
err_desc = (struct ctl_error_desc *)addr;
|
|
|
|
new_err_desc = malloc(sizeof(*new_err_desc), M_CTL,
|
|
M_WAITOK | M_ZERO);
|
|
if (new_err_desc == NULL) {
|
|
printf("%s: CTL_ERROR_INJECT: error allocating %zu "
|
|
"bytes\n", __func__, sizeof(*new_err_desc));
|
|
retval = ENOMEM;
|
|
break;
|
|
}
|
|
bcopy(err_desc, new_err_desc, sizeof(*new_err_desc));
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
lun = softc->ctl_luns[err_desc->lun_id];
|
|
if (lun == NULL) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
printf("%s: CTL_ERROR_INJECT: invalid LUN %ju\n",
|
|
__func__, (uintmax_t)err_desc->lun_id);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We could do some checking here to verify the validity
|
|
* of the request, but given the complexity of error
|
|
* injection requests, the checking logic would be fairly
|
|
* complex.
|
|
*
|
|
* For now, if the request is invalid, it just won't get
|
|
* executed and might get deleted.
|
|
*/
|
|
STAILQ_INSERT_TAIL(&lun->error_list, new_err_desc, links);
|
|
|
|
/*
|
|
* XXX KDM check to make sure the serial number is unique,
|
|
* in case we somehow manage to wrap. That shouldn't
|
|
* happen for a very long time, but it's the right thing to
|
|
* do.
|
|
*/
|
|
new_err_desc->serial = lun->error_serial;
|
|
err_desc->serial = lun->error_serial;
|
|
lun->error_serial++;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
break;
|
|
}
|
|
case CTL_ERROR_INJECT_DELETE: {
|
|
struct ctl_error_desc *delete_desc, *desc, *desc2;
|
|
struct ctl_lun *lun;
|
|
int delete_done;
|
|
|
|
delete_desc = (struct ctl_error_desc *)addr;
|
|
delete_done = 0;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
lun = softc->ctl_luns[delete_desc->lun_id];
|
|
if (lun == NULL) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
printf("%s: CTL_ERROR_INJECT_DELETE: invalid LUN %ju\n",
|
|
__func__, (uintmax_t)delete_desc->lun_id);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
|
|
if (desc->serial != delete_desc->serial)
|
|
continue;
|
|
|
|
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc,
|
|
links);
|
|
free(desc, M_CTL);
|
|
delete_done = 1;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
if (delete_done == 0) {
|
|
printf("%s: CTL_ERROR_INJECT_DELETE: can't find "
|
|
"error serial %ju on LUN %u\n", __func__,
|
|
delete_desc->serial, delete_desc->lun_id);
|
|
retval = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case CTL_DUMP_STRUCTS: {
|
|
int i, j, k;
|
|
struct ctl_frontend *fe;
|
|
|
|
printf("CTL IID to WWPN map start:\n");
|
|
for (i = 0; i < CTL_MAX_PORTS; i++) {
|
|
for (j = 0; j < CTL_MAX_INIT_PER_PORT; j++) {
|
|
if (softc->wwpn_iid[i][j].in_use == 0)
|
|
continue;
|
|
|
|
printf("port %d iid %u WWPN %#jx\n",
|
|
softc->wwpn_iid[i][j].port,
|
|
softc->wwpn_iid[i][j].iid,
|
|
(uintmax_t)softc->wwpn_iid[i][j].wwpn);
|
|
}
|
|
}
|
|
printf("CTL IID to WWPN map end\n");
|
|
printf("CTL Persistent Reservation information start:\n");
|
|
for (i = 0; i < CTL_MAX_LUNS; i++) {
|
|
struct ctl_lun *lun;
|
|
|
|
lun = softc->ctl_luns[i];
|
|
|
|
if ((lun == NULL)
|
|
|| ((lun->flags & CTL_LUN_DISABLED) != 0))
|
|
continue;
|
|
|
|
for (j = 0; j < (CTL_MAX_PORTS * 2); j++) {
|
|
for (k = 0; k < CTL_MAX_INIT_PER_PORT; k++){
|
|
if (lun->per_res[j+k].registered == 0)
|
|
continue;
|
|
printf("LUN %d port %d iid %d key "
|
|
"%#jx\n", i, j, k,
|
|
(uintmax_t)scsi_8btou64(
|
|
lun->per_res[j+k].res_key.key));
|
|
}
|
|
}
|
|
}
|
|
printf("CTL Persistent Reservation information end\n");
|
|
printf("CTL Frontends:\n");
|
|
/*
|
|
* XXX KDM calling this without a lock. We'd likely want
|
|
* to drop the lock before calling the frontend's dump
|
|
* routine anyway.
|
|
*/
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
printf("Frontend %s Type %u pport %d vport %d WWNN "
|
|
"%#jx WWPN %#jx\n", fe->port_name, fe->port_type,
|
|
fe->physical_port, fe->virtual_port,
|
|
(uintmax_t)fe->wwnn, (uintmax_t)fe->wwpn);
|
|
|
|
/*
|
|
* Frontends are not required to support the dump
|
|
* routine.
|
|
*/
|
|
if (fe->fe_dump == NULL)
|
|
continue;
|
|
|
|
fe->fe_dump();
|
|
}
|
|
printf("CTL Frontend information end\n");
|
|
break;
|
|
}
|
|
case CTL_LUN_REQ: {
|
|
struct ctl_lun_req *lun_req;
|
|
struct ctl_backend_driver *backend;
|
|
|
|
lun_req = (struct ctl_lun_req *)addr;
|
|
|
|
backend = ctl_backend_find(lun_req->backend);
|
|
if (backend == NULL) {
|
|
lun_req->status = CTL_LUN_ERROR;
|
|
snprintf(lun_req->error_str,
|
|
sizeof(lun_req->error_str),
|
|
"Backend \"%s\" not found.",
|
|
lun_req->backend);
|
|
break;
|
|
}
|
|
if (lun_req->num_be_args > 0) {
|
|
lun_req->kern_be_args = ctl_copyin_args(
|
|
lun_req->num_be_args,
|
|
lun_req->be_args,
|
|
lun_req->error_str,
|
|
sizeof(lun_req->error_str));
|
|
if (lun_req->kern_be_args == NULL) {
|
|
lun_req->status = CTL_LUN_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
retval = backend->ioctl(dev, cmd, addr, flag, td);
|
|
|
|
if (lun_req->num_be_args > 0) {
|
|
ctl_free_args(lun_req->num_be_args,
|
|
lun_req->kern_be_args);
|
|
}
|
|
break;
|
|
}
|
|
case CTL_LUN_LIST: {
|
|
struct sbuf *sb;
|
|
struct ctl_lun *lun;
|
|
struct ctl_lun_list *list;
|
|
|
|
list = (struct ctl_lun_list *)addr;
|
|
|
|
/*
|
|
* Allocate a fixed length sbuf here, based on the length
|
|
* of the user's buffer. We could allocate an auto-extending
|
|
* buffer, and then tell the user how much larger our
|
|
* amount of data is than his buffer, but that presents
|
|
* some problems:
|
|
*
|
|
* 1. The sbuf(9) routines use a blocking malloc, and so
|
|
* we can't hold a lock while calling them with an
|
|
* auto-extending buffer.
|
|
*
|
|
* 2. There is not currently a LUN reference counting
|
|
* mechanism, outside of outstanding transactions on
|
|
* the LUN's OOA queue. So a LUN could go away on us
|
|
* while we're getting the LUN number, backend-specific
|
|
* information, etc. Thus, given the way things
|
|
* currently work, we need to hold the CTL lock while
|
|
* grabbing LUN information.
|
|
*
|
|
* So, from the user's standpoint, the best thing to do is
|
|
* allocate what he thinks is a reasonable buffer length,
|
|
* and then if he gets a CTL_LUN_LIST_NEED_MORE_SPACE error,
|
|
* double the buffer length and try again. (And repeat
|
|
* that until he succeeds.)
|
|
*/
|
|
sb = sbuf_new(NULL, NULL, list->alloc_len, SBUF_FIXEDLEN);
|
|
if (sb == NULL) {
|
|
list->status = CTL_LUN_LIST_ERROR;
|
|
snprintf(list->error_str, sizeof(list->error_str),
|
|
"Unable to allocate %d bytes for LUN list",
|
|
list->alloc_len);
|
|
break;
|
|
}
|
|
|
|
sbuf_printf(sb, "<ctllunlist>\n");
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
STAILQ_FOREACH(lun, &softc->lun_list, links) {
|
|
retval = sbuf_printf(sb, "<lun id=\"%ju\">\n",
|
|
(uintmax_t)lun->lun);
|
|
|
|
/*
|
|
* Bail out as soon as we see that we've overfilled
|
|
* the buffer.
|
|
*/
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "<backend_type>%s"
|
|
"</backend_type>\n",
|
|
(lun->backend == NULL) ? "none" :
|
|
lun->backend->name);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "<lun_type>%d</lun_type>\n",
|
|
lun->be_lun->lun_type);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
if (lun->backend == NULL) {
|
|
retval = sbuf_printf(sb, "</lun>\n");
|
|
if (retval != 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
retval = sbuf_printf(sb, "<size>%ju</size>\n",
|
|
(lun->be_lun->maxlba > 0) ?
|
|
lun->be_lun->maxlba + 1 : 0);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "<blocksize>%u</blocksize>\n",
|
|
lun->be_lun->blocksize);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "<serial_number>");
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = ctl_sbuf_printf_esc(sb,
|
|
lun->be_lun->serial_num);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "</serial_number>\n");
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "<device_id>");
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = ctl_sbuf_printf_esc(sb,lun->be_lun->device_id);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "</device_id>\n");
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
if (lun->backend->lun_info == NULL) {
|
|
retval = sbuf_printf(sb, "</lun>\n");
|
|
if (retval != 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
retval =lun->backend->lun_info(lun->be_lun->be_lun, sb);
|
|
|
|
if (retval != 0)
|
|
break;
|
|
|
|
retval = sbuf_printf(sb, "</lun>\n");
|
|
|
|
if (retval != 0)
|
|
break;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
if ((retval != 0)
|
|
|| ((retval = sbuf_printf(sb, "</ctllunlist>\n")) != 0)) {
|
|
retval = 0;
|
|
sbuf_delete(sb);
|
|
list->status = CTL_LUN_LIST_NEED_MORE_SPACE;
|
|
snprintf(list->error_str, sizeof(list->error_str),
|
|
"Out of space, %d bytes is too small",
|
|
list->alloc_len);
|
|
break;
|
|
}
|
|
|
|
sbuf_finish(sb);
|
|
|
|
retval = copyout(sbuf_data(sb), list->lun_xml,
|
|
sbuf_len(sb) + 1);
|
|
|
|
list->fill_len = sbuf_len(sb) + 1;
|
|
list->status = CTL_LUN_LIST_OK;
|
|
sbuf_delete(sb);
|
|
break;
|
|
}
|
|
default: {
|
|
/* XXX KDM should we fix this? */
|
|
#if 0
|
|
struct ctl_backend_driver *backend;
|
|
unsigned int type;
|
|
int found;
|
|
|
|
found = 0;
|
|
|
|
/*
|
|
* We encode the backend type as the ioctl type for backend
|
|
* ioctls. So parse it out here, and then search for a
|
|
* backend of this type.
|
|
*/
|
|
type = _IOC_TYPE(cmd);
|
|
|
|
STAILQ_FOREACH(backend, &softc->be_list, links) {
|
|
if (backend->type == type) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found == 0) {
|
|
printf("ctl: unknown ioctl command %#lx or backend "
|
|
"%d\n", cmd, type);
|
|
retval = -EINVAL;
|
|
break;
|
|
}
|
|
retval = backend->ioctl(dev, cmd, addr, flag, td);
|
|
#endif
|
|
retval = ENOTTY;
|
|
break;
|
|
}
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
uint32_t
|
|
ctl_get_initindex(struct ctl_nexus *nexus)
|
|
{
|
|
if (nexus->targ_port < CTL_MAX_PORTS)
|
|
return (nexus->initid.id +
|
|
(nexus->targ_port * CTL_MAX_INIT_PER_PORT));
|
|
else
|
|
return (nexus->initid.id +
|
|
((nexus->targ_port - CTL_MAX_PORTS) *
|
|
CTL_MAX_INIT_PER_PORT));
|
|
}
|
|
|
|
uint32_t
|
|
ctl_get_resindex(struct ctl_nexus *nexus)
|
|
{
|
|
return (nexus->initid.id + (nexus->targ_port * CTL_MAX_INIT_PER_PORT));
|
|
}
|
|
|
|
uint32_t
|
|
ctl_port_idx(int port_num)
|
|
{
|
|
if (port_num < CTL_MAX_PORTS)
|
|
return(port_num);
|
|
else
|
|
return(port_num - CTL_MAX_PORTS);
|
|
}
|
|
|
|
/*
|
|
* Note: This only works for bitmask sizes that are at least 32 bits, and
|
|
* that are a power of 2.
|
|
*/
|
|
int
|
|
ctl_ffz(uint32_t *mask, uint32_t size)
|
|
{
|
|
uint32_t num_chunks, num_pieces;
|
|
int i, j;
|
|
|
|
num_chunks = (size >> 5);
|
|
if (num_chunks == 0)
|
|
num_chunks++;
|
|
num_pieces = ctl_min((sizeof(uint32_t) * 8), size);
|
|
|
|
for (i = 0; i < num_chunks; i++) {
|
|
for (j = 0; j < num_pieces; j++) {
|
|
if ((mask[i] & (1 << j)) == 0)
|
|
return ((i << 5) + j);
|
|
}
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
int
|
|
ctl_set_mask(uint32_t *mask, uint32_t bit)
|
|
{
|
|
uint32_t chunk, piece;
|
|
|
|
chunk = bit >> 5;
|
|
piece = bit % (sizeof(uint32_t) * 8);
|
|
|
|
if ((mask[chunk] & (1 << piece)) != 0)
|
|
return (-1);
|
|
else
|
|
mask[chunk] |= (1 << piece);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_clear_mask(uint32_t *mask, uint32_t bit)
|
|
{
|
|
uint32_t chunk, piece;
|
|
|
|
chunk = bit >> 5;
|
|
piece = bit % (sizeof(uint32_t) * 8);
|
|
|
|
if ((mask[chunk] & (1 << piece)) == 0)
|
|
return (-1);
|
|
else
|
|
mask[chunk] &= ~(1 << piece);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_is_set(uint32_t *mask, uint32_t bit)
|
|
{
|
|
uint32_t chunk, piece;
|
|
|
|
chunk = bit >> 5;
|
|
piece = bit % (sizeof(uint32_t) * 8);
|
|
|
|
if ((mask[chunk] & (1 << piece)) == 0)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
#ifdef unused
|
|
/*
|
|
* The bus, target and lun are optional, they can be filled in later.
|
|
* can_wait is used to determine whether we can wait on the malloc or not.
|
|
*/
|
|
union ctl_io*
|
|
ctl_malloc_io(ctl_io_type io_type, uint32_t targ_port, uint32_t targ_target,
|
|
uint32_t targ_lun, int can_wait)
|
|
{
|
|
union ctl_io *io;
|
|
|
|
if (can_wait)
|
|
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_WAITOK);
|
|
else
|
|
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_NOWAIT);
|
|
|
|
if (io != NULL) {
|
|
io->io_hdr.io_type = io_type;
|
|
io->io_hdr.targ_port = targ_port;
|
|
/*
|
|
* XXX KDM this needs to change/go away. We need to move
|
|
* to a preallocated pool of ctl_scsiio structures.
|
|
*/
|
|
io->io_hdr.nexus.targ_target.id = targ_target;
|
|
io->io_hdr.nexus.targ_lun = targ_lun;
|
|
}
|
|
|
|
return (io);
|
|
}
|
|
|
|
void
|
|
ctl_kfree_io(union ctl_io *io)
|
|
{
|
|
free(io, M_CTL);
|
|
}
|
|
#endif /* unused */
|
|
|
|
/*
|
|
* ctl_softc, pool_type, total_ctl_io are passed in.
|
|
* npool is passed out.
|
|
*/
|
|
int
|
|
ctl_pool_create(struct ctl_softc *ctl_softc, ctl_pool_type pool_type,
|
|
uint32_t total_ctl_io, struct ctl_io_pool **npool)
|
|
{
|
|
uint32_t i;
|
|
union ctl_io *cur_io, *next_io;
|
|
struct ctl_io_pool *pool;
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
pool = (struct ctl_io_pool *)malloc(sizeof(*pool), M_CTL, M_NOWAIT);
|
|
if (pool == NULL) {
|
|
retval = -ENOMEM;
|
|
goto bailout;
|
|
}
|
|
|
|
memset(pool, 0, sizeof(*pool));
|
|
|
|
pool->type = pool_type;
|
|
pool->ctl_softc = ctl_softc;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
pool->id = ctl_softc->cur_pool_id++;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
pool->flags = CTL_POOL_FLAG_NONE;
|
|
STAILQ_INIT(&pool->free_queue);
|
|
|
|
/*
|
|
* XXX KDM other options here:
|
|
* - allocate a page at a time
|
|
* - allocate one big chunk of memory.
|
|
* Page allocation might work well, but would take a little more
|
|
* tracking.
|
|
*/
|
|
for (i = 0; i < total_ctl_io; i++) {
|
|
cur_io = (union ctl_io *)malloc(sizeof(*cur_io), M_CTL,
|
|
M_NOWAIT);
|
|
if (cur_io == NULL) {
|
|
retval = ENOMEM;
|
|
break;
|
|
}
|
|
cur_io->io_hdr.pool = pool;
|
|
STAILQ_INSERT_TAIL(&pool->free_queue, &cur_io->io_hdr, links);
|
|
pool->total_ctl_io++;
|
|
pool->free_ctl_io++;
|
|
}
|
|
|
|
if (retval != 0) {
|
|
for (cur_io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
|
|
cur_io != NULL; cur_io = next_io) {
|
|
next_io = (union ctl_io *)STAILQ_NEXT(&cur_io->io_hdr,
|
|
links);
|
|
STAILQ_REMOVE(&pool->free_queue, &cur_io->io_hdr,
|
|
ctl_io_hdr, links);
|
|
free(cur_io, M_CTL);
|
|
}
|
|
|
|
free(pool, M_CTL);
|
|
goto bailout;
|
|
}
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
ctl_softc->num_pools++;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->io_pools, pool, links);
|
|
/*
|
|
* Increment our usage count if this is an external consumer, so we
|
|
* can't get unloaded until the external consumer (most likely a
|
|
* FETD) unloads and frees his pool.
|
|
*
|
|
* XXX KDM will this increment the caller's module use count, or
|
|
* mine?
|
|
*/
|
|
#if 0
|
|
if ((pool_type != CTL_POOL_EMERGENCY)
|
|
&& (pool_type != CTL_POOL_INTERNAL)
|
|
&& (pool_type != CTL_POOL_IOCTL)
|
|
&& (pool_type != CTL_POOL_4OTHERSC))
|
|
MOD_INC_USE_COUNT;
|
|
#endif
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
*npool = pool;
|
|
|
|
bailout:
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold ctl_softc->ctl_lock.
|
|
*/
|
|
int
|
|
ctl_pool_acquire(struct ctl_io_pool *pool)
|
|
{
|
|
if (pool == NULL)
|
|
return (-EINVAL);
|
|
|
|
if (pool->flags & CTL_POOL_FLAG_INVALID)
|
|
return (-EINVAL);
|
|
|
|
pool->refcount++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold ctl_softc->ctl_lock.
|
|
*/
|
|
int
|
|
ctl_pool_invalidate(struct ctl_io_pool *pool)
|
|
{
|
|
if (pool == NULL)
|
|
return (-EINVAL);
|
|
|
|
pool->flags |= CTL_POOL_FLAG_INVALID;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold ctl_softc->ctl_lock.
|
|
*/
|
|
int
|
|
ctl_pool_release(struct ctl_io_pool *pool)
|
|
{
|
|
if (pool == NULL)
|
|
return (-EINVAL);
|
|
|
|
if ((--pool->refcount == 0)
|
|
&& (pool->flags & CTL_POOL_FLAG_INVALID)) {
|
|
ctl_pool_free(pool->ctl_softc, pool);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Must be called with ctl_softc->ctl_lock held.
|
|
*/
|
|
void
|
|
ctl_pool_free(struct ctl_softc *ctl_softc, struct ctl_io_pool *pool)
|
|
{
|
|
union ctl_io *cur_io, *next_io;
|
|
|
|
for (cur_io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
|
|
cur_io != NULL; cur_io = next_io) {
|
|
next_io = (union ctl_io *)STAILQ_NEXT(&cur_io->io_hdr,
|
|
links);
|
|
STAILQ_REMOVE(&pool->free_queue, &cur_io->io_hdr, ctl_io_hdr,
|
|
links);
|
|
free(cur_io, M_CTL);
|
|
}
|
|
|
|
STAILQ_REMOVE(&ctl_softc->io_pools, pool, ctl_io_pool, links);
|
|
ctl_softc->num_pools--;
|
|
|
|
/*
|
|
* XXX KDM will this decrement the caller's usage count or mine?
|
|
*/
|
|
#if 0
|
|
if ((pool->type != CTL_POOL_EMERGENCY)
|
|
&& (pool->type != CTL_POOL_INTERNAL)
|
|
&& (pool->type != CTL_POOL_IOCTL))
|
|
MOD_DEC_USE_COUNT;
|
|
#endif
|
|
|
|
free(pool, M_CTL);
|
|
}
|
|
|
|
/*
|
|
* This routine does not block (except for spinlocks of course).
|
|
* It tries to allocate a ctl_io union from the caller's pool as quickly as
|
|
* possible.
|
|
*/
|
|
union ctl_io *
|
|
ctl_alloc_io(void *pool_ref)
|
|
{
|
|
union ctl_io *io;
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_io_pool *pool, *npool;
|
|
struct ctl_io_pool *emergency_pool;
|
|
|
|
pool = (struct ctl_io_pool *)pool_ref;
|
|
|
|
if (pool == NULL) {
|
|
printf("%s: pool is NULL\n", __func__);
|
|
return (NULL);
|
|
}
|
|
|
|
emergency_pool = NULL;
|
|
|
|
ctl_softc = pool->ctl_softc;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
/*
|
|
* First, try to get the io structure from the user's pool.
|
|
*/
|
|
if (ctl_pool_acquire(pool) == 0) {
|
|
io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&pool->free_queue, links);
|
|
pool->total_allocated++;
|
|
pool->free_ctl_io--;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (io);
|
|
} else
|
|
ctl_pool_release(pool);
|
|
}
|
|
/*
|
|
* If he doesn't have any io structures left, search for an
|
|
* emergency pool and grab one from there.
|
|
*/
|
|
STAILQ_FOREACH(npool, &ctl_softc->io_pools, links) {
|
|
if (npool->type != CTL_POOL_EMERGENCY)
|
|
continue;
|
|
|
|
if (ctl_pool_acquire(npool) != 0)
|
|
continue;
|
|
|
|
emergency_pool = npool;
|
|
|
|
io = (union ctl_io *)STAILQ_FIRST(&npool->free_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&npool->free_queue, links);
|
|
npool->total_allocated++;
|
|
npool->free_ctl_io--;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (io);
|
|
} else
|
|
ctl_pool_release(npool);
|
|
}
|
|
|
|
/* Drop the spinlock before we malloc */
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* The emergency pool (if it exists) didn't have one, so try an
|
|
* atomic (i.e. nonblocking) malloc and see if we get lucky.
|
|
*/
|
|
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_NOWAIT);
|
|
if (io != NULL) {
|
|
/*
|
|
* If the emergency pool exists but is empty, add this
|
|
* ctl_io to its list when it gets freed.
|
|
*/
|
|
if (emergency_pool != NULL) {
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (ctl_pool_acquire(emergency_pool) == 0) {
|
|
io->io_hdr.pool = emergency_pool;
|
|
emergency_pool->total_ctl_io++;
|
|
/*
|
|
* Need to bump this, otherwise
|
|
* total_allocated and total_freed won't
|
|
* match when we no longer have anything
|
|
* outstanding.
|
|
*/
|
|
emergency_pool->total_allocated++;
|
|
}
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
} else
|
|
io->io_hdr.pool = NULL;
|
|
}
|
|
|
|
return (io);
|
|
}
|
|
|
|
static void
|
|
ctl_free_io_internal(union ctl_io *io, int have_lock)
|
|
{
|
|
if (io == NULL)
|
|
return;
|
|
|
|
/*
|
|
* If this ctl_io has a pool, return it to that pool.
|
|
*/
|
|
if (io->io_hdr.pool != NULL) {
|
|
struct ctl_io_pool *pool;
|
|
#if 0
|
|
struct ctl_softc *ctl_softc;
|
|
union ctl_io *tmp_io;
|
|
unsigned long xflags;
|
|
int i;
|
|
|
|
ctl_softc = control_softc;
|
|
#endif
|
|
|
|
pool = (struct ctl_io_pool *)io->io_hdr.pool;
|
|
|
|
if (have_lock == 0)
|
|
mtx_lock(&pool->ctl_softc->ctl_lock);
|
|
#if 0
|
|
save_flags(xflags);
|
|
|
|
for (i = 0, tmp_io = (union ctl_io *)STAILQ_FIRST(
|
|
&ctl_softc->task_queue); tmp_io != NULL; i++,
|
|
tmp_io = (union ctl_io *)STAILQ_NEXT(&tmp_io->io_hdr,
|
|
links)) {
|
|
if (tmp_io == io) {
|
|
printf("%s: %p is still on the task queue!\n",
|
|
__func__, tmp_io);
|
|
printf("%s: (%d): type %d "
|
|
"msg %d cdb %x iptl: "
|
|
"%d:%d:%d:%d tag 0x%04x "
|
|
"flg %#lx\n",
|
|
__func__, i,
|
|
tmp_io->io_hdr.io_type,
|
|
tmp_io->io_hdr.msg_type,
|
|
tmp_io->scsiio.cdb[0],
|
|
tmp_io->io_hdr.nexus.initid.id,
|
|
tmp_io->io_hdr.nexus.targ_port,
|
|
tmp_io->io_hdr.nexus.targ_target.id,
|
|
tmp_io->io_hdr.nexus.targ_lun,
|
|
(tmp_io->io_hdr.io_type ==
|
|
CTL_IO_TASK) ?
|
|
tmp_io->taskio.tag_num :
|
|
tmp_io->scsiio.tag_num,
|
|
xflags);
|
|
panic("I/O still on the task queue!");
|
|
}
|
|
}
|
|
#endif
|
|
io->io_hdr.io_type = 0xff;
|
|
STAILQ_INSERT_TAIL(&pool->free_queue, &io->io_hdr, links);
|
|
pool->total_freed++;
|
|
pool->free_ctl_io++;
|
|
ctl_pool_release(pool);
|
|
if (have_lock == 0)
|
|
mtx_unlock(&pool->ctl_softc->ctl_lock);
|
|
} else {
|
|
/*
|
|
* Otherwise, just free it. We probably malloced it and
|
|
* the emergency pool wasn't available.
|
|
*/
|
|
free(io, M_CTL);
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
ctl_free_io(union ctl_io *io)
|
|
{
|
|
ctl_free_io_internal(io, /*have_lock*/ 0);
|
|
}
|
|
|
|
void
|
|
ctl_zero_io(union ctl_io *io)
|
|
{
|
|
void *pool_ref;
|
|
|
|
if (io == NULL)
|
|
return;
|
|
|
|
/*
|
|
* May need to preserve linked list pointers at some point too.
|
|
*/
|
|
pool_ref = io->io_hdr.pool;
|
|
|
|
memset(io, 0, sizeof(*io));
|
|
|
|
io->io_hdr.pool = pool_ref;
|
|
}
|
|
|
|
/*
|
|
* This routine is currently used for internal copies of ctl_ios that need
|
|
* to persist for some reason after we've already returned status to the
|
|
* FETD. (Thus the flag set.)
|
|
*
|
|
* XXX XXX
|
|
* Note that this makes a blind copy of all fields in the ctl_io, except
|
|
* for the pool reference. This includes any memory that has been
|
|
* allocated! That memory will no longer be valid after done has been
|
|
* called, so this would be VERY DANGEROUS for command that actually does
|
|
* any reads or writes. Right now (11/7/2005), this is only used for immediate
|
|
* start and stop commands, which don't transfer any data, so this is not a
|
|
* problem. If it is used for anything else, the caller would also need to
|
|
* allocate data buffer space and this routine would need to be modified to
|
|
* copy the data buffer(s) as well.
|
|
*/
|
|
void
|
|
ctl_copy_io(union ctl_io *src, union ctl_io *dest)
|
|
{
|
|
void *pool_ref;
|
|
|
|
if ((src == NULL)
|
|
|| (dest == NULL))
|
|
return;
|
|
|
|
/*
|
|
* May need to preserve linked list pointers at some point too.
|
|
*/
|
|
pool_ref = dest->io_hdr.pool;
|
|
|
|
memcpy(dest, src, ctl_min(sizeof(*src), sizeof(*dest)));
|
|
|
|
dest->io_hdr.pool = pool_ref;
|
|
/*
|
|
* We need to know that this is an internal copy, and doesn't need
|
|
* to get passed back to the FETD that allocated it.
|
|
*/
|
|
dest->io_hdr.flags |= CTL_FLAG_INT_COPY;
|
|
}
|
|
|
|
#ifdef NEEDTOPORT
|
|
static void
|
|
ctl_update_power_subpage(struct copan_power_subpage *page)
|
|
{
|
|
int num_luns, num_partitions, config_type;
|
|
struct ctl_softc *softc;
|
|
cs_BOOL_t aor_present, shelf_50pct_power;
|
|
cs_raidset_personality_t rs_type;
|
|
int max_active_luns;
|
|
|
|
softc = control_softc;
|
|
|
|
/* subtract out the processor LUN */
|
|
num_luns = softc->num_luns - 1;
|
|
/*
|
|
* Default to 7 LUNs active, which was the only number we allowed
|
|
* in the past.
|
|
*/
|
|
max_active_luns = 7;
|
|
|
|
num_partitions = config_GetRsPartitionInfo();
|
|
config_type = config_GetConfigType();
|
|
shelf_50pct_power = config_GetShelfPowerMode();
|
|
aor_present = config_IsAorRsPresent();
|
|
|
|
rs_type = ddb_GetRsRaidType(1);
|
|
if ((rs_type != CS_RAIDSET_PERSONALITY_RAID5)
|
|
&& (rs_type != CS_RAIDSET_PERSONALITY_RAID1)) {
|
|
EPRINT(0, "Unsupported RS type %d!", rs_type);
|
|
}
|
|
|
|
|
|
page->total_luns = num_luns;
|
|
|
|
switch (config_type) {
|
|
case 40:
|
|
/*
|
|
* In a 40 drive configuration, it doesn't matter what DC
|
|
* cards we have, whether we have AOR enabled or not,
|
|
* partitioning or not, or what type of RAIDset we have.
|
|
* In that scenario, we can power up every LUN we present
|
|
* to the user.
|
|
*/
|
|
max_active_luns = num_luns;
|
|
|
|
break;
|
|
case 64:
|
|
if (shelf_50pct_power == CS_FALSE) {
|
|
/* 25% power */
|
|
if (aor_present == CS_TRUE) {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 7;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
max_active_luns = 14;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
} else {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 8;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
max_active_luns = 16;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
}
|
|
} else {
|
|
/* 50% power */
|
|
/*
|
|
* With 50% power in a 64 drive configuration, we
|
|
* can power all LUNs we present.
|
|
*/
|
|
max_active_luns = num_luns;
|
|
}
|
|
break;
|
|
case 112:
|
|
if (shelf_50pct_power == CS_FALSE) {
|
|
/* 25% power */
|
|
if (aor_present == CS_TRUE) {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 7;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
max_active_luns = 14;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
} else {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 8;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
max_active_luns = 16;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
}
|
|
} else {
|
|
/* 50% power */
|
|
if (aor_present == CS_TRUE) {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 14;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
/*
|
|
* We're assuming here that disk
|
|
* caching is enabled, and so we're
|
|
* able to power up half of each
|
|
* LUN, and cache all writes.
|
|
*/
|
|
max_active_luns = num_luns;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
} else {
|
|
if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID5) {
|
|
max_active_luns = 15;
|
|
} else if (rs_type ==
|
|
CS_RAIDSET_PERSONALITY_RAID1){
|
|
max_active_luns = 30;
|
|
} else {
|
|
/* XXX KDM now what?? */
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
/*
|
|
* In this case, we have an unknown configuration, so we
|
|
* just use the default from above.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
page->max_active_luns = max_active_luns;
|
|
#if 0
|
|
printk("%s: total_luns = %d, max_active_luns = %d\n", __func__,
|
|
page->total_luns, page->max_active_luns);
|
|
#endif
|
|
}
|
|
#endif /* NEEDTOPORT */
|
|
|
|
/*
|
|
* This routine could be used in the future to load default and/or saved
|
|
* mode page parameters for a particuar lun.
|
|
*/
|
|
static int
|
|
ctl_init_page_index(struct ctl_lun *lun)
|
|
{
|
|
int i;
|
|
struct ctl_page_index *page_index;
|
|
struct ctl_softc *softc;
|
|
|
|
memcpy(&lun->mode_pages.index, page_index_template,
|
|
sizeof(page_index_template));
|
|
|
|
softc = lun->ctl_softc;
|
|
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
|
|
page_index = &lun->mode_pages.index[i];
|
|
/*
|
|
* If this is a disk-only mode page, there's no point in
|
|
* setting it up. For some pages, we have to have some
|
|
* basic information about the disk in order to calculate the
|
|
* mode page data.
|
|
*/
|
|
if ((lun->be_lun->lun_type != T_DIRECT)
|
|
&& (page_index->page_flags & CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
switch (page_index->page_code & SMPH_PC_MASK) {
|
|
case SMS_FORMAT_DEVICE_PAGE: {
|
|
struct scsi_format_page *format_page;
|
|
|
|
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
|
|
panic("subpage is incorrect!");
|
|
|
|
/*
|
|
* Sectors per track are set above. Bytes per
|
|
* sector need to be set here on a per-LUN basis.
|
|
*/
|
|
memcpy(&lun->mode_pages.format_page[CTL_PAGE_CURRENT],
|
|
&format_page_default,
|
|
sizeof(format_page_default));
|
|
memcpy(&lun->mode_pages.format_page[
|
|
CTL_PAGE_CHANGEABLE], &format_page_changeable,
|
|
sizeof(format_page_changeable));
|
|
memcpy(&lun->mode_pages.format_page[CTL_PAGE_DEFAULT],
|
|
&format_page_default,
|
|
sizeof(format_page_default));
|
|
memcpy(&lun->mode_pages.format_page[CTL_PAGE_SAVED],
|
|
&format_page_default,
|
|
sizeof(format_page_default));
|
|
|
|
format_page = &lun->mode_pages.format_page[
|
|
CTL_PAGE_CURRENT];
|
|
scsi_ulto2b(lun->be_lun->blocksize,
|
|
format_page->bytes_per_sector);
|
|
|
|
format_page = &lun->mode_pages.format_page[
|
|
CTL_PAGE_DEFAULT];
|
|
scsi_ulto2b(lun->be_lun->blocksize,
|
|
format_page->bytes_per_sector);
|
|
|
|
format_page = &lun->mode_pages.format_page[
|
|
CTL_PAGE_SAVED];
|
|
scsi_ulto2b(lun->be_lun->blocksize,
|
|
format_page->bytes_per_sector);
|
|
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.format_page;
|
|
break;
|
|
}
|
|
case SMS_RIGID_DISK_PAGE: {
|
|
struct scsi_rigid_disk_page *rigid_disk_page;
|
|
uint32_t sectors_per_cylinder;
|
|
uint64_t cylinders;
|
|
#ifndef __XSCALE__
|
|
int shift;
|
|
#endif /* !__XSCALE__ */
|
|
|
|
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
|
|
panic("invalid subpage value %d",
|
|
page_index->subpage);
|
|
|
|
/*
|
|
* Rotation rate and sectors per track are set
|
|
* above. We calculate the cylinders here based on
|
|
* capacity. Due to the number of heads and
|
|
* sectors per track we're using, smaller arrays
|
|
* may turn out to have 0 cylinders. Linux and
|
|
* FreeBSD don't pay attention to these mode pages
|
|
* to figure out capacity, but Solaris does. It
|
|
* seems to deal with 0 cylinders just fine, and
|
|
* works out a fake geometry based on the capacity.
|
|
*/
|
|
memcpy(&lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_CURRENT], &rigid_disk_page_default,
|
|
sizeof(rigid_disk_page_default));
|
|
memcpy(&lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_CHANGEABLE],&rigid_disk_page_changeable,
|
|
sizeof(rigid_disk_page_changeable));
|
|
memcpy(&lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_DEFAULT], &rigid_disk_page_default,
|
|
sizeof(rigid_disk_page_default));
|
|
memcpy(&lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_SAVED], &rigid_disk_page_default,
|
|
sizeof(rigid_disk_page_default));
|
|
|
|
sectors_per_cylinder = CTL_DEFAULT_SECTORS_PER_TRACK *
|
|
CTL_DEFAULT_HEADS;
|
|
|
|
/*
|
|
* The divide method here will be more accurate,
|
|
* probably, but results in floating point being
|
|
* used in the kernel on i386 (__udivdi3()). On the
|
|
* XScale, though, __udivdi3() is implemented in
|
|
* software.
|
|
*
|
|
* The shift method for cylinder calculation is
|
|
* accurate if sectors_per_cylinder is a power of
|
|
* 2. Otherwise it might be slightly off -- you
|
|
* might have a bit of a truncation problem.
|
|
*/
|
|
#ifdef __XSCALE__
|
|
cylinders = (lun->be_lun->maxlba + 1) /
|
|
sectors_per_cylinder;
|
|
#else
|
|
for (shift = 31; shift > 0; shift--) {
|
|
if (sectors_per_cylinder & (1 << shift))
|
|
break;
|
|
}
|
|
cylinders = (lun->be_lun->maxlba + 1) >> shift;
|
|
#endif
|
|
|
|
/*
|
|
* We've basically got 3 bytes, or 24 bits for the
|
|
* cylinder size in the mode page. If we're over,
|
|
* just round down to 2^24.
|
|
*/
|
|
if (cylinders > 0xffffff)
|
|
cylinders = 0xffffff;
|
|
|
|
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_CURRENT];
|
|
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
|
|
|
|
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_DEFAULT];
|
|
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
|
|
|
|
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
|
|
CTL_PAGE_SAVED];
|
|
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
|
|
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.rigid_disk_page;
|
|
break;
|
|
}
|
|
case SMS_CACHING_PAGE: {
|
|
|
|
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
|
|
panic("invalid subpage value %d",
|
|
page_index->subpage);
|
|
/*
|
|
* Defaults should be okay here, no calculations
|
|
* needed.
|
|
*/
|
|
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_CURRENT],
|
|
&caching_page_default,
|
|
sizeof(caching_page_default));
|
|
memcpy(&lun->mode_pages.caching_page[
|
|
CTL_PAGE_CHANGEABLE], &caching_page_changeable,
|
|
sizeof(caching_page_changeable));
|
|
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_DEFAULT],
|
|
&caching_page_default,
|
|
sizeof(caching_page_default));
|
|
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_SAVED],
|
|
&caching_page_default,
|
|
sizeof(caching_page_default));
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.caching_page;
|
|
break;
|
|
}
|
|
case SMS_CONTROL_MODE_PAGE: {
|
|
|
|
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
|
|
panic("invalid subpage value %d",
|
|
page_index->subpage);
|
|
|
|
/*
|
|
* Defaults should be okay here, no calculations
|
|
* needed.
|
|
*/
|
|
memcpy(&lun->mode_pages.control_page[CTL_PAGE_CURRENT],
|
|
&control_page_default,
|
|
sizeof(control_page_default));
|
|
memcpy(&lun->mode_pages.control_page[
|
|
CTL_PAGE_CHANGEABLE], &control_page_changeable,
|
|
sizeof(control_page_changeable));
|
|
memcpy(&lun->mode_pages.control_page[CTL_PAGE_DEFAULT],
|
|
&control_page_default,
|
|
sizeof(control_page_default));
|
|
memcpy(&lun->mode_pages.control_page[CTL_PAGE_SAVED],
|
|
&control_page_default,
|
|
sizeof(control_page_default));
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.control_page;
|
|
break;
|
|
|
|
}
|
|
case SMS_VENDOR_SPECIFIC_PAGE:{
|
|
switch (page_index->subpage) {
|
|
case PWR_SUBPAGE_CODE: {
|
|
struct copan_power_subpage *current_page,
|
|
*saved_page;
|
|
|
|
memcpy(&lun->mode_pages.power_subpage[
|
|
CTL_PAGE_CURRENT],
|
|
&power_page_default,
|
|
sizeof(power_page_default));
|
|
memcpy(&lun->mode_pages.power_subpage[
|
|
CTL_PAGE_CHANGEABLE],
|
|
&power_page_changeable,
|
|
sizeof(power_page_changeable));
|
|
memcpy(&lun->mode_pages.power_subpage[
|
|
CTL_PAGE_DEFAULT],
|
|
&power_page_default,
|
|
sizeof(power_page_default));
|
|
memcpy(&lun->mode_pages.power_subpage[
|
|
CTL_PAGE_SAVED],
|
|
&power_page_default,
|
|
sizeof(power_page_default));
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.power_subpage;
|
|
|
|
current_page = (struct copan_power_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_CURRENT));
|
|
saved_page = (struct copan_power_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_SAVED));
|
|
break;
|
|
}
|
|
case APS_SUBPAGE_CODE: {
|
|
struct copan_aps_subpage *current_page,
|
|
*saved_page;
|
|
|
|
// This gets set multiple times but
|
|
// it should always be the same. It's
|
|
// only done during init so who cares.
|
|
index_to_aps_page = i;
|
|
|
|
memcpy(&lun->mode_pages.aps_subpage[
|
|
CTL_PAGE_CURRENT],
|
|
&aps_page_default,
|
|
sizeof(aps_page_default));
|
|
memcpy(&lun->mode_pages.aps_subpage[
|
|
CTL_PAGE_CHANGEABLE],
|
|
&aps_page_changeable,
|
|
sizeof(aps_page_changeable));
|
|
memcpy(&lun->mode_pages.aps_subpage[
|
|
CTL_PAGE_DEFAULT],
|
|
&aps_page_default,
|
|
sizeof(aps_page_default));
|
|
memcpy(&lun->mode_pages.aps_subpage[
|
|
CTL_PAGE_SAVED],
|
|
&aps_page_default,
|
|
sizeof(aps_page_default));
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.aps_subpage;
|
|
|
|
current_page = (struct copan_aps_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_CURRENT));
|
|
saved_page = (struct copan_aps_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_SAVED));
|
|
break;
|
|
}
|
|
case DBGCNF_SUBPAGE_CODE: {
|
|
struct copan_debugconf_subpage *current_page,
|
|
*saved_page;
|
|
|
|
memcpy(&lun->mode_pages.debugconf_subpage[
|
|
CTL_PAGE_CURRENT],
|
|
&debugconf_page_default,
|
|
sizeof(debugconf_page_default));
|
|
memcpy(&lun->mode_pages.debugconf_subpage[
|
|
CTL_PAGE_CHANGEABLE],
|
|
&debugconf_page_changeable,
|
|
sizeof(debugconf_page_changeable));
|
|
memcpy(&lun->mode_pages.debugconf_subpage[
|
|
CTL_PAGE_DEFAULT],
|
|
&debugconf_page_default,
|
|
sizeof(debugconf_page_default));
|
|
memcpy(&lun->mode_pages.debugconf_subpage[
|
|
CTL_PAGE_SAVED],
|
|
&debugconf_page_default,
|
|
sizeof(debugconf_page_default));
|
|
page_index->page_data =
|
|
(uint8_t *)lun->mode_pages.debugconf_subpage;
|
|
|
|
current_page = (struct copan_debugconf_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_CURRENT));
|
|
saved_page = (struct copan_debugconf_subpage *)
|
|
(page_index->page_data +
|
|
(page_index->page_len *
|
|
CTL_PAGE_SAVED));
|
|
break;
|
|
}
|
|
default:
|
|
panic("invalid subpage value %d",
|
|
page_index->subpage);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
panic("invalid page value %d",
|
|
page_index->page_code & SMPH_PC_MASK);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* LUN allocation.
|
|
*
|
|
* Requirements:
|
|
* - caller allocates and zeros LUN storage, or passes in a NULL LUN if he
|
|
* wants us to allocate the LUN and he can block.
|
|
* - ctl_softc is always set
|
|
* - be_lun is set if the LUN has a backend (needed for disk LUNs)
|
|
*
|
|
* Returns 0 for success, non-zero (errno) for failure.
|
|
*/
|
|
static int
|
|
ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *ctl_lun,
|
|
struct ctl_be_lun *const be_lun, struct ctl_id target_id)
|
|
{
|
|
struct ctl_lun *nlun, *lun;
|
|
struct ctl_frontend *fe;
|
|
int lun_number, i;
|
|
|
|
if (be_lun == NULL)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* We currently only support Direct Access or Processor LUN types.
|
|
*/
|
|
switch (be_lun->lun_type) {
|
|
case T_DIRECT:
|
|
break;
|
|
case T_PROCESSOR:
|
|
break;
|
|
case T_SEQUENTIAL:
|
|
case T_CHANGER:
|
|
default:
|
|
be_lun->lun_config_status(be_lun->be_lun,
|
|
CTL_LUN_CONFIG_FAILURE);
|
|
break;
|
|
}
|
|
if (ctl_lun == NULL) {
|
|
lun = malloc(sizeof(*lun), M_CTL, M_WAITOK);
|
|
if (lun == NULL) {
|
|
be_lun->lun_config_status(lun->be_lun->be_lun,
|
|
CTL_LUN_CONFIG_FAILURE);
|
|
return (-ENOMEM);
|
|
}
|
|
lun->flags = CTL_LUN_MALLOCED;
|
|
} else
|
|
lun = ctl_lun;
|
|
|
|
memset(lun, 0, sizeof(*lun));
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
/*
|
|
* See if the caller requested a particular LUN number. If so, see
|
|
* if it is available. Otherwise, allocate the first available LUN.
|
|
*/
|
|
if (be_lun->flags & CTL_LUN_FLAG_ID_REQ) {
|
|
if ((be_lun->req_lun_id > (CTL_MAX_LUNS - 1))
|
|
|| (ctl_is_set(ctl_softc->ctl_lun_mask, be_lun->req_lun_id))) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
if (be_lun->req_lun_id > (CTL_MAX_LUNS - 1)) {
|
|
printf("ctl: requested LUN ID %d is higher "
|
|
"than CTL_MAX_LUNS - 1 (%d)\n",
|
|
be_lun->req_lun_id, CTL_MAX_LUNS - 1);
|
|
} else {
|
|
/*
|
|
* XXX KDM return an error, or just assign
|
|
* another LUN ID in this case??
|
|
*/
|
|
printf("ctl: requested LUN ID %d is already "
|
|
"in use\n", be_lun->req_lun_id);
|
|
}
|
|
if (lun->flags & CTL_LUN_MALLOCED)
|
|
free(lun, M_CTL);
|
|
be_lun->lun_config_status(be_lun->be_lun,
|
|
CTL_LUN_CONFIG_FAILURE);
|
|
return (ENOSPC);
|
|
}
|
|
lun_number = be_lun->req_lun_id;
|
|
} else {
|
|
lun_number = ctl_ffz(ctl_softc->ctl_lun_mask, CTL_MAX_LUNS);
|
|
if (lun_number == -1) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
printf("ctl: can't allocate LUN on target %ju, out of "
|
|
"LUNs\n", (uintmax_t)target_id.id);
|
|
if (lun->flags & CTL_LUN_MALLOCED)
|
|
free(lun, M_CTL);
|
|
be_lun->lun_config_status(be_lun->be_lun,
|
|
CTL_LUN_CONFIG_FAILURE);
|
|
return (ENOSPC);
|
|
}
|
|
}
|
|
ctl_set_mask(ctl_softc->ctl_lun_mask, lun_number);
|
|
|
|
lun->target = target_id;
|
|
lun->lun = lun_number;
|
|
lun->be_lun = be_lun;
|
|
/*
|
|
* The processor LUN is always enabled. Disk LUNs come on line
|
|
* disabled, and must be enabled by the backend.
|
|
*/
|
|
lun->flags = CTL_LUN_DISABLED;
|
|
lun->backend = be_lun->be;
|
|
be_lun->ctl_lun = lun;
|
|
be_lun->lun_id = lun_number;
|
|
atomic_add_int(&be_lun->be->num_luns, 1);
|
|
if (be_lun->flags & CTL_LUN_FLAG_POWERED_OFF)
|
|
lun->flags |= CTL_LUN_STOPPED;
|
|
|
|
if (be_lun->flags & CTL_LUN_FLAG_INOPERABLE)
|
|
lun->flags |= CTL_LUN_INOPERABLE;
|
|
|
|
if (be_lun->flags & CTL_LUN_FLAG_PRIMARY)
|
|
lun->flags |= CTL_LUN_PRIMARY_SC;
|
|
|
|
lun->ctl_softc = ctl_softc;
|
|
TAILQ_INIT(&lun->ooa_queue);
|
|
TAILQ_INIT(&lun->blocked_queue);
|
|
STAILQ_INIT(&lun->error_list);
|
|
|
|
/*
|
|
* Initialize the mode page index.
|
|
*/
|
|
ctl_init_page_index(lun);
|
|
|
|
/*
|
|
* Set the poweron UA for all initiators on this LUN only.
|
|
*/
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++)
|
|
lun->pending_sense[i].ua_pending = CTL_UA_POWERON;
|
|
|
|
/*
|
|
* Now, before we insert this lun on the lun list, set the lun
|
|
* inventory changed UA for all other luns.
|
|
*/
|
|
STAILQ_FOREACH(nlun, &ctl_softc->lun_list, links) {
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
nlun->pending_sense[i].ua_pending |= CTL_UA_LUN_CHANGE;
|
|
}
|
|
}
|
|
|
|
STAILQ_INSERT_TAIL(&ctl_softc->lun_list, lun, links);
|
|
|
|
ctl_softc->ctl_luns[lun_number] = lun;
|
|
|
|
ctl_softc->num_luns++;
|
|
|
|
/* Setup statistics gathering */
|
|
lun->stats.device_type = be_lun->lun_type;
|
|
lun->stats.lun_number = lun_number;
|
|
if (lun->stats.device_type == T_DIRECT)
|
|
lun->stats.blocksize = be_lun->blocksize;
|
|
else
|
|
lun->stats.flags = CTL_LUN_STATS_NO_BLOCKSIZE;
|
|
for (i = 0;i < CTL_MAX_PORTS;i++)
|
|
lun->stats.ports[i].targ_port = i;
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
lun->be_lun->lun_config_status(lun->be_lun->be_lun, CTL_LUN_CONFIG_OK);
|
|
|
|
/*
|
|
* Run through each registered FETD and bring it online if it isn't
|
|
* already. Enable the target ID if it hasn't been enabled, and
|
|
* enable this particular LUN.
|
|
*/
|
|
STAILQ_FOREACH(fe, &ctl_softc->fe_list, links) {
|
|
int retval;
|
|
|
|
/*
|
|
* XXX KDM this only works for ONE TARGET ID. We'll need
|
|
* to do things differently if we go to a multiple target
|
|
* ID scheme.
|
|
*/
|
|
if ((fe->status & CTL_PORT_STATUS_TARG_ONLINE) == 0) {
|
|
|
|
retval = fe->targ_enable(fe->targ_lun_arg, target_id);
|
|
if (retval != 0) {
|
|
printf("ctl_alloc_lun: FETD %s port %d "
|
|
"returned error %d for targ_enable on "
|
|
"target %ju\n", fe->port_name,
|
|
fe->targ_port, retval,
|
|
(uintmax_t)target_id.id);
|
|
} else
|
|
fe->status |= CTL_PORT_STATUS_TARG_ONLINE;
|
|
}
|
|
|
|
retval = fe->lun_enable(fe->targ_lun_arg, target_id,lun_number);
|
|
if (retval != 0) {
|
|
printf("ctl_alloc_lun: FETD %s port %d returned error "
|
|
"%d for lun_enable on target %ju lun %d\n",
|
|
fe->port_name, fe->targ_port, retval,
|
|
(uintmax_t)target_id.id, lun_number);
|
|
} else
|
|
fe->status |= CTL_PORT_STATUS_LUN_ONLINE;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delete a LUN.
|
|
* Assumptions:
|
|
* - caller holds ctl_softc->ctl_lock.
|
|
* - LUN has already been marked invalid and any pending I/O has been taken
|
|
* care of.
|
|
*/
|
|
static int
|
|
ctl_free_lun(struct ctl_lun *lun)
|
|
{
|
|
struct ctl_softc *softc;
|
|
#if 0
|
|
struct ctl_frontend *fe;
|
|
#endif
|
|
struct ctl_lun *nlun;
|
|
union ctl_io *io, *next_io;
|
|
int i;
|
|
|
|
softc = lun->ctl_softc;
|
|
|
|
STAILQ_REMOVE(&softc->lun_list, lun, ctl_lun, links);
|
|
|
|
ctl_clear_mask(softc->ctl_lun_mask, lun->lun);
|
|
|
|
softc->ctl_luns[lun->lun] = NULL;
|
|
|
|
if (TAILQ_FIRST(&lun->ooa_queue) != NULL) {
|
|
printf("ctl_free_lun: aieee!! freeing a LUN with "
|
|
"outstanding I/O!!\n");
|
|
}
|
|
|
|
/*
|
|
* If we have anything pending on the RtR queue, remove it.
|
|
*/
|
|
for (io = (union ctl_io *)STAILQ_FIRST(&softc->rtr_queue); io != NULL;
|
|
io = next_io) {
|
|
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
|
|
if ((io->io_hdr.nexus.targ_target.id == lun->target.id)
|
|
&& (io->io_hdr.nexus.targ_lun == lun->lun))
|
|
STAILQ_REMOVE(&softc->rtr_queue, &io->io_hdr,
|
|
ctl_io_hdr, links);
|
|
}
|
|
|
|
/*
|
|
* Then remove everything from the blocked queue.
|
|
*/
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->blocked_queue); io != NULL;
|
|
io = next_io) {
|
|
next_io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,blocked_links);
|
|
TAILQ_REMOVE(&lun->blocked_queue, &io->io_hdr, blocked_links);
|
|
io->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
|
|
}
|
|
|
|
/*
|
|
* Now clear out the OOA queue, and free all the I/O.
|
|
* XXX KDM should we notify the FETD here? We probably need to
|
|
* quiesce the LUN before deleting it.
|
|
*/
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); io != NULL;
|
|
io = next_io) {
|
|
next_io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr, ooa_links);
|
|
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
|
|
ctl_free_io_internal(io, /*have_lock*/ 1);
|
|
}
|
|
|
|
softc->num_luns--;
|
|
|
|
/*
|
|
* XXX KDM this scheme only works for a single target/multiple LUN
|
|
* setup. It needs to be revamped for a multiple target scheme.
|
|
*
|
|
* XXX KDM this results in fe->lun_disable() getting called twice,
|
|
* once when ctl_disable_lun() is called, and a second time here.
|
|
* We really need to re-think the LUN disable semantics. There
|
|
* should probably be several steps/levels to LUN removal:
|
|
* - disable
|
|
* - invalidate
|
|
* - free
|
|
*
|
|
* Right now we only have a disable method when communicating to
|
|
* the front end ports, at least for individual LUNs.
|
|
*/
|
|
#if 0
|
|
STAILQ_FOREACH(fe, &softc->fe_list, links) {
|
|
int retval;
|
|
|
|
retval = fe->lun_disable(fe->targ_lun_arg, lun->target,
|
|
lun->lun);
|
|
if (retval != 0) {
|
|
printf("ctl_free_lun: FETD %s port %d returned error "
|
|
"%d for lun_disable on target %ju lun %jd\n",
|
|
fe->port_name, fe->targ_port, retval,
|
|
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
|
|
}
|
|
|
|
if (STAILQ_FIRST(&softc->lun_list) == NULL) {
|
|
fe->status &= ~CTL_PORT_STATUS_LUN_ONLINE;
|
|
|
|
retval = fe->targ_disable(fe->targ_lun_arg,lun->target);
|
|
if (retval != 0) {
|
|
printf("ctl_free_lun: FETD %s port %d "
|
|
"returned error %d for targ_disable on "
|
|
"target %ju\n", fe->port_name,
|
|
fe->targ_port, retval,
|
|
(uintmax_t)lun->target.id);
|
|
} else
|
|
fe->status &= ~CTL_PORT_STATUS_TARG_ONLINE;
|
|
|
|
if ((fe->status & CTL_PORT_STATUS_TARG_ONLINE) != 0)
|
|
continue;
|
|
|
|
#if 0
|
|
fe->port_offline(fe->onoff_arg);
|
|
fe->status &= ~CTL_PORT_STATUS_ONLINE;
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Tell the backend to free resources, if this LUN has a backend.
|
|
*/
|
|
atomic_subtract_int(&lun->be_lun->be->num_luns, 1);
|
|
lun->be_lun->lun_shutdown(lun->be_lun->be_lun);
|
|
|
|
if (lun->flags & CTL_LUN_MALLOCED)
|
|
free(lun, M_CTL);
|
|
|
|
STAILQ_FOREACH(nlun, &softc->lun_list, links) {
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
nlun->pending_sense[i].ua_pending |= CTL_UA_LUN_CHANGE;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ctl_create_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
/*
|
|
* ctl_alloc_lun() should handle all potential failure cases.
|
|
*/
|
|
ctl_alloc_lun(ctl_softc, NULL, be_lun, ctl_softc->target);
|
|
}
|
|
|
|
int
|
|
ctl_add_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
STAILQ_INSERT_TAIL(&ctl_softc->pending_lun_queue, be_lun, links);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_wakeup_thread();
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_enable_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_frontend *fe, *nfe;
|
|
struct ctl_lun *lun;
|
|
int retval;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
|
|
/*
|
|
* eh? Why did we get called if the LUN is already
|
|
* enabled?
|
|
*/
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (0);
|
|
}
|
|
lun->flags &= ~CTL_LUN_DISABLED;
|
|
|
|
for (fe = STAILQ_FIRST(&ctl_softc->fe_list); fe != NULL; fe = nfe) {
|
|
nfe = STAILQ_NEXT(fe, links);
|
|
|
|
/*
|
|
* Drop the lock while we call the FETD's enable routine.
|
|
* This can lead to a callback into CTL (at least in the
|
|
* case of the internal initiator frontend.
|
|
*/
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
retval = fe->lun_enable(fe->targ_lun_arg, lun->target,lun->lun);
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (retval != 0) {
|
|
printf("%s: FETD %s port %d returned error "
|
|
"%d for lun_enable on target %ju lun %jd\n",
|
|
__func__, fe->port_name, fe->targ_port, retval,
|
|
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
|
|
}
|
|
#if 0
|
|
else {
|
|
/* NOTE: TODO: why does lun enable affect port status? */
|
|
fe->status |= CTL_PORT_STATUS_LUN_ONLINE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_disable_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_frontend *fe;
|
|
struct ctl_lun *lun;
|
|
int retval;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
if (lun->flags & CTL_LUN_DISABLED) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (0);
|
|
}
|
|
lun->flags |= CTL_LUN_DISABLED;
|
|
|
|
STAILQ_FOREACH(fe, &ctl_softc->fe_list, links) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
/*
|
|
* Drop the lock before we call the frontend's disable
|
|
* routine, to avoid lock order reversals.
|
|
*
|
|
* XXX KDM what happens if the frontend list changes while
|
|
* we're traversing it? It's unlikely, but should be handled.
|
|
*/
|
|
retval = fe->lun_disable(fe->targ_lun_arg, lun->target,
|
|
lun->lun);
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (retval != 0) {
|
|
printf("ctl_alloc_lun: FETD %s port %d returned error "
|
|
"%d for lun_disable on target %ju lun %jd\n",
|
|
fe->port_name, fe->targ_port, retval,
|
|
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_start_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags &= ~CTL_LUN_STOPPED;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_stop_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags |= CTL_LUN_STOPPED;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_lun_offline(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags |= CTL_LUN_OFFLINE;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_lun_online(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags &= ~CTL_LUN_OFFLINE;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_invalidate_lun(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* The LUN needs to be disabled before it can be marked invalid.
|
|
*/
|
|
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return (-1);
|
|
}
|
|
/*
|
|
* Mark the LUN invalid.
|
|
*/
|
|
lun->flags |= CTL_LUN_INVALID;
|
|
|
|
/*
|
|
* If there is nothing in the OOA queue, go ahead and free the LUN.
|
|
* If we have something in the OOA queue, we'll free it when the
|
|
* last I/O completes.
|
|
*/
|
|
if (TAILQ_FIRST(&lun->ooa_queue) == NULL)
|
|
ctl_free_lun(lun);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_lun_inoperable(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags |= CTL_LUN_INOPERABLE;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_lun_operable(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
ctl_softc = control_softc;
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags &= ~CTL_LUN_INOPERABLE;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_lun_power_lock(struct ctl_be_lun *be_lun, struct ctl_nexus *nexus,
|
|
int lock)
|
|
{
|
|
struct ctl_softc *softc;
|
|
struct ctl_lun *lun;
|
|
struct copan_aps_subpage *current_sp;
|
|
struct ctl_page_index *page_index;
|
|
int i;
|
|
|
|
softc = control_softc;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
page_index = NULL;
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) !=
|
|
APS_PAGE_CODE)
|
|
continue;
|
|
|
|
if (lun->mode_pages.index[i].subpage != APS_SUBPAGE_CODE)
|
|
continue;
|
|
page_index = &lun->mode_pages.index[i];
|
|
}
|
|
|
|
if (page_index == NULL) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
printf("%s: APS subpage not found for lun %ju!\n", __func__,
|
|
(uintmax_t)lun->lun);
|
|
return (1);
|
|
}
|
|
#if 0
|
|
if ((softc->aps_locked_lun != 0)
|
|
&& (softc->aps_locked_lun != lun->lun)) {
|
|
printf("%s: attempt to lock LUN %llu when %llu is already "
|
|
"locked\n");
|
|
mtx_unlock(&softc->ctl_lock);
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
current_sp = (struct copan_aps_subpage *)(page_index->page_data +
|
|
(page_index->page_len * CTL_PAGE_CURRENT));
|
|
|
|
if (lock != 0) {
|
|
current_sp->lock_active = APS_LOCK_ACTIVE;
|
|
softc->aps_locked_lun = lun->lun;
|
|
} else {
|
|
current_sp->lock_active = 0;
|
|
softc->aps_locked_lun = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* If we're in HA mode, try to send the lock message to the other
|
|
* side.
|
|
*/
|
|
if (ctl_is_single == 0) {
|
|
int isc_retval;
|
|
union ctl_ha_msg lock_msg;
|
|
|
|
lock_msg.hdr.nexus = *nexus;
|
|
lock_msg.hdr.msg_type = CTL_MSG_APS_LOCK;
|
|
if (lock != 0)
|
|
lock_msg.aps.lock_flag = 1;
|
|
else
|
|
lock_msg.aps.lock_flag = 0;
|
|
isc_retval = ctl_ha_msg_send(CTL_HA_CHAN_CTL, &lock_msg,
|
|
sizeof(lock_msg), 0);
|
|
if (isc_retval > CTL_HA_STATUS_SUCCESS) {
|
|
printf("%s: APS (lock=%d) error returned from "
|
|
"ctl_ha_msg_send: %d\n", __func__, lock, isc_retval);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ctl_lun_capacity_changed(struct ctl_be_lun *be_lun)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *softc;
|
|
int i;
|
|
|
|
softc = control_softc;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
lun = (struct ctl_lun *)be_lun->ctl_lun;
|
|
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++)
|
|
lun->pending_sense[i].ua_pending |= CTL_UA_CAPACITY_CHANGED;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
}
|
|
|
|
/*
|
|
* Backend "memory move is complete" callback for requests that never
|
|
* make it down to say RAIDCore's configuration code.
|
|
*/
|
|
int
|
|
ctl_config_move_done(union ctl_io *io)
|
|
{
|
|
int retval;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
|
|
CTL_DEBUG_PRINT(("ctl_config_move_done\n"));
|
|
/*
|
|
* XXX KDM this shouldn't happen, but what if it does?
|
|
*/
|
|
if (io->io_hdr.io_type != CTL_IO_SCSI)
|
|
panic("I/O type isn't CTL_IO_SCSI!");
|
|
|
|
if ((io->io_hdr.port_status == 0)
|
|
&& ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0)
|
|
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE))
|
|
io->io_hdr.status = CTL_SUCCESS;
|
|
else if ((io->io_hdr.port_status != 0)
|
|
&& ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0)
|
|
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)){
|
|
/*
|
|
* For hardware error sense keys, the sense key
|
|
* specific value is defined to be a retry count,
|
|
* but we use it to pass back an internal FETD
|
|
* error code. XXX KDM Hopefully the FETD is only
|
|
* using 16 bits for an error code, since that's
|
|
* all the space we have in the sks field.
|
|
*/
|
|
ctl_set_internal_failure(&io->scsiio,
|
|
/*sks_valid*/ 1,
|
|
/*retry_count*/
|
|
io->io_hdr.port_status);
|
|
free(io->scsiio.kern_data_ptr, M_CTL);
|
|
ctl_done(io);
|
|
goto bailout;
|
|
}
|
|
|
|
if (((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN)
|
|
|| ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
|
|
|| ((io->io_hdr.flags & CTL_FLAG_ABORT) != 0)) {
|
|
/*
|
|
* XXX KDM just assuming a single pointer here, and not a
|
|
* S/G list. If we start using S/G lists for config data,
|
|
* we'll need to know how to clean them up here as well.
|
|
*/
|
|
free(io->scsiio.kern_data_ptr, M_CTL);
|
|
/* Hopefully the user has already set the status... */
|
|
ctl_done(io);
|
|
} else {
|
|
/*
|
|
* XXX KDM now we need to continue data movement. Some
|
|
* options:
|
|
* - call ctl_scsiio() again? We don't do this for data
|
|
* writes, because for those at least we know ahead of
|
|
* time where the write will go and how long it is. For
|
|
* config writes, though, that information is largely
|
|
* contained within the write itself, thus we need to
|
|
* parse out the data again.
|
|
*
|
|
* - Call some other function once the data is in?
|
|
*/
|
|
|
|
/*
|
|
* XXX KDM call ctl_scsiio() again for now, and check flag
|
|
* bits to see whether we're allocated or not.
|
|
*/
|
|
retval = ctl_scsiio(&io->scsiio);
|
|
}
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* This gets called by a backend driver when it is done with a
|
|
* configuration write.
|
|
*/
|
|
void
|
|
ctl_config_write_done(union ctl_io *io)
|
|
{
|
|
/*
|
|
* If the IO_CONT flag is set, we need to call the supplied
|
|
* function to continue processing the I/O, instead of completing
|
|
* the I/O just yet.
|
|
*
|
|
* If there is an error, though, we don't want to keep processing.
|
|
* Instead, just send status back to the initiator.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_IO_CONT)
|
|
&& (((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)
|
|
|| ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS))) {
|
|
io->scsiio.io_cont(io);
|
|
return;
|
|
}
|
|
/*
|
|
* Since a configuration write can be done for commands that actually
|
|
* have data allocated, like write buffer, and commands that have
|
|
* no data, like start/stop unit, we need to check here.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT)
|
|
free(io->scsiio.kern_data_ptr, M_CTL);
|
|
ctl_done(io);
|
|
}
|
|
|
|
/*
|
|
* SCSI release command.
|
|
*/
|
|
int
|
|
ctl_scsi_release(struct ctl_scsiio *ctsio)
|
|
{
|
|
int length, longid, thirdparty_id, resv_id;
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
length = 0;
|
|
resv_id = 0;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_scsi_release\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case RELEASE: {
|
|
struct scsi_release *cdb;
|
|
|
|
cdb = (struct scsi_release *)ctsio->cdb;
|
|
if ((cdb->byte2 & 0x1f) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
break;
|
|
}
|
|
case RELEASE_10: {
|
|
struct scsi_release_10 *cdb;
|
|
|
|
cdb = (struct scsi_release_10 *)ctsio->cdb;
|
|
|
|
if ((cdb->byte2 & SR10_EXTENT) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
|
|
}
|
|
|
|
if ((cdb->byte2 & SR10_3RDPTY) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (cdb->byte2 & SR10_LONGID)
|
|
longid = 1;
|
|
else
|
|
thirdparty_id = cdb->thirdparty_id;
|
|
|
|
resv_id = cdb->resv_id;
|
|
length = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* XXX KDM right now, we only support LUN reservation. We don't
|
|
* support 3rd party reservations, or extent reservations, which
|
|
* might actually need the parameter list. If we've gotten this
|
|
* far, we've got a LUN reservation. Anything else got kicked out
|
|
* above. So, according to SPC, ignore the length.
|
|
*/
|
|
length = 0;
|
|
|
|
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
|
|
&& (length > 0)) {
|
|
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->io_hdr.status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_data_len = length;
|
|
ctsio->kern_total_len = length;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (length > 0)
|
|
thirdparty_id = scsi_8btou64(ctsio->kern_data_ptr);
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* According to SPC, it is not an error for an intiator to attempt
|
|
* to release a reservation on a LUN that isn't reserved, or that
|
|
* is reserved by another initiator. The reservation can only be
|
|
* released, though, by the initiator who made it or by one of
|
|
* several reset type events.
|
|
*/
|
|
if (lun->flags & CTL_LUN_RESERVED) {
|
|
if ((ctsio->io_hdr.nexus.initid.id == lun->rsv_nexus.initid.id)
|
|
&& (ctsio->io_hdr.nexus.targ_port == lun->rsv_nexus.targ_port)
|
|
&& (ctsio->io_hdr.nexus.targ_target.id ==
|
|
lun->rsv_nexus.targ_target.id)) {
|
|
lun->flags &= ~CTL_LUN_RESERVED;
|
|
}
|
|
}
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
ctsio->io_hdr.status = CTL_SUCCESS;
|
|
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
|
|
}
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_scsi_reserve(struct ctl_scsiio *ctsio)
|
|
{
|
|
int extent, thirdparty, longid;
|
|
int resv_id, length;
|
|
uint64_t thirdparty_id;
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
|
|
extent = 0;
|
|
thirdparty = 0;
|
|
longid = 0;
|
|
resv_id = 0;
|
|
length = 0;
|
|
thirdparty_id = 0;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_reserve\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case RESERVE: {
|
|
struct scsi_reserve *cdb;
|
|
|
|
cdb = (struct scsi_reserve *)ctsio->cdb;
|
|
if ((cdb->byte2 & 0x1f) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
resv_id = cdb->resv_id;
|
|
length = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
case RESERVE_10: {
|
|
struct scsi_reserve_10 *cdb;
|
|
|
|
cdb = (struct scsi_reserve_10 *)ctsio->cdb;
|
|
|
|
if ((cdb->byte2 & SR10_EXTENT) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
if ((cdb->byte2 & SR10_3RDPTY) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
if (cdb->byte2 & SR10_LONGID)
|
|
longid = 1;
|
|
else
|
|
thirdparty_id = cdb->thirdparty_id;
|
|
|
|
resv_id = cdb->resv_id;
|
|
length = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX KDM right now, we only support LUN reservation. We don't
|
|
* support 3rd party reservations, or extent reservations, which
|
|
* might actually need the parameter list. If we've gotten this
|
|
* far, we've got a LUN reservation. Anything else got kicked out
|
|
* above. So, according to SPC, ignore the length.
|
|
*/
|
|
length = 0;
|
|
|
|
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
|
|
&& (length > 0)) {
|
|
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->io_hdr.status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_data_len = length;
|
|
ctsio->kern_total_len = length;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (length > 0)
|
|
thirdparty_id = scsi_8btou64(ctsio->kern_data_ptr);
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (lun->flags & CTL_LUN_RESERVED) {
|
|
if ((ctsio->io_hdr.nexus.initid.id != lun->rsv_nexus.initid.id)
|
|
|| (ctsio->io_hdr.nexus.targ_port != lun->rsv_nexus.targ_port)
|
|
|| (ctsio->io_hdr.nexus.targ_target.id !=
|
|
lun->rsv_nexus.targ_target.id)) {
|
|
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
goto bailout;
|
|
}
|
|
}
|
|
|
|
lun->flags |= CTL_LUN_RESERVED;
|
|
lun->rsv_nexus = ctsio->io_hdr.nexus;
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
ctsio->io_hdr.status = CTL_SUCCESS;
|
|
|
|
bailout:
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
|
|
}
|
|
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_start_stop(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_start_stop_unit *cdb;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
int retval;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_start_stop\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
retval = 0;
|
|
|
|
cdb = (struct scsi_start_stop_unit *)ctsio->cdb;
|
|
|
|
/*
|
|
* XXX KDM
|
|
* We don't support the immediate bit on a stop unit. In order to
|
|
* do that, we would need to code up a way to know that a stop is
|
|
* pending, and hold off any new commands until it completes, one
|
|
* way or another. Then we could accept or reject those commands
|
|
* depending on its status. We would almost need to do the reverse
|
|
* of what we do below for an immediate start -- return the copy of
|
|
* the ctl_io to the FETD with status to send to the host (and to
|
|
* free the copy!) and then free the original I/O once the stop
|
|
* actually completes. That way, the OOA queue mechanism can work
|
|
* to block commands that shouldn't proceed. Another alternative
|
|
* would be to put the copy in the queue in place of the original,
|
|
* and return the original back to the caller. That could be
|
|
* slightly safer..
|
|
*/
|
|
if ((cdb->byte2 & SSS_IMMED)
|
|
&& ((cdb->how & SSS_START) == 0)) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* We don't support the power conditions field. We need to check
|
|
* this prior to checking the load/eject and start/stop bits.
|
|
*/
|
|
if ((cdb->how & SSS_PC_MASK) != SSS_PC_START_VALID) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 4,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Media isn't removable, so we can't load or eject it.
|
|
*/
|
|
if ((cdb->how & SSS_LOEJ) != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 4,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 1);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if ((lun->flags & CTL_LUN_PR_RESERVED)
|
|
&& ((cdb->how & SSS_START)==0)) {
|
|
uint32_t residx;
|
|
|
|
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
|
|
if (!lun->per_res[residx].registered
|
|
|| (lun->pr_res_idx!=residx && lun->res_type < 4)) {
|
|
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is no backend on this device, we can't start or stop
|
|
* it. In theory we shouldn't get any start/stop commands in the
|
|
* first place at this level if the LUN doesn't have a backend.
|
|
* That should get stopped by the command decode code.
|
|
*/
|
|
if (lun->backend == NULL) {
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* XXX KDM Copan-specific offline behavior.
|
|
* Figure out a reasonable way to port this?
|
|
*/
|
|
#ifdef NEEDTOPORT
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
if (((cdb->byte2 & SSS_ONOFFLINE) == 0)
|
|
&& (lun->flags & CTL_LUN_OFFLINE)) {
|
|
/*
|
|
* If the LUN is offline, and the on/offline bit isn't set,
|
|
* reject the start or stop. Otherwise, let it through.
|
|
*/
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_set_lun_not_ready(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
} else {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
#endif /* NEEDTOPORT */
|
|
/*
|
|
* This could be a start or a stop when we're online,
|
|
* or a stop/offline or start/online. A start or stop when
|
|
* we're offline is covered in the case above.
|
|
*/
|
|
/*
|
|
* In the non-immediate case, we send the request to
|
|
* the backend and return status to the user when
|
|
* it is done.
|
|
*
|
|
* In the immediate case, we allocate a new ctl_io
|
|
* to hold a copy of the request, and send that to
|
|
* the backend. We then set good status on the
|
|
* user's request and return it immediately.
|
|
*/
|
|
if (cdb->byte2 & SSS_IMMED) {
|
|
union ctl_io *new_io;
|
|
|
|
new_io = ctl_alloc_io(ctsio->io_hdr.pool);
|
|
if (new_io == NULL) {
|
|
ctl_set_busy(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
} else {
|
|
ctl_copy_io((union ctl_io *)ctsio,
|
|
new_io);
|
|
retval = lun->backend->config_write(new_io);
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
}
|
|
} else {
|
|
retval = lun->backend->config_write(
|
|
(union ctl_io *)ctsio);
|
|
}
|
|
#ifdef NEEDTOPORT
|
|
}
|
|
#endif
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* We support the SYNCHRONIZE CACHE command (10 and 16 byte versions), but
|
|
* we don't really do anything with the LBA and length fields if the user
|
|
* passes them in. Instead we'll just flush out the cache for the entire
|
|
* LUN.
|
|
*/
|
|
int
|
|
ctl_sync_cache(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
uint64_t starting_lba;
|
|
uint32_t block_count;
|
|
int reladr, immed;
|
|
int retval;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_sync_cache\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
retval = 0;
|
|
reladr = 0;
|
|
immed = 0;
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case SYNCHRONIZE_CACHE: {
|
|
struct scsi_sync_cache *cdb;
|
|
cdb = (struct scsi_sync_cache *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SSC_RELADR)
|
|
reladr = 1;
|
|
|
|
if (cdb->byte2 & SSC_IMMED)
|
|
immed = 1;
|
|
|
|
starting_lba = scsi_4btoul(cdb->begin_lba);
|
|
block_count = scsi_2btoul(cdb->lb_count);
|
|
break;
|
|
}
|
|
case SYNCHRONIZE_CACHE_16: {
|
|
struct scsi_sync_cache_16 *cdb;
|
|
cdb = (struct scsi_sync_cache_16 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SSC_RELADR)
|
|
reladr = 1;
|
|
|
|
if (cdb->byte2 & SSC_IMMED)
|
|
immed = 1;
|
|
|
|
starting_lba = scsi_8btou64(cdb->begin_lba);
|
|
block_count = scsi_4btoul(cdb->lb_count);
|
|
break;
|
|
}
|
|
default:
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
if (immed) {
|
|
/*
|
|
* We don't support the immediate bit. Since it's in the
|
|
* same place for the 10 and 16 byte SYNCHRONIZE CACHE
|
|
* commands, we can just return the same error in either
|
|
* case.
|
|
*/
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 1);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
if (reladr) {
|
|
/*
|
|
* We don't support the reladr bit either. It can only be
|
|
* used with linked commands, and we don't support linked
|
|
* commands. Since the bit is in the same place for the
|
|
* 10 and 16 byte SYNCHRONIZE CACHE * commands, we can
|
|
* just return the same error in either case.
|
|
*/
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* We check the LBA and length, but don't do anything with them.
|
|
* A SYNCHRONIZE CACHE will cause the entire cache for this lun to
|
|
* get flushed. This check will just help satisfy anyone who wants
|
|
* to see an error for an out of range LBA.
|
|
*/
|
|
if ((starting_lba + block_count) > (lun->be_lun->maxlba + 1)) {
|
|
ctl_set_lba_out_of_range(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* If this LUN has no backend, we can't flush the cache anyway.
|
|
*/
|
|
if (lun->backend == NULL) {
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* Check to see whether we're configured to send the SYNCHRONIZE
|
|
* CACHE command directly to the back end.
|
|
*/
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if ((ctl_softc->flags & CTL_FLAG_REAL_SYNC)
|
|
&& (++(lun->sync_count) >= lun->sync_interval)) {
|
|
lun->sync_count = 0;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
retval = lun->backend->config_write((union ctl_io *)ctsio);
|
|
} else {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
}
|
|
|
|
bailout:
|
|
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
ctl_format(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_format *cdb;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
int length, defect_list_len;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_format\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
|
|
cdb = (struct scsi_format *)ctsio->cdb;
|
|
|
|
length = 0;
|
|
if (cdb->byte2 & SF_FMTDATA) {
|
|
if (cdb->byte2 & SF_LONGLIST)
|
|
length = sizeof(struct scsi_format_header_long);
|
|
else
|
|
length = sizeof(struct scsi_format_header_short);
|
|
}
|
|
|
|
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
|
|
&& (length > 0)) {
|
|
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->io_hdr.status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_data_len = length;
|
|
ctsio->kern_total_len = length;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
defect_list_len = 0;
|
|
|
|
if (cdb->byte2 & SF_FMTDATA) {
|
|
if (cdb->byte2 & SF_LONGLIST) {
|
|
struct scsi_format_header_long *header;
|
|
|
|
header = (struct scsi_format_header_long *)
|
|
ctsio->kern_data_ptr;
|
|
|
|
defect_list_len = scsi_4btoul(header->defect_list_len);
|
|
if (defect_list_len != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
goto bailout;
|
|
}
|
|
} else {
|
|
struct scsi_format_header_short *header;
|
|
|
|
header = (struct scsi_format_header_short *)
|
|
ctsio->kern_data_ptr;
|
|
|
|
defect_list_len = scsi_2btoul(header->defect_list_len);
|
|
if (defect_list_len != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
goto bailout;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The format command will clear out the "Medium format corrupted"
|
|
* status if set by the configuration code. That status is really
|
|
* just a way to notify the host that we have lost the media, and
|
|
* get them to issue a command that will basically make them think
|
|
* they're blowing away the media.
|
|
*/
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
lun->flags &= ~CTL_LUN_INOPERABLE;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
ctsio->io_hdr.status = CTL_SUCCESS;
|
|
bailout:
|
|
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
|
|
}
|
|
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_write_buffer(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_write_buffer *cdb;
|
|
struct copan_page_header *header;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
int buffer_offset, len;
|
|
int retval;
|
|
|
|
header = NULL;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_write_buffer\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
ctl_softc = control_softc;
|
|
cdb = (struct scsi_write_buffer *)ctsio->cdb;
|
|
|
|
if ((cdb->byte2 & RWB_MODE) != RWB_MODE_DATA) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
if (cdb->buffer_id != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
len = scsi_3btoul(cdb->length);
|
|
buffer_offset = scsi_3btoul(cdb->offset);
|
|
|
|
if (len > sizeof(lun->write_buffer)) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 6,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (buffer_offset != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 3,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* If we've got a kernel request that hasn't been malloced yet,
|
|
* malloc it and tell the caller the data buffer is here.
|
|
*/
|
|
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
|
|
ctsio->kern_data_ptr = lun->write_buffer;
|
|
ctsio->kern_data_len = len;
|
|
ctsio->kern_total_len = len;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Note that this function currently doesn't actually do anything inside
|
|
* CTL to enforce things if the DQue bit is turned on.
|
|
*
|
|
* Also note that this function can't be used in the default case, because
|
|
* the DQue bit isn't set in the changeable mask for the control mode page
|
|
* anyway. This is just here as an example for how to implement a page
|
|
* handler, and a placeholder in case we want to allow the user to turn
|
|
* tagged queueing on and off.
|
|
*
|
|
* The D_SENSE bit handling is functional, however, and will turn
|
|
* descriptor sense on and off for a given LUN.
|
|
*/
|
|
int
|
|
ctl_control_page_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index, uint8_t *page_ptr)
|
|
{
|
|
struct scsi_control_page *current_cp, *saved_cp, *user_cp;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *softc;
|
|
int set_ua;
|
|
uint32_t initidx;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
|
|
set_ua = 0;
|
|
|
|
user_cp = (struct scsi_control_page *)page_ptr;
|
|
current_cp = (struct scsi_control_page *)
|
|
(page_index->page_data + (page_index->page_len *
|
|
CTL_PAGE_CURRENT));
|
|
saved_cp = (struct scsi_control_page *)
|
|
(page_index->page_data + (page_index->page_len *
|
|
CTL_PAGE_SAVED));
|
|
|
|
softc = control_softc;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (((current_cp->rlec & SCP_DSENSE) == 0)
|
|
&& ((user_cp->rlec & SCP_DSENSE) != 0)) {
|
|
/*
|
|
* Descriptor sense is currently turned off and the user
|
|
* wants to turn it on.
|
|
*/
|
|
current_cp->rlec |= SCP_DSENSE;
|
|
saved_cp->rlec |= SCP_DSENSE;
|
|
lun->flags |= CTL_LUN_SENSE_DESC;
|
|
set_ua = 1;
|
|
} else if (((current_cp->rlec & SCP_DSENSE) != 0)
|
|
&& ((user_cp->rlec & SCP_DSENSE) == 0)) {
|
|
/*
|
|
* Descriptor sense is currently turned on, and the user
|
|
* wants to turn it off.
|
|
*/
|
|
current_cp->rlec &= ~SCP_DSENSE;
|
|
saved_cp->rlec &= ~SCP_DSENSE;
|
|
lun->flags &= ~CTL_LUN_SENSE_DESC;
|
|
set_ua = 1;
|
|
}
|
|
if (current_cp->queue_flags & SCP_QUEUE_DQUE) {
|
|
if (user_cp->queue_flags & SCP_QUEUE_DQUE) {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_UNTAG_TO_UNTAG,
|
|
csevent_LogType_Trace,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"Received untagged to untagged transition");
|
|
#endif /* NEEDTOPORT */
|
|
} else {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_UNTAG_TO_TAG,
|
|
csevent_LogType_ConfigChange,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"Received untagged to tagged "
|
|
"queueing transition");
|
|
#endif /* NEEDTOPORT */
|
|
|
|
current_cp->queue_flags &= ~SCP_QUEUE_DQUE;
|
|
saved_cp->queue_flags &= ~SCP_QUEUE_DQUE;
|
|
set_ua = 1;
|
|
}
|
|
} else {
|
|
if (user_cp->queue_flags & SCP_QUEUE_DQUE) {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_TAG_TO_UNTAG,
|
|
csevent_LogType_ConfigChange,
|
|
csevent_Severity_Warning,
|
|
csevent_AlertLevel_Yellow,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"Received tagged queueing to untagged "
|
|
"transition");
|
|
#endif /* NEEDTOPORT */
|
|
|
|
current_cp->queue_flags |= SCP_QUEUE_DQUE;
|
|
saved_cp->queue_flags |= SCP_QUEUE_DQUE;
|
|
set_ua = 1;
|
|
} else {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_TAG_TO_TAG,
|
|
csevent_LogType_Trace,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"Received tagged queueing to tagged "
|
|
"queueing transition");
|
|
#endif /* NEEDTOPORT */
|
|
}
|
|
}
|
|
if (set_ua != 0) {
|
|
int i;
|
|
/*
|
|
* Let other initiators know that the mode
|
|
* parameters for this LUN have changed.
|
|
*/
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
if (i == initidx)
|
|
continue;
|
|
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_MODE_CHANGE;
|
|
}
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_power_sp_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index, uint8_t *page_ptr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_power_sp_sense_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index, int pc)
|
|
{
|
|
struct copan_power_subpage *page;
|
|
|
|
page = (struct copan_power_subpage *)page_index->page_data +
|
|
(page_index->page_len * pc);
|
|
|
|
switch (pc) {
|
|
case SMS_PAGE_CTRL_CHANGEABLE >> 6:
|
|
/*
|
|
* We don't update the changable bits for this page.
|
|
*/
|
|
break;
|
|
case SMS_PAGE_CTRL_CURRENT >> 6:
|
|
case SMS_PAGE_CTRL_DEFAULT >> 6:
|
|
case SMS_PAGE_CTRL_SAVED >> 6:
|
|
#ifdef NEEDTOPORT
|
|
ctl_update_power_subpage(page);
|
|
#endif
|
|
break;
|
|
default:
|
|
#ifdef NEEDTOPORT
|
|
EPRINT(0, "Invalid PC %d!!", pc);
|
|
#endif
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
ctl_aps_sp_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index, uint8_t *page_ptr)
|
|
{
|
|
struct copan_aps_subpage *user_sp;
|
|
struct copan_aps_subpage *current_sp;
|
|
union ctl_modepage_info *modepage_info;
|
|
struct ctl_softc *softc;
|
|
struct ctl_lun *lun;
|
|
int retval;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
current_sp = (struct copan_aps_subpage *)(page_index->page_data +
|
|
(page_index->page_len * CTL_PAGE_CURRENT));
|
|
softc = control_softc;
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
user_sp = (struct copan_aps_subpage *)page_ptr;
|
|
|
|
modepage_info = (union ctl_modepage_info *)
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
|
|
|
|
modepage_info->header.page_code = page_index->page_code & SMPH_PC_MASK;
|
|
modepage_info->header.subpage = page_index->subpage;
|
|
modepage_info->aps.lock_active = user_sp->lock_active;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
/*
|
|
* If there is a request to lock the LUN and another LUN is locked
|
|
* this is an error. If the requested LUN is already locked ignore
|
|
* the request. If no LUN is locked attempt to lock it.
|
|
* if there is a request to unlock the LUN and the LUN is currently
|
|
* locked attempt to unlock it. Otherwise ignore the request. i.e.
|
|
* if another LUN is locked or no LUN is locked.
|
|
*/
|
|
if (user_sp->lock_active & APS_LOCK_ACTIVE) {
|
|
if (softc->aps_locked_lun == lun->lun) {
|
|
/*
|
|
* This LUN is already locked, so we're done.
|
|
*/
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
} else if (softc->aps_locked_lun == 0) {
|
|
/*
|
|
* No one has the lock, pass the request to the
|
|
* backend.
|
|
*/
|
|
retval = lun->backend->config_write(
|
|
(union ctl_io *)ctsio);
|
|
} else {
|
|
/*
|
|
* Someone else has the lock, throw out the request.
|
|
*/
|
|
ctl_set_already_locked(ctsio);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
/*
|
|
* Set the return value so that ctl_do_mode_select()
|
|
* won't try to complete the command. We already
|
|
* completed it here.
|
|
*/
|
|
retval = CTL_RETVAL_ERROR;
|
|
}
|
|
} else if (softc->aps_locked_lun == lun->lun) {
|
|
/*
|
|
* This LUN is locked, so pass the unlock request to the
|
|
* backend.
|
|
*/
|
|
retval = lun->backend->config_write((union ctl_io *)ctsio);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
ctl_debugconf_sp_select_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index,
|
|
uint8_t *page_ptr)
|
|
{
|
|
uint8_t *c;
|
|
int i;
|
|
|
|
c = ((struct copan_debugconf_subpage *)page_ptr)->ctl_time_io_secs;
|
|
ctl_time_io_secs =
|
|
(c[0] << 8) |
|
|
(c[1] << 0) |
|
|
0;
|
|
CTL_DEBUG_PRINT(("set ctl_time_io_secs to %d\n", ctl_time_io_secs));
|
|
printf("set ctl_time_io_secs to %d\n", ctl_time_io_secs);
|
|
printf("page data:");
|
|
for (i=0; i<8; i++)
|
|
printf(" %.2x",page_ptr[i]);
|
|
printf("\n");
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ctl_debugconf_sp_sense_handler(struct ctl_scsiio *ctsio,
|
|
struct ctl_page_index *page_index,
|
|
int pc)
|
|
{
|
|
struct copan_debugconf_subpage *page;
|
|
|
|
page = (struct copan_debugconf_subpage *)page_index->page_data +
|
|
(page_index->page_len * pc);
|
|
|
|
switch (pc) {
|
|
case SMS_PAGE_CTRL_CHANGEABLE >> 6:
|
|
case SMS_PAGE_CTRL_DEFAULT >> 6:
|
|
case SMS_PAGE_CTRL_SAVED >> 6:
|
|
/*
|
|
* We don't update the changable or default bits for this page.
|
|
*/
|
|
break;
|
|
case SMS_PAGE_CTRL_CURRENT >> 6:
|
|
page->ctl_time_io_secs[0] = ctl_time_io_secs >> 8;
|
|
page->ctl_time_io_secs[1] = ctl_time_io_secs >> 0;
|
|
break;
|
|
default:
|
|
#ifdef NEEDTOPORT
|
|
EPRINT(0, "Invalid PC %d!!", pc);
|
|
#endif /* NEEDTOPORT */
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
ctl_do_mode_select(union ctl_io *io)
|
|
{
|
|
struct scsi_mode_page_header *page_header;
|
|
struct ctl_page_index *page_index;
|
|
struct ctl_scsiio *ctsio;
|
|
int control_dev, page_len;
|
|
int page_len_offset, page_len_size;
|
|
union ctl_modepage_info *modepage_info;
|
|
struct ctl_lun *lun;
|
|
int *len_left, *len_used;
|
|
int retval, i;
|
|
|
|
ctsio = &io->scsiio;
|
|
page_index = NULL;
|
|
page_len = 0;
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
if (lun->be_lun->lun_type != T_DIRECT)
|
|
control_dev = 1;
|
|
else
|
|
control_dev = 0;
|
|
|
|
modepage_info = (union ctl_modepage_info *)
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
|
|
len_left = &modepage_info->header.len_left;
|
|
len_used = &modepage_info->header.len_used;
|
|
|
|
do_next_page:
|
|
|
|
page_header = (struct scsi_mode_page_header *)
|
|
(ctsio->kern_data_ptr + *len_used);
|
|
|
|
if (*len_left == 0) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
} else if (*len_left < sizeof(struct scsi_mode_page_header)) {
|
|
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_param_len_error(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
|
|
} else if ((page_header->page_code & SMPH_SPF)
|
|
&& (*len_left < sizeof(struct scsi_mode_page_header_sp))) {
|
|
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_param_len_error(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
|
|
/*
|
|
* XXX KDM should we do something with the block descriptor?
|
|
*/
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
|
|
if ((control_dev != 0)
|
|
&& (lun->mode_pages.index[i].page_flags &
|
|
CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) !=
|
|
(page_header->page_code & SMPH_PC_MASK))
|
|
continue;
|
|
|
|
/*
|
|
* If neither page has a subpage code, then we've got a
|
|
* match.
|
|
*/
|
|
if (((lun->mode_pages.index[i].page_code & SMPH_SPF) == 0)
|
|
&& ((page_header->page_code & SMPH_SPF) == 0)) {
|
|
page_index = &lun->mode_pages.index[i];
|
|
page_len = page_header->page_length;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If both pages have subpages, then the subpage numbers
|
|
* have to match.
|
|
*/
|
|
if ((lun->mode_pages.index[i].page_code & SMPH_SPF)
|
|
&& (page_header->page_code & SMPH_SPF)) {
|
|
struct scsi_mode_page_header_sp *sph;
|
|
|
|
sph = (struct scsi_mode_page_header_sp *)page_header;
|
|
|
|
if (lun->mode_pages.index[i].subpage ==
|
|
sph->subpage) {
|
|
page_index = &lun->mode_pages.index[i];
|
|
page_len = scsi_2btoul(sph->page_length);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we couldn't find the page, or if we don't have a mode select
|
|
* handler for it, send back an error to the user.
|
|
*/
|
|
if ((page_index == NULL)
|
|
|| (page_index->select_handler == NULL)) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ *len_used,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (page_index->page_code & SMPH_SPF) {
|
|
page_len_offset = 2;
|
|
page_len_size = 2;
|
|
} else {
|
|
page_len_size = 1;
|
|
page_len_offset = 1;
|
|
}
|
|
|
|
/*
|
|
* If the length the initiator gives us isn't the one we specify in
|
|
* the mode page header, or if they didn't specify enough data in
|
|
* the CDB to avoid truncating this page, kick out the request.
|
|
*/
|
|
if ((page_len != (page_index->page_len - page_len_offset -
|
|
page_len_size))
|
|
|| (*len_left < page_index->page_len)) {
|
|
|
|
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ *len_used + page_len_offset,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Run through the mode page, checking to make sure that the bits
|
|
* the user changed are actually legal for him to change.
|
|
*/
|
|
for (i = 0; i < page_index->page_len; i++) {
|
|
uint8_t *user_byte, *change_mask, *current_byte;
|
|
int bad_bit;
|
|
int j;
|
|
|
|
user_byte = (uint8_t *)page_header + i;
|
|
change_mask = page_index->page_data +
|
|
(page_index->page_len * CTL_PAGE_CHANGEABLE) + i;
|
|
current_byte = page_index->page_data +
|
|
(page_index->page_len * CTL_PAGE_CURRENT) + i;
|
|
|
|
/*
|
|
* Check to see whether the user set any bits in this byte
|
|
* that he is not allowed to set.
|
|
*/
|
|
if ((*user_byte & ~(*change_mask)) ==
|
|
(*current_byte & ~(*change_mask)))
|
|
continue;
|
|
|
|
/*
|
|
* Go through bit by bit to determine which one is illegal.
|
|
*/
|
|
bad_bit = 0;
|
|
for (j = 7; j >= 0; j--) {
|
|
if ((((1 << i) & ~(*change_mask)) & *user_byte) !=
|
|
(((1 << i) & ~(*change_mask)) & *current_byte)) {
|
|
bad_bit = i;
|
|
break;
|
|
}
|
|
}
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ *len_used + i,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ bad_bit);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Decrement these before we call the page handler, since we may
|
|
* end up getting called back one way or another before the handler
|
|
* returns to this context.
|
|
*/
|
|
*len_left -= page_index->page_len;
|
|
*len_used += page_index->page_len;
|
|
|
|
retval = page_index->select_handler(ctsio, page_index,
|
|
(uint8_t *)page_header);
|
|
|
|
/*
|
|
* If the page handler returns CTL_RETVAL_QUEUED, then we need to
|
|
* wait until this queued command completes to finish processing
|
|
* the mode page. If it returns anything other than
|
|
* CTL_RETVAL_COMPLETE (e.g. CTL_RETVAL_ERROR), then it should have
|
|
* already set the sense information, freed the data pointer, and
|
|
* completed the io for us.
|
|
*/
|
|
if (retval != CTL_RETVAL_COMPLETE)
|
|
goto bailout_no_done;
|
|
|
|
/*
|
|
* If the initiator sent us more than one page, parse the next one.
|
|
*/
|
|
if (*len_left > 0)
|
|
goto do_next_page;
|
|
|
|
ctl_set_success(ctsio);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
bailout_no_done:
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
|
|
}
|
|
|
|
int
|
|
ctl_mode_select(struct ctl_scsiio *ctsio)
|
|
{
|
|
int param_len, pf, sp;
|
|
int header_size, bd_len;
|
|
int len_left, len_used;
|
|
struct ctl_page_index *page_index;
|
|
struct ctl_lun *lun;
|
|
int control_dev, page_len;
|
|
union ctl_modepage_info *modepage_info;
|
|
int retval;
|
|
|
|
pf = 0;
|
|
sp = 0;
|
|
page_len = 0;
|
|
len_used = 0;
|
|
len_left = 0;
|
|
retval = 0;
|
|
bd_len = 0;
|
|
page_index = NULL;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
if (lun->be_lun->lun_type != T_DIRECT)
|
|
control_dev = 1;
|
|
else
|
|
control_dev = 0;
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case MODE_SELECT_6: {
|
|
struct scsi_mode_select_6 *cdb;
|
|
|
|
cdb = (struct scsi_mode_select_6 *)ctsio->cdb;
|
|
|
|
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
|
|
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
|
|
|
|
param_len = cdb->length;
|
|
header_size = sizeof(struct scsi_mode_header_6);
|
|
break;
|
|
}
|
|
case MODE_SELECT_10: {
|
|
struct scsi_mode_select_10 *cdb;
|
|
|
|
cdb = (struct scsi_mode_select_10 *)ctsio->cdb;
|
|
|
|
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
|
|
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
|
|
|
|
param_len = scsi_2btoul(cdb->length);
|
|
header_size = sizeof(struct scsi_mode_header_10);
|
|
break;
|
|
}
|
|
default:
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* From SPC-3:
|
|
* "A parameter list length of zero indicates that the Data-Out Buffer
|
|
* shall be empty. This condition shall not be considered as an error."
|
|
*/
|
|
if (param_len == 0) {
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Since we'll hit this the first time through, prior to
|
|
* allocation, we don't need to free a data buffer here.
|
|
*/
|
|
if (param_len < header_size) {
|
|
ctl_set_param_len_error(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Allocate the data buffer and grab the user's data. In theory,
|
|
* we shouldn't have to sanity check the parameter list length here
|
|
* because the maximum size is 64K. We should be able to malloc
|
|
* that much without too many problems.
|
|
*/
|
|
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
|
|
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctl_set_busy(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_data_len = param_len;
|
|
ctsio->kern_total_len = param_len;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case MODE_SELECT_6: {
|
|
struct scsi_mode_header_6 *mh6;
|
|
|
|
mh6 = (struct scsi_mode_header_6 *)ctsio->kern_data_ptr;
|
|
bd_len = mh6->blk_desc_len;
|
|
break;
|
|
}
|
|
case MODE_SELECT_10: {
|
|
struct scsi_mode_header_10 *mh10;
|
|
|
|
mh10 = (struct scsi_mode_header_10 *)ctsio->kern_data_ptr;
|
|
bd_len = scsi_2btoul(mh10->blk_desc_len);
|
|
break;
|
|
}
|
|
default:
|
|
panic("Invalid CDB type %#x", ctsio->cdb[0]);
|
|
break;
|
|
}
|
|
|
|
if (param_len < (header_size + bd_len)) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_param_len_error(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Set the IO_CONT flag, so that if this I/O gets passed to
|
|
* ctl_config_write_done(), it'll get passed back to
|
|
* ctl_do_mode_select() for further processing, or completion if
|
|
* we're all done.
|
|
*/
|
|
ctsio->io_hdr.flags |= CTL_FLAG_IO_CONT;
|
|
ctsio->io_cont = ctl_do_mode_select;
|
|
|
|
modepage_info = (union ctl_modepage_info *)
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
|
|
|
|
memset(modepage_info, 0, sizeof(*modepage_info));
|
|
|
|
len_left = param_len - header_size - bd_len;
|
|
len_used = header_size + bd_len;
|
|
|
|
modepage_info->header.len_left = len_left;
|
|
modepage_info->header.len_used = len_used;
|
|
|
|
return (ctl_do_mode_select((union ctl_io *)ctsio));
|
|
}
|
|
|
|
int
|
|
ctl_mode_sense(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
int pc, page_code, dbd, llba, subpage;
|
|
int alloc_len, page_len, header_len, total_len;
|
|
struct scsi_mode_block_descr *block_desc;
|
|
struct ctl_page_index *page_index;
|
|
int control_dev;
|
|
|
|
dbd = 0;
|
|
llba = 0;
|
|
block_desc = NULL;
|
|
page_index = NULL;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_mode_sense\n"));
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
if (lun->be_lun->lun_type != T_DIRECT)
|
|
control_dev = 1;
|
|
else
|
|
control_dev = 0;
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case MODE_SENSE_6: {
|
|
struct scsi_mode_sense_6 *cdb;
|
|
|
|
cdb = (struct scsi_mode_sense_6 *)ctsio->cdb;
|
|
|
|
header_len = sizeof(struct scsi_mode_hdr_6);
|
|
if (cdb->byte2 & SMS_DBD)
|
|
dbd = 1;
|
|
else
|
|
header_len += sizeof(struct scsi_mode_block_descr);
|
|
|
|
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
|
|
page_code = cdb->page & SMS_PAGE_CODE;
|
|
subpage = cdb->subpage;
|
|
alloc_len = cdb->length;
|
|
break;
|
|
}
|
|
case MODE_SENSE_10: {
|
|
struct scsi_mode_sense_10 *cdb;
|
|
|
|
cdb = (struct scsi_mode_sense_10 *)ctsio->cdb;
|
|
|
|
header_len = sizeof(struct scsi_mode_hdr_10);
|
|
|
|
if (cdb->byte2 & SMS_DBD)
|
|
dbd = 1;
|
|
else
|
|
header_len += sizeof(struct scsi_mode_block_descr);
|
|
if (cdb->byte2 & SMS10_LLBAA)
|
|
llba = 1;
|
|
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
|
|
page_code = cdb->page & SMS_PAGE_CODE;
|
|
subpage = cdb->subpage;
|
|
alloc_len = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
default:
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* We have to make a first pass through to calculate the size of
|
|
* the pages that match the user's query. Then we allocate enough
|
|
* memory to hold it, and actually copy the data into the buffer.
|
|
*/
|
|
switch (page_code) {
|
|
case SMS_ALL_PAGES_PAGE: {
|
|
int i;
|
|
|
|
page_len = 0;
|
|
|
|
/*
|
|
* At the moment, values other than 0 and 0xff here are
|
|
* reserved according to SPC-3.
|
|
*/
|
|
if ((subpage != SMS_SUBPAGE_PAGE_0)
|
|
&& (subpage != SMS_SUBPAGE_ALL)) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 3,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
if ((control_dev != 0)
|
|
&& (lun->mode_pages.index[i].page_flags &
|
|
CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
/*
|
|
* We don't use this subpage if the user didn't
|
|
* request all subpages.
|
|
*/
|
|
if ((lun->mode_pages.index[i].subpage != 0)
|
|
&& (subpage == SMS_SUBPAGE_PAGE_0))
|
|
continue;
|
|
|
|
#if 0
|
|
printf("found page %#x len %d\n",
|
|
lun->mode_pages.index[i].page_code &
|
|
SMPH_PC_MASK,
|
|
lun->mode_pages.index[i].page_len);
|
|
#endif
|
|
page_len += lun->mode_pages.index[i].page_len;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
int i;
|
|
|
|
page_len = 0;
|
|
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
/* Look for the right page code */
|
|
if ((lun->mode_pages.index[i].page_code &
|
|
SMPH_PC_MASK) != page_code)
|
|
continue;
|
|
|
|
/* Look for the right subpage or the subpage wildcard*/
|
|
if ((lun->mode_pages.index[i].subpage != subpage)
|
|
&& (subpage != SMS_SUBPAGE_ALL))
|
|
continue;
|
|
|
|
/* Make sure the page is supported for this dev type */
|
|
if ((control_dev != 0)
|
|
&& (lun->mode_pages.index[i].page_flags &
|
|
CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
#if 0
|
|
printf("found page %#x len %d\n",
|
|
lun->mode_pages.index[i].page_code &
|
|
SMPH_PC_MASK,
|
|
lun->mode_pages.index[i].page_len);
|
|
#endif
|
|
|
|
page_len += lun->mode_pages.index[i].page_len;
|
|
}
|
|
|
|
if (page_len == 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 5);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
total_len = header_len + page_len;
|
|
#if 0
|
|
printf("header_len = %d, page_len = %d, total_len = %d\n",
|
|
header_len, page_len, total_len);
|
|
#endif
|
|
|
|
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
if (total_len < alloc_len) {
|
|
ctsio->residual = alloc_len - total_len;
|
|
ctsio->kern_data_len = total_len;
|
|
ctsio->kern_total_len = total_len;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
memset(ctsio->kern_data_ptr, 0, total_len);
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case MODE_SENSE_6: {
|
|
struct scsi_mode_hdr_6 *header;
|
|
|
|
header = (struct scsi_mode_hdr_6 *)ctsio->kern_data_ptr;
|
|
|
|
header->datalen = ctl_min(total_len - 1, 254);
|
|
|
|
if (dbd)
|
|
header->block_descr_len = 0;
|
|
else
|
|
header->block_descr_len =
|
|
sizeof(struct scsi_mode_block_descr);
|
|
block_desc = (struct scsi_mode_block_descr *)&header[1];
|
|
break;
|
|
}
|
|
case MODE_SENSE_10: {
|
|
struct scsi_mode_hdr_10 *header;
|
|
int datalen;
|
|
|
|
header = (struct scsi_mode_hdr_10 *)ctsio->kern_data_ptr;
|
|
|
|
datalen = ctl_min(total_len - 2, 65533);
|
|
scsi_ulto2b(datalen, header->datalen);
|
|
if (dbd)
|
|
scsi_ulto2b(0, header->block_descr_len);
|
|
else
|
|
scsi_ulto2b(sizeof(struct scsi_mode_block_descr),
|
|
header->block_descr_len);
|
|
block_desc = (struct scsi_mode_block_descr *)&header[1];
|
|
break;
|
|
}
|
|
default:
|
|
panic("invalid CDB type %#x", ctsio->cdb[0]);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* If we've got a disk, use its blocksize in the block
|
|
* descriptor. Otherwise, just set it to 0.
|
|
*/
|
|
if (dbd == 0) {
|
|
if (control_dev != 0)
|
|
scsi_ulto3b(lun->be_lun->blocksize,
|
|
block_desc->block_len);
|
|
else
|
|
scsi_ulto3b(0, block_desc->block_len);
|
|
}
|
|
|
|
switch (page_code) {
|
|
case SMS_ALL_PAGES_PAGE: {
|
|
int i, data_used;
|
|
|
|
data_used = header_len;
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
struct ctl_page_index *page_index;
|
|
|
|
page_index = &lun->mode_pages.index[i];
|
|
|
|
if ((control_dev != 0)
|
|
&& (page_index->page_flags &
|
|
CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
/*
|
|
* We don't use this subpage if the user didn't
|
|
* request all subpages. We already checked (above)
|
|
* to make sure the user only specified a subpage
|
|
* of 0 or 0xff in the SMS_ALL_PAGES_PAGE case.
|
|
*/
|
|
if ((page_index->subpage != 0)
|
|
&& (subpage == SMS_SUBPAGE_PAGE_0))
|
|
continue;
|
|
|
|
/*
|
|
* Call the handler, if it exists, to update the
|
|
* page to the latest values.
|
|
*/
|
|
if (page_index->sense_handler != NULL)
|
|
page_index->sense_handler(ctsio, page_index,pc);
|
|
|
|
memcpy(ctsio->kern_data_ptr + data_used,
|
|
page_index->page_data +
|
|
(page_index->page_len * pc),
|
|
page_index->page_len);
|
|
data_used += page_index->page_len;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
int i, data_used;
|
|
|
|
data_used = header_len;
|
|
|
|
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
|
|
struct ctl_page_index *page_index;
|
|
|
|
page_index = &lun->mode_pages.index[i];
|
|
|
|
/* Look for the right page code */
|
|
if ((page_index->page_code & SMPH_PC_MASK) != page_code)
|
|
continue;
|
|
|
|
/* Look for the right subpage or the subpage wildcard*/
|
|
if ((page_index->subpage != subpage)
|
|
&& (subpage != SMS_SUBPAGE_ALL))
|
|
continue;
|
|
|
|
/* Make sure the page is supported for this dev type */
|
|
if ((control_dev != 0)
|
|
&& (page_index->page_flags &
|
|
CTL_PAGE_FLAG_DISK_ONLY))
|
|
continue;
|
|
|
|
/*
|
|
* Call the handler, if it exists, to update the
|
|
* page to the latest values.
|
|
*/
|
|
if (page_index->sense_handler != NULL)
|
|
page_index->sense_handler(ctsio, page_index,pc);
|
|
|
|
memcpy(ctsio->kern_data_ptr + data_used,
|
|
page_index->page_data +
|
|
(page_index->page_len * pc),
|
|
page_index->page_len);
|
|
data_used += page_index->page_len;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_read_capacity(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_read_capacity *cdb;
|
|
struct scsi_read_capacity_data *data;
|
|
struct ctl_lun *lun;
|
|
uint32_t lba;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_read_capacity\n"));
|
|
|
|
cdb = (struct scsi_read_capacity *)ctsio->cdb;
|
|
|
|
lba = scsi_4btoul(cdb->addr);
|
|
if (((cdb->pmi & SRC_PMI) == 0)
|
|
&& (lba != 0)) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
data = (struct scsi_read_capacity_data *)ctsio->kern_data_ptr;
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = sizeof(*data);
|
|
ctsio->kern_total_len = sizeof(*data);
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
/*
|
|
* If the maximum LBA is greater than 0xfffffffe, the user must
|
|
* issue a SERVICE ACTION IN (16) command, with the read capacity
|
|
* serivce action set.
|
|
*/
|
|
if (lun->be_lun->maxlba > 0xfffffffe)
|
|
scsi_ulto4b(0xffffffff, data->addr);
|
|
else
|
|
scsi_ulto4b(lun->be_lun->maxlba, data->addr);
|
|
|
|
/*
|
|
* XXX KDM this may not be 512 bytes...
|
|
*/
|
|
scsi_ulto4b(lun->be_lun->blocksize, data->length);
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
static int
|
|
ctl_read_capacity_16(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_read_capacity_16 *cdb;
|
|
struct scsi_read_capacity_data_long *data;
|
|
struct ctl_lun *lun;
|
|
uint64_t lba;
|
|
uint32_t alloc_len;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_read_capacity_16\n"));
|
|
|
|
cdb = (struct scsi_read_capacity_16 *)ctsio->cdb;
|
|
|
|
alloc_len = scsi_4btoul(cdb->alloc_len);
|
|
lba = scsi_8btou64(cdb->addr);
|
|
|
|
if ((cdb->reladr & SRC16_PMI)
|
|
&& (lba != 0)) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
data = (struct scsi_read_capacity_data_long *)ctsio->kern_data_ptr;
|
|
|
|
if (sizeof(*data) < alloc_len) {
|
|
ctsio->residual = alloc_len - sizeof(*data);
|
|
ctsio->kern_data_len = sizeof(*data);
|
|
ctsio->kern_total_len = sizeof(*data);
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
scsi_u64to8b(lun->be_lun->maxlba, data->addr);
|
|
/* XXX KDM this may not be 512 bytes... */
|
|
scsi_ulto4b(lun->be_lun->blocksize, data->length);
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_service_action_in(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_service_action_in *cdb;
|
|
int retval;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_service_action_in\n"));
|
|
|
|
cdb = (struct scsi_service_action_in *)ctsio->cdb;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
switch (cdb->service_action) {
|
|
case SRC16_SERVICE_ACTION:
|
|
retval = ctl_read_capacity_16(ctsio);
|
|
break;
|
|
default:
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
break;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
ctl_maintenance_in(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_maintenance_in *cdb;
|
|
int retval;
|
|
int alloc_len, total_len = 0;
|
|
int num_target_port_groups;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *softc;
|
|
struct scsi_target_group_data *rtg_ptr;
|
|
struct scsi_target_port_group_descriptor *tpg_desc_ptr1, *tpg_desc_ptr2;
|
|
struct scsi_target_port_descriptor *tp_desc_ptr1_1, *tp_desc_ptr1_2,
|
|
*tp_desc_ptr2_1, *tp_desc_ptr2_2;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_maintenance_in\n"));
|
|
|
|
cdb = (struct scsi_maintenance_in *)ctsio->cdb;
|
|
softc = control_softc;
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
if ((cdb->byte2 & SERVICE_ACTION_MASK) != SA_RPRT_TRGT_GRP) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return(retval);
|
|
}
|
|
|
|
if (ctl_is_single)
|
|
num_target_port_groups = NUM_TARGET_PORT_GROUPS - 1;
|
|
else
|
|
num_target_port_groups = NUM_TARGET_PORT_GROUPS;
|
|
|
|
total_len = sizeof(struct scsi_target_group_data) +
|
|
sizeof(struct scsi_target_port_group_descriptor) *
|
|
num_target_port_groups +
|
|
sizeof(struct scsi_target_port_descriptor) *
|
|
NUM_PORTS_PER_GRP * num_target_port_groups;
|
|
|
|
alloc_len = scsi_4btoul(cdb->length);
|
|
|
|
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
memset(ctsio->kern_data_ptr, 0, total_len);
|
|
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
if (total_len < alloc_len) {
|
|
ctsio->residual = alloc_len - total_len;
|
|
ctsio->kern_data_len = total_len;
|
|
ctsio->kern_total_len = total_len;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
|
|
rtg_ptr = (struct scsi_target_group_data *)ctsio->kern_data_ptr;
|
|
|
|
tpg_desc_ptr1 = &rtg_ptr->groups[0];
|
|
tp_desc_ptr1_1 = &tpg_desc_ptr1->descriptors[0];
|
|
tp_desc_ptr1_2 = (struct scsi_target_port_descriptor *)
|
|
&tp_desc_ptr1_1->desc_list[0];
|
|
|
|
|
|
|
|
if (ctl_is_single == 0) {
|
|
tpg_desc_ptr2 = (struct scsi_target_port_group_descriptor *)
|
|
&tp_desc_ptr1_2->desc_list[0];
|
|
tp_desc_ptr2_1 = &tpg_desc_ptr2->descriptors[0];
|
|
tp_desc_ptr2_2 = (struct scsi_target_port_descriptor *)
|
|
&tp_desc_ptr2_1->desc_list[0];
|
|
} else {
|
|
tpg_desc_ptr2 = NULL;
|
|
tp_desc_ptr2_1 = NULL;
|
|
tp_desc_ptr2_2 = NULL;
|
|
}
|
|
|
|
scsi_ulto4b(total_len - 4, rtg_ptr->length);
|
|
if (ctl_is_single == 0) {
|
|
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS) {
|
|
if (lun->flags & CTL_LUN_PRIMARY_SC) {
|
|
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
|
|
tpg_desc_ptr2->pref_state =
|
|
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
|
|
} else {
|
|
tpg_desc_ptr1->pref_state =
|
|
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
|
|
tpg_desc_ptr2->pref_state = TPG_PRIMARY;
|
|
}
|
|
} else {
|
|
if (lun->flags & CTL_LUN_PRIMARY_SC) {
|
|
tpg_desc_ptr1->pref_state =
|
|
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
|
|
tpg_desc_ptr2->pref_state = TPG_PRIMARY;
|
|
} else {
|
|
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
|
|
tpg_desc_ptr2->pref_state =
|
|
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
|
|
}
|
|
}
|
|
} else {
|
|
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
|
|
}
|
|
tpg_desc_ptr1->support = 0;
|
|
tpg_desc_ptr1->target_port_group[1] = 1;
|
|
tpg_desc_ptr1->status = TPG_IMPLICIT;
|
|
tpg_desc_ptr1->target_port_count= NUM_PORTS_PER_GRP;
|
|
|
|
if (ctl_is_single == 0) {
|
|
tpg_desc_ptr2->support = 0;
|
|
tpg_desc_ptr2->target_port_group[1] = 2;
|
|
tpg_desc_ptr2->status = TPG_IMPLICIT;
|
|
tpg_desc_ptr2->target_port_count = NUM_PORTS_PER_GRP;
|
|
|
|
tp_desc_ptr1_1->relative_target_port_identifier[1] = 1;
|
|
tp_desc_ptr1_2->relative_target_port_identifier[1] = 2;
|
|
|
|
tp_desc_ptr2_1->relative_target_port_identifier[1] = 9;
|
|
tp_desc_ptr2_2->relative_target_port_identifier[1] = 10;
|
|
} else {
|
|
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS) {
|
|
tp_desc_ptr1_1->relative_target_port_identifier[1] = 1;
|
|
tp_desc_ptr1_2->relative_target_port_identifier[1] = 2;
|
|
} else {
|
|
tp_desc_ptr1_1->relative_target_port_identifier[1] = 9;
|
|
tp_desc_ptr1_2->relative_target_port_identifier[1] = 10;
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
|
|
CTL_DEBUG_PRINT(("buf = %x %x %x %x %x %x %x %x\n",
|
|
ctsio->kern_data_ptr[0], ctsio->kern_data_ptr[1],
|
|
ctsio->kern_data_ptr[2], ctsio->kern_data_ptr[3],
|
|
ctsio->kern_data_ptr[4], ctsio->kern_data_ptr[5],
|
|
ctsio->kern_data_ptr[6], ctsio->kern_data_ptr[7]));
|
|
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
return(retval);
|
|
}
|
|
|
|
int
|
|
ctl_persistent_reserve_in(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_per_res_in *cdb;
|
|
int alloc_len, total_len = 0;
|
|
/* struct scsi_per_res_in_rsrv in_data; */
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *softc;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_persistent_reserve_in\n"));
|
|
|
|
softc = control_softc;
|
|
|
|
cdb = (struct scsi_per_res_in *)ctsio->cdb;
|
|
|
|
alloc_len = scsi_2btoul(cdb->length);
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
retry:
|
|
mtx_lock(&softc->ctl_lock);
|
|
switch (cdb->action) {
|
|
case SPRI_RK: /* read keys */
|
|
total_len = sizeof(struct scsi_per_res_in_keys) +
|
|
lun->pr_key_count *
|
|
sizeof(struct scsi_per_res_key);
|
|
break;
|
|
case SPRI_RR: /* read reservation */
|
|
if (lun->flags & CTL_LUN_PR_RESERVED)
|
|
total_len = sizeof(struct scsi_per_res_in_rsrv);
|
|
else
|
|
total_len = sizeof(struct scsi_per_res_in_header);
|
|
break;
|
|
case SPRI_RC: /* report capabilities */
|
|
total_len = sizeof(struct scsi_per_res_cap);
|
|
break;
|
|
case SPRI_RS: /* read full status */
|
|
default:
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (total_len < alloc_len) {
|
|
ctsio->residual = alloc_len - total_len;
|
|
ctsio->kern_data_len = total_len;
|
|
ctsio->kern_total_len = total_len;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
memset(ctsio->kern_data_ptr, 0, total_len);
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
switch (cdb->action) {
|
|
case SPRI_RK: { // read keys
|
|
struct scsi_per_res_in_keys *res_keys;
|
|
int i, key_count;
|
|
|
|
res_keys = (struct scsi_per_res_in_keys*)ctsio->kern_data_ptr;
|
|
|
|
/*
|
|
* We had to drop the lock to allocate our buffer, which
|
|
* leaves time for someone to come in with another
|
|
* persistent reservation. (That is unlikely, though,
|
|
* since this should be the only persistent reservation
|
|
* command active right now.)
|
|
*/
|
|
if (total_len != (sizeof(struct scsi_per_res_in_keys) +
|
|
(lun->pr_key_count *
|
|
sizeof(struct scsi_per_res_key)))){
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
printf("%s: reservation length changed, retrying\n",
|
|
__func__);
|
|
goto retry;
|
|
}
|
|
|
|
scsi_ulto4b(lun->PRGeneration, res_keys->header.generation);
|
|
|
|
scsi_ulto4b(sizeof(struct scsi_per_res_key) *
|
|
lun->pr_key_count, res_keys->header.length);
|
|
|
|
for (i = 0, key_count = 0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (!lun->per_res[i].registered)
|
|
continue;
|
|
|
|
/*
|
|
* We used lun->pr_key_count to calculate the
|
|
* size to allocate. If it turns out the number of
|
|
* initiators with the registered flag set is
|
|
* larger than that (i.e. they haven't been kept in
|
|
* sync), we've got a problem.
|
|
*/
|
|
if (key_count >= lun->pr_key_count) {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_PR_ERROR,
|
|
csevent_LogType_Fault,
|
|
csevent_AlertLevel_Yellow,
|
|
csevent_FRU_ShelfController,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"registered keys %d >= key "
|
|
"count %d", key_count,
|
|
lun->pr_key_count);
|
|
#endif
|
|
key_count++;
|
|
continue;
|
|
}
|
|
memcpy(res_keys->keys[key_count].key,
|
|
lun->per_res[i].res_key.key,
|
|
ctl_min(sizeof(res_keys->keys[key_count].key),
|
|
sizeof(lun->per_res[i].res_key)));
|
|
key_count++;
|
|
}
|
|
break;
|
|
}
|
|
case SPRI_RR: { // read reservation
|
|
struct scsi_per_res_in_rsrv *res;
|
|
int tmp_len, header_only;
|
|
|
|
res = (struct scsi_per_res_in_rsrv *)ctsio->kern_data_ptr;
|
|
|
|
scsi_ulto4b(lun->PRGeneration, res->header.generation);
|
|
|
|
if (lun->flags & CTL_LUN_PR_RESERVED)
|
|
{
|
|
tmp_len = sizeof(struct scsi_per_res_in_rsrv);
|
|
scsi_ulto4b(sizeof(struct scsi_per_res_in_rsrv_data),
|
|
res->header.length);
|
|
header_only = 0;
|
|
} else {
|
|
tmp_len = sizeof(struct scsi_per_res_in_header);
|
|
scsi_ulto4b(0, res->header.length);
|
|
header_only = 1;
|
|
}
|
|
|
|
/*
|
|
* We had to drop the lock to allocate our buffer, which
|
|
* leaves time for someone to come in with another
|
|
* persistent reservation. (That is unlikely, though,
|
|
* since this should be the only persistent reservation
|
|
* command active right now.)
|
|
*/
|
|
if (tmp_len != total_len) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
printf("%s: reservation status changed, retrying\n",
|
|
__func__);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* No reservation held, so we're done.
|
|
*/
|
|
if (header_only != 0)
|
|
break;
|
|
|
|
/*
|
|
* If the registration is an All Registrants type, the key
|
|
* is 0, since it doesn't really matter.
|
|
*/
|
|
if (lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
|
|
memcpy(res->data.reservation,
|
|
&lun->per_res[lun->pr_res_idx].res_key,
|
|
sizeof(struct scsi_per_res_key));
|
|
}
|
|
res->data.scopetype = lun->res_type;
|
|
break;
|
|
}
|
|
case SPRI_RC: //report capabilities
|
|
{
|
|
struct scsi_per_res_cap *res_cap;
|
|
uint16_t type_mask;
|
|
|
|
res_cap = (struct scsi_per_res_cap *)ctsio->kern_data_ptr;
|
|
scsi_ulto2b(sizeof(*res_cap), res_cap->length);
|
|
res_cap->flags2 |= SPRI_TMV;
|
|
type_mask = SPRI_TM_WR_EX_AR |
|
|
SPRI_TM_EX_AC_RO |
|
|
SPRI_TM_WR_EX_RO |
|
|
SPRI_TM_EX_AC |
|
|
SPRI_TM_WR_EX |
|
|
SPRI_TM_EX_AC_AR;
|
|
scsi_ulto2b(type_mask, res_cap->type_mask);
|
|
break;
|
|
}
|
|
case SPRI_RS: //read full status
|
|
default:
|
|
/*
|
|
* This is a bug, because we just checked for this above,
|
|
* and should have returned an error.
|
|
*/
|
|
panic("Invalid PR type %x", cdb->action);
|
|
break; /* NOTREACHED */
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
|
|
CTL_DEBUG_PRINT(("buf = %x %x %x %x %x %x %x %x\n",
|
|
ctsio->kern_data_ptr[0], ctsio->kern_data_ptr[1],
|
|
ctsio->kern_data_ptr[2], ctsio->kern_data_ptr[3],
|
|
ctsio->kern_data_ptr[4], ctsio->kern_data_ptr[5],
|
|
ctsio->kern_data_ptr[6], ctsio->kern_data_ptr[7]));
|
|
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Returns 0 if ctl_persistent_reserve_out() should continue, non-zero if
|
|
* it should return.
|
|
*/
|
|
static int
|
|
ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun, uint64_t res_key,
|
|
uint64_t sa_res_key, uint8_t type, uint32_t residx,
|
|
struct ctl_scsiio *ctsio, struct scsi_per_res_out *cdb,
|
|
struct scsi_per_res_out_parms* param)
|
|
{
|
|
union ctl_ha_msg persis_io;
|
|
int retval, i;
|
|
int isc_retval;
|
|
|
|
retval = 0;
|
|
|
|
if (sa_res_key == 0) {
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
|
|
/* validate scope and type */
|
|
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
|
|
SPR_LU_SCOPE) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
|
|
if (type>8 || type==2 || type==4 || type==0) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
|
|
/* temporarily unregister this nexus */
|
|
lun->per_res[residx].registered = 0;
|
|
|
|
/*
|
|
* Unregister everybody else and build UA for
|
|
* them
|
|
*/
|
|
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered == 0)
|
|
continue;
|
|
|
|
if (!persis_offset
|
|
&& i <CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i-persis_offset
|
|
].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
}
|
|
lun->per_res[residx].registered = 1;
|
|
lun->pr_key_count = 1;
|
|
lun->res_type = type;
|
|
if (lun->res_type != SPR_TYPE_WR_EX_AR
|
|
&& lun->res_type != SPR_TYPE_EX_AC_AR)
|
|
lun->pr_res_idx = residx;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
/* send msg to other side */
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
|
|
persis_io.pr.pr_info.residx = lun->pr_res_idx;
|
|
persis_io.pr.pr_info.res_type = type;
|
|
memcpy(persis_io.pr.pr_info.sa_res_key,
|
|
param->serv_act_res_key,
|
|
sizeof(param->serv_act_res_key));
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned "
|
|
"from ctl_ha_msg_send %d\n",
|
|
isc_retval);
|
|
}
|
|
} else {
|
|
/* not all registrants */
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ 8,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|
|
|| !(lun->flags & CTL_LUN_PR_RESERVED)) {
|
|
int found = 0;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (res_key == sa_res_key) {
|
|
/* special case */
|
|
/*
|
|
* The spec implies this is not good but doesn't
|
|
* say what to do. There are two choices either
|
|
* generate a res conflict or check condition
|
|
* with illegal field in parameter data. Since
|
|
* that is what is done when the sa_res_key is
|
|
* zero I'll take that approach since this has
|
|
* to do with the sa_res_key.
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ 8,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered
|
|
&& memcmp(param->serv_act_res_key,
|
|
lun->per_res[i].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) != 0)
|
|
continue;
|
|
|
|
found = 1;
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i-persis_offset].ua_pending|=
|
|
CTL_UA_REG_PREEMPT;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
if (!found) {
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
/* send msg to other side */
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
|
|
persis_io.pr.pr_info.residx = lun->pr_res_idx;
|
|
persis_io.pr.pr_info.res_type = type;
|
|
memcpy(persis_io.pr.pr_info.sa_res_key,
|
|
param->serv_act_res_key,
|
|
sizeof(param->serv_act_res_key));
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
} else {
|
|
/* Reserved but not all registrants */
|
|
/* sa_res_key is res holder */
|
|
if (memcmp(param->serv_act_res_key,
|
|
lun->per_res[lun->pr_res_idx].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) == 0) {
|
|
/* validate scope and type */
|
|
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
|
|
SPR_LU_SCOPE) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
|
|
if (type>8 || type==2 || type==4 || type==0) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Do the following:
|
|
* if sa_res_key != res_key remove all
|
|
* registrants w/sa_res_key and generate UA
|
|
* for these registrants(Registrations
|
|
* Preempted) if it wasn't an exclusive
|
|
* reservation generate UA(Reservations
|
|
* Preempted) for all other registered nexuses
|
|
* if the type has changed. Establish the new
|
|
* reservation and holder. If res_key and
|
|
* sa_res_key are the same do the above
|
|
* except don't unregister the res holder.
|
|
*/
|
|
|
|
/*
|
|
* Temporarily unregister so it won't get
|
|
* removed or UA generated
|
|
*/
|
|
lun->per_res[residx].registered = 0;
|
|
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered == 0)
|
|
continue;
|
|
|
|
if (memcmp(param->serv_act_res_key,
|
|
lun->per_res[i].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) == 0) {
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key,
|
|
0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i
|
|
].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[
|
|
i-persis_offset].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
} else if (type != lun->res_type
|
|
&& (lun->res_type == SPR_TYPE_WR_EX_RO
|
|
|| lun->res_type ==SPR_TYPE_EX_AC_RO)){
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i
|
|
].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[
|
|
i-persis_offset
|
|
].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
}
|
|
lun->per_res[residx].registered = 1;
|
|
lun->res_type = type;
|
|
if (lun->res_type != SPR_TYPE_WR_EX_AR
|
|
&& lun->res_type != SPR_TYPE_EX_AC_AR)
|
|
lun->pr_res_idx = residx;
|
|
else
|
|
lun->pr_res_idx =
|
|
CTL_PR_ALL_REGISTRANTS;
|
|
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
|
|
persis_io.pr.pr_info.residx = lun->pr_res_idx;
|
|
persis_io.pr.pr_info.res_type = type;
|
|
memcpy(persis_io.pr.pr_info.sa_res_key,
|
|
param->serv_act_res_key,
|
|
sizeof(param->serv_act_res_key));
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned "
|
|
"from ctl_ha_msg_send %d\n",
|
|
isc_retval);
|
|
}
|
|
} else {
|
|
/*
|
|
* sa_res_key is not the res holder just
|
|
* remove registrants
|
|
*/
|
|
int found=0;
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (memcmp(param->serv_act_res_key,
|
|
lun->per_res[i].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) != 0)
|
|
continue;
|
|
|
|
found = 1;
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[
|
|
i-persis_offset].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
}
|
|
|
|
if (!found) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (1);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
|
|
persis_io.pr.pr_info.residx = lun->pr_res_idx;
|
|
persis_io.pr.pr_info.res_type = type;
|
|
memcpy(persis_io.pr.pr_info.sa_res_key,
|
|
param->serv_act_res_key,
|
|
sizeof(param->serv_act_res_key));
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned "
|
|
"from ctl_ha_msg_send %d\n",
|
|
isc_retval);
|
|
}
|
|
}
|
|
}
|
|
|
|
lun->PRGeneration++;
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
ctl_pro_preempt_other(struct ctl_lun *lun, union ctl_ha_msg *msg)
|
|
{
|
|
int i;
|
|
|
|
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|
|
|| lun->pr_res_idx == CTL_PR_NO_RESERVATION
|
|
|| memcmp(&lun->per_res[lun->pr_res_idx].res_key,
|
|
msg->pr.pr_info.sa_res_key,
|
|
sizeof(struct scsi_per_res_key)) != 0) {
|
|
uint64_t sa_res_key;
|
|
sa_res_key = scsi_8btou64(msg->pr.pr_info.sa_res_key);
|
|
|
|
if (sa_res_key == 0) {
|
|
/* temporarily unregister this nexus */
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 0;
|
|
|
|
/*
|
|
* Unregister everybody else and build UA for
|
|
* them
|
|
*/
|
|
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered == 0)
|
|
continue;
|
|
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset && i >= persis_offset)
|
|
lun->pending_sense[i -
|
|
persis_offset].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
}
|
|
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 1;
|
|
lun->pr_key_count = 1;
|
|
lun->res_type = msg->pr.pr_info.res_type;
|
|
if (lun->res_type != SPR_TYPE_WR_EX_AR
|
|
&& lun->res_type != SPR_TYPE_EX_AC_AR)
|
|
lun->pr_res_idx = msg->pr.pr_info.residx;
|
|
} else {
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (memcmp(msg->pr.pr_info.sa_res_key,
|
|
lun->per_res[i].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) != 0)
|
|
continue;
|
|
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
|
|
if (!persis_offset
|
|
&& i < persis_offset)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i -
|
|
persis_offset].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Temporarily unregister so it won't get removed
|
|
* or UA generated
|
|
*/
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 0;
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered == 0)
|
|
continue;
|
|
|
|
if (memcmp(msg->pr.pr_info.sa_res_key,
|
|
lun->per_res[i].res_key.key,
|
|
sizeof(struct scsi_per_res_key)) == 0) {
|
|
lun->per_res[i].registered = 0;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i -
|
|
persis_offset].ua_pending |=
|
|
CTL_UA_REG_PREEMPT;
|
|
} else if (msg->pr.pr_info.res_type != lun->res_type
|
|
&& (lun->res_type == SPR_TYPE_WR_EX_RO
|
|
|| lun->res_type == SPR_TYPE_EX_AC_RO)) {
|
|
if (!persis_offset
|
|
&& i < persis_offset)
|
|
lun->pending_sense[i
|
|
].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i -
|
|
persis_offset].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
}
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 1;
|
|
lun->res_type = msg->pr.pr_info.res_type;
|
|
if (lun->res_type != SPR_TYPE_WR_EX_AR
|
|
&& lun->res_type != SPR_TYPE_EX_AC_AR)
|
|
lun->pr_res_idx = msg->pr.pr_info.residx;
|
|
else
|
|
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
|
|
}
|
|
lun->PRGeneration++;
|
|
|
|
}
|
|
|
|
|
|
int
|
|
ctl_persistent_reserve_out(struct ctl_scsiio *ctsio)
|
|
{
|
|
int retval;
|
|
int isc_retval;
|
|
u_int32_t param_len;
|
|
struct scsi_per_res_out *cdb;
|
|
struct ctl_lun *lun;
|
|
struct scsi_per_res_out_parms* param;
|
|
struct ctl_softc *softc;
|
|
uint32_t residx;
|
|
uint64_t res_key, sa_res_key;
|
|
uint8_t type;
|
|
union ctl_ha_msg persis_io;
|
|
int i;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_persistent_reserve_out\n"));
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
softc = control_softc;
|
|
|
|
cdb = (struct scsi_per_res_out *)ctsio->cdb;
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
/*
|
|
* We only support whole-LUN scope. The scope & type are ignored for
|
|
* register, register and ignore existing key and clear.
|
|
* We sometimes ignore scope and type on preempts too!!
|
|
* Verify reservation type here as well.
|
|
*/
|
|
type = cdb->scope_type & SPR_TYPE_MASK;
|
|
if ((cdb->action == SPRO_RESERVE)
|
|
|| (cdb->action == SPRO_RELEASE)) {
|
|
if ((cdb->scope_type & SPR_SCOPE_MASK) != SPR_LU_SCOPE) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 4);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
if (type>8 || type==2 || type==4 || type==0) {
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
}
|
|
|
|
switch (cdb->action & SPRO_ACTION_MASK) {
|
|
case SPRO_REGISTER:
|
|
case SPRO_RESERVE:
|
|
case SPRO_RELEASE:
|
|
case SPRO_CLEAR:
|
|
case SPRO_PREEMPT:
|
|
case SPRO_REG_IGNO:
|
|
break;
|
|
case SPRO_REG_MOVE:
|
|
case SPRO_PRE_ABO:
|
|
default:
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
param_len = scsi_4btoul(cdb->length);
|
|
|
|
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
|
|
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctl_set_busy(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
ctsio->kern_data_len = param_len;
|
|
ctsio->kern_total_len = param_len;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
param = (struct scsi_per_res_out_parms *)ctsio->kern_data_ptr;
|
|
|
|
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
|
|
res_key = scsi_8btou64(param->res_key.key);
|
|
sa_res_key = scsi_8btou64(param->serv_act_res_key);
|
|
|
|
/*
|
|
* Validate the reservation key here except for SPRO_REG_IGNO
|
|
* This must be done for all other service actions
|
|
*/
|
|
if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REG_IGNO) {
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (lun->per_res[residx].registered) {
|
|
if (memcmp(param->res_key.key,
|
|
lun->per_res[residx].res_key.key,
|
|
ctl_min(sizeof(param->res_key),
|
|
sizeof(lun->per_res[residx].res_key))) != 0) {
|
|
/*
|
|
* The current key passed in doesn't match
|
|
* the one the initiator previously
|
|
* registered.
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
} else if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REGISTER) {
|
|
/*
|
|
* We are not registered
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
} else if (res_key != 0) {
|
|
/*
|
|
* We are not registered and trying to register but
|
|
* the register key isn't zero.
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
}
|
|
|
|
switch (cdb->action & SPRO_ACTION_MASK) {
|
|
case SPRO_REGISTER:
|
|
case SPRO_REG_IGNO: {
|
|
|
|
#if 0
|
|
printf("Registration received\n");
|
|
#endif
|
|
|
|
/*
|
|
* We don't support any of these options, as we report in
|
|
* the read capabilities request (see
|
|
* ctl_persistent_reserve_in(), above).
|
|
*/
|
|
if ((param->flags & SPR_SPEC_I_PT)
|
|
|| (param->flags & SPR_ALL_TG_PT)
|
|
|| (param->flags & SPR_APTPL)) {
|
|
int bit_ptr;
|
|
|
|
if (param->flags & SPR_APTPL)
|
|
bit_ptr = 0;
|
|
else if (param->flags & SPR_ALL_TG_PT)
|
|
bit_ptr = 2;
|
|
else /* SPR_SPEC_I_PT */
|
|
bit_ptr = 3;
|
|
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 0,
|
|
/*field*/ 20,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ bit_ptr);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
/*
|
|
* The initiator wants to clear the
|
|
* key/unregister.
|
|
*/
|
|
if (sa_res_key == 0) {
|
|
if ((res_key == 0
|
|
&& (cdb->action & SPRO_ACTION_MASK) == SPRO_REGISTER)
|
|
|| ((cdb->action & SPRO_ACTION_MASK) == SPRO_REG_IGNO
|
|
&& !lun->per_res[residx].registered)) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
goto done;
|
|
}
|
|
|
|
lun->per_res[residx].registered = 0;
|
|
memset(&lun->per_res[residx].res_key,
|
|
0, sizeof(lun->per_res[residx].res_key));
|
|
lun->pr_key_count--;
|
|
|
|
if (residx == lun->pr_res_idx) {
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
|
|
if ((lun->res_type == SPR_TYPE_WR_EX_RO
|
|
|| lun->res_type == SPR_TYPE_EX_AC_RO)
|
|
&& lun->pr_key_count) {
|
|
/*
|
|
* If the reservation is a registrants
|
|
* only type we need to generate a UA
|
|
* for other registered inits. The
|
|
* sense code should be RESERVATIONS
|
|
* RELEASED
|
|
*/
|
|
|
|
for (i = 0; i < CTL_MAX_INITIATORS;i++){
|
|
if (lun->per_res[
|
|
i+persis_offset].registered
|
|
== 0)
|
|
continue;
|
|
lun->pending_sense[i
|
|
].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
}
|
|
lun->res_type = 0;
|
|
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
|
|
if (lun->pr_key_count==0) {
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->res_type = 0;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
}
|
|
}
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_UNREG_KEY;
|
|
persis_io.pr.pr_info.residx = residx;
|
|
if ((isc_retval = ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0 )) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
} else /* sa_res_key != 0 */ {
|
|
|
|
/*
|
|
* If we aren't registered currently then increment
|
|
* the key count and set the registered flag.
|
|
*/
|
|
if (!lun->per_res[residx].registered) {
|
|
lun->pr_key_count++;
|
|
lun->per_res[residx].registered = 1;
|
|
}
|
|
|
|
memcpy(&lun->per_res[residx].res_key,
|
|
param->serv_act_res_key,
|
|
ctl_min(sizeof(param->serv_act_res_key),
|
|
sizeof(lun->per_res[residx].res_key)));
|
|
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_REG_KEY;
|
|
persis_io.pr.pr_info.residx = residx;
|
|
memcpy(persis_io.pr.pr_info.sa_res_key,
|
|
param->serv_act_res_key,
|
|
sizeof(param->serv_act_res_key));
|
|
mtx_unlock(&softc->ctl_lock);
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
}
|
|
lun->PRGeneration++;
|
|
|
|
break;
|
|
}
|
|
case SPRO_RESERVE:
|
|
#if 0
|
|
printf("Reserve executed type %d\n", type);
|
|
#endif
|
|
mtx_lock(&softc->ctl_lock);
|
|
if (lun->flags & CTL_LUN_PR_RESERVED) {
|
|
/*
|
|
* if this isn't the reservation holder and it's
|
|
* not a "all registrants" type or if the type is
|
|
* different then we have a conflict
|
|
*/
|
|
if ((lun->pr_res_idx != residx
|
|
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS)
|
|
|| lun->res_type != type) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
} else /* create a reservation */ {
|
|
/*
|
|
* If it's not an "all registrants" type record
|
|
* reservation holder
|
|
*/
|
|
if (type != SPR_TYPE_WR_EX_AR
|
|
&& type != SPR_TYPE_EX_AC_AR)
|
|
lun->pr_res_idx = residx; /* Res holder */
|
|
else
|
|
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
|
|
|
|
lun->flags |= CTL_LUN_PR_RESERVED;
|
|
lun->res_type = type;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
/* send msg to other side */
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_RESERVE;
|
|
persis_io.pr.pr_info.residx = lun->pr_res_idx;
|
|
persis_io.pr.pr_info.res_type = type;
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&persis_io, sizeof(persis_io), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SPRO_RELEASE:
|
|
mtx_lock(&softc->ctl_lock);
|
|
if ((lun->flags & CTL_LUN_PR_RESERVED) == 0) {
|
|
/* No reservation exists return good status */
|
|
mtx_unlock(&softc->ctl_lock);
|
|
goto done;
|
|
}
|
|
/*
|
|
* Is this nexus a reservation holder?
|
|
*/
|
|
if (lun->pr_res_idx != residx
|
|
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
|
|
/*
|
|
* not a res holder return good status but
|
|
* do nothing
|
|
*/
|
|
mtx_unlock(&softc->ctl_lock);
|
|
goto done;
|
|
}
|
|
|
|
if (lun->res_type != type) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_illegal_pr_release(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/* okay to release */
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
lun->res_type = 0;
|
|
|
|
/*
|
|
* if this isn't an exclusive access
|
|
* res generate UA for all other
|
|
* registrants.
|
|
*/
|
|
if (type != SPR_TYPE_EX_AC
|
|
&& type != SPR_TYPE_WR_EX) {
|
|
/*
|
|
* temporarily unregister so we don't generate UA
|
|
*/
|
|
lun->per_res[residx].registered = 0;
|
|
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i+persis_offset].registered
|
|
== 0)
|
|
continue;
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
|
|
lun->per_res[residx].registered = 1;
|
|
}
|
|
mtx_unlock(&softc->ctl_lock);
|
|
/* Send msg to other side */
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_RELEASE;
|
|
if ((isc_retval=ctl_ha_msg_send( CTL_HA_CHAN_CTL, &persis_io,
|
|
sizeof(persis_io), 0)) > CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
break;
|
|
|
|
case SPRO_CLEAR:
|
|
/* send msg to other side */
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->res_type = 0;
|
|
lun->pr_key_count = 0;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
|
|
|
|
memset(&lun->per_res[residx].res_key,
|
|
0, sizeof(lun->per_res[residx].res_key));
|
|
lun->per_res[residx].registered = 0;
|
|
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++)
|
|
if (lun->per_res[i].registered) {
|
|
if (!persis_offset && i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_RES_PREEMPT;
|
|
else if (persis_offset && i >= persis_offset)
|
|
lun->pending_sense[i-persis_offset
|
|
].ua_pending |= CTL_UA_RES_PREEMPT;
|
|
|
|
memset(&lun->per_res[i].res_key,
|
|
0, sizeof(struct scsi_per_res_key));
|
|
lun->per_res[i].registered = 0;
|
|
}
|
|
lun->PRGeneration++;
|
|
mtx_unlock(&softc->ctl_lock);
|
|
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
|
|
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
|
|
persis_io.pr.pr_info.action = CTL_PR_CLEAR;
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
|
|
sizeof(persis_io), 0)) > CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Persis Out error returned from "
|
|
"ctl_ha_msg_send %d\n", isc_retval);
|
|
}
|
|
break;
|
|
|
|
case SPRO_PREEMPT: {
|
|
int nretval;
|
|
|
|
nretval = ctl_pro_preempt(softc, lun, res_key, sa_res_key, type,
|
|
residx, ctsio, cdb, param);
|
|
if (nretval != 0)
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break;
|
|
}
|
|
case SPRO_REG_MOVE:
|
|
case SPRO_PRE_ABO:
|
|
default:
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_invalid_field(/*ctsio*/ ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
done:
|
|
free(ctsio->kern_data_ptr, M_CTL);
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* This routine is for handling a message from the other SC pertaining to
|
|
* persistent reserve out. All the error checking will have been done
|
|
* so only perorming the action need be done here to keep the two
|
|
* in sync.
|
|
*/
|
|
static void
|
|
ctl_hndl_per_res_out_on_other_sc(union ctl_ha_msg *msg)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *softc;
|
|
int i;
|
|
|
|
softc = control_softc;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
lun = softc->ctl_luns[msg->hdr.nexus.targ_lun];
|
|
switch(msg->pr.pr_info.action) {
|
|
case CTL_PR_REG_KEY:
|
|
if (!lun->per_res[msg->pr.pr_info.residx].registered) {
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 1;
|
|
lun->pr_key_count++;
|
|
}
|
|
lun->PRGeneration++;
|
|
memcpy(&lun->per_res[msg->pr.pr_info.residx].res_key,
|
|
msg->pr.pr_info.sa_res_key,
|
|
sizeof(struct scsi_per_res_key));
|
|
break;
|
|
|
|
case CTL_PR_UNREG_KEY:
|
|
lun->per_res[msg->pr.pr_info.residx].registered = 0;
|
|
memset(&lun->per_res[msg->pr.pr_info.residx].res_key,
|
|
0, sizeof(struct scsi_per_res_key));
|
|
lun->pr_key_count--;
|
|
|
|
/* XXX Need to see if the reservation has been released */
|
|
/* if so do we need to generate UA? */
|
|
if (msg->pr.pr_info.residx == lun->pr_res_idx) {
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
|
|
if ((lun->res_type == SPR_TYPE_WR_EX_RO
|
|
|| lun->res_type == SPR_TYPE_EX_AC_RO)
|
|
&& lun->pr_key_count) {
|
|
/*
|
|
* If the reservation is a registrants
|
|
* only type we need to generate a UA
|
|
* for other registered inits. The
|
|
* sense code should be RESERVATIONS
|
|
* RELEASED
|
|
*/
|
|
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i+
|
|
persis_offset].registered == 0)
|
|
continue;
|
|
|
|
lun->pending_sense[i
|
|
].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
}
|
|
lun->res_type = 0;
|
|
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
|
|
if (lun->pr_key_count==0) {
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->res_type = 0;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
}
|
|
}
|
|
lun->PRGeneration++;
|
|
break;
|
|
|
|
case CTL_PR_RESERVE:
|
|
lun->flags |= CTL_LUN_PR_RESERVED;
|
|
lun->res_type = msg->pr.pr_info.res_type;
|
|
lun->pr_res_idx = msg->pr.pr_info.residx;
|
|
|
|
break;
|
|
|
|
case CTL_PR_RELEASE:
|
|
/*
|
|
* if this isn't an exclusive access res generate UA for all
|
|
* other registrants.
|
|
*/
|
|
if (lun->res_type != SPR_TYPE_EX_AC
|
|
&& lun->res_type != SPR_TYPE_WR_EX) {
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++)
|
|
if (lun->per_res[i+persis_offset].registered)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_RES_RELEASE;
|
|
}
|
|
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
lun->res_type = 0;
|
|
break;
|
|
|
|
case CTL_PR_PREEMPT:
|
|
ctl_pro_preempt_other(lun, msg);
|
|
break;
|
|
case CTL_PR_CLEAR:
|
|
lun->flags &= ~CTL_LUN_PR_RESERVED;
|
|
lun->res_type = 0;
|
|
lun->pr_key_count = 0;
|
|
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
|
|
|
|
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
|
|
if (lun->per_res[i].registered == 0)
|
|
continue;
|
|
if (!persis_offset
|
|
&& i < CTL_MAX_INITIATORS)
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_RES_PREEMPT;
|
|
else if (persis_offset
|
|
&& i >= persis_offset)
|
|
lun->pending_sense[i-persis_offset].ua_pending|=
|
|
CTL_UA_RES_PREEMPT;
|
|
memset(&lun->per_res[i].res_key, 0,
|
|
sizeof(struct scsi_per_res_key));
|
|
lun->per_res[i].registered = 0;
|
|
}
|
|
lun->PRGeneration++;
|
|
break;
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
}
|
|
|
|
int
|
|
ctl_read_write(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_lba_len lbalen;
|
|
uint64_t lba;
|
|
uint32_t num_blocks;
|
|
int reladdr, fua, dpo, ebp;
|
|
int retval;
|
|
int isread;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_read_write: command: %#x\n", ctsio->cdb[0]));
|
|
|
|
reladdr = 0;
|
|
fua = 0;
|
|
dpo = 0;
|
|
ebp = 0;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
isread = ctsio->cdb[0] == READ_6 || ctsio->cdb[0] == READ_10
|
|
|| ctsio->cdb[0] == READ_12 || ctsio->cdb[0] == READ_16;
|
|
if (lun->flags & CTL_LUN_PR_RESERVED && isread) {
|
|
uint32_t residx;
|
|
|
|
/*
|
|
* XXX KDM need a lock here.
|
|
*/
|
|
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
|
|
if ((lun->res_type == SPR_TYPE_EX_AC
|
|
&& residx != lun->pr_res_idx)
|
|
|| ((lun->res_type == SPR_TYPE_EX_AC_RO
|
|
|| lun->res_type == SPR_TYPE_EX_AC_AR)
|
|
&& !lun->per_res[residx].registered)) {
|
|
ctl_set_reservation_conflict(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
}
|
|
|
|
switch (ctsio->cdb[0]) {
|
|
case READ_6:
|
|
case WRITE_6: {
|
|
struct scsi_rw_6 *cdb;
|
|
|
|
cdb = (struct scsi_rw_6 *)ctsio->cdb;
|
|
|
|
lba = scsi_3btoul(cdb->addr);
|
|
/* only 5 bits are valid in the most significant address byte */
|
|
lba &= 0x1fffff;
|
|
num_blocks = cdb->length;
|
|
/*
|
|
* This is correct according to SBC-2.
|
|
*/
|
|
if (num_blocks == 0)
|
|
num_blocks = 256;
|
|
break;
|
|
}
|
|
case READ_10:
|
|
case WRITE_10: {
|
|
struct scsi_rw_10 *cdb;
|
|
|
|
cdb = (struct scsi_rw_10 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SRW10_RELADDR)
|
|
reladdr = 1;
|
|
if (cdb->byte2 & SRW10_FUA)
|
|
fua = 1;
|
|
if (cdb->byte2 & SRW10_DPO)
|
|
dpo = 1;
|
|
|
|
if ((cdb->opcode == WRITE_10)
|
|
&& (cdb->byte2 & SRW10_EBP))
|
|
ebp = 1;
|
|
|
|
lba = scsi_4btoul(cdb->addr);
|
|
num_blocks = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_10: {
|
|
struct scsi_write_verify_10 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_10 *)ctsio->cdb;
|
|
|
|
/*
|
|
* XXX KDM we should do actual write verify support at some
|
|
* point. This is obviously fake, we're just translating
|
|
* things to a write. So we don't even bother checking the
|
|
* BYTCHK field, since we don't do any verification. If
|
|
* the user asks for it, we'll just pretend we did it.
|
|
*/
|
|
if (cdb->byte2 & SWV_DPO)
|
|
dpo = 1;
|
|
|
|
lba = scsi_4btoul(cdb->addr);
|
|
num_blocks = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
case READ_12:
|
|
case WRITE_12: {
|
|
struct scsi_rw_12 *cdb;
|
|
|
|
cdb = (struct scsi_rw_12 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SRW12_RELADDR)
|
|
reladdr = 1;
|
|
if (cdb->byte2 & SRW12_FUA)
|
|
fua = 1;
|
|
if (cdb->byte2 & SRW12_DPO)
|
|
dpo = 1;
|
|
lba = scsi_4btoul(cdb->addr);
|
|
num_blocks = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_12: {
|
|
struct scsi_write_verify_12 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_12 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SWV_DPO)
|
|
dpo = 1;
|
|
|
|
lba = scsi_4btoul(cdb->addr);
|
|
num_blocks = scsi_4btoul(cdb->length);
|
|
|
|
break;
|
|
}
|
|
case READ_16:
|
|
case WRITE_16: {
|
|
struct scsi_rw_16 *cdb;
|
|
|
|
cdb = (struct scsi_rw_16 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SRW12_RELADDR)
|
|
reladdr = 1;
|
|
if (cdb->byte2 & SRW12_FUA)
|
|
fua = 1;
|
|
if (cdb->byte2 & SRW12_DPO)
|
|
dpo = 1;
|
|
|
|
lba = scsi_8btou64(cdb->addr);
|
|
num_blocks = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_16: {
|
|
struct scsi_write_verify_16 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_16 *)ctsio->cdb;
|
|
|
|
if (cdb->byte2 & SWV_DPO)
|
|
dpo = 1;
|
|
|
|
lba = scsi_8btou64(cdb->addr);
|
|
num_blocks = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
default:
|
|
/*
|
|
* We got a command we don't support. This shouldn't
|
|
* happen, commands should be filtered out above us.
|
|
*/
|
|
ctl_set_invalid_opcode(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* XXX KDM what do we do with the DPO and FUA bits? FUA might be
|
|
* interesting for us, but if RAIDCore is in write-back mode,
|
|
* getting it to do write-through for a particular transaction may
|
|
* not be possible.
|
|
*/
|
|
/*
|
|
* We don't support relative addressing. That also requires
|
|
* supporting linked commands, which we don't do.
|
|
*/
|
|
if (reladdr != 0) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* The first check is to make sure we're in bounds, the second
|
|
* check is to catch wrap-around problems. If the lba + num blocks
|
|
* is less than the lba, then we've wrapped around and the block
|
|
* range is invalid anyway.
|
|
*/
|
|
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|
|
|| ((lba + num_blocks) < lba)) {
|
|
ctl_set_lba_out_of_range(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* According to SBC-3, a transfer length of 0 is not an error.
|
|
* Note that this cannot happen with WRITE(6) or READ(6), since 0
|
|
* translates to 256 blocks for those commands.
|
|
*/
|
|
if (num_blocks == 0) {
|
|
ctl_set_success(ctsio);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
lbalen.lba = lba;
|
|
lbalen.len = num_blocks;
|
|
memcpy(ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes, &lbalen,
|
|
sizeof(lbalen));
|
|
|
|
CTL_DEBUG_PRINT(("ctl_read_write: calling data_submit()\n"));
|
|
|
|
retval = lun->backend->data_submit((union ctl_io *)ctsio);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
ctl_report_luns(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_report_luns *cdb;
|
|
struct scsi_report_luns_data *lun_data;
|
|
struct ctl_lun *lun, *request_lun;
|
|
int num_luns, retval;
|
|
uint32_t alloc_len, lun_datalen;
|
|
int num_filled, well_known;
|
|
uint32_t initidx;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
well_known = 0;
|
|
|
|
cdb = (struct scsi_report_luns *)ctsio->cdb;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_report_luns\n"));
|
|
|
|
mtx_lock(&control_softc->ctl_lock);
|
|
num_luns = control_softc->num_luns;
|
|
mtx_unlock(&control_softc->ctl_lock);
|
|
|
|
switch (cdb->select_report) {
|
|
case RPL_REPORT_DEFAULT:
|
|
case RPL_REPORT_ALL:
|
|
break;
|
|
case RPL_REPORT_WELLKNOWN:
|
|
well_known = 1;
|
|
num_luns = 0;
|
|
break;
|
|
default:
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (retval);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
alloc_len = scsi_4btoul(cdb->length);
|
|
/*
|
|
* The initiator has to allocate at least 16 bytes for this request,
|
|
* so he can at least get the header and the first LUN. Otherwise
|
|
* we reject the request (per SPC-3 rev 14, section 6.21).
|
|
*/
|
|
if (alloc_len < (sizeof(struct scsi_report_luns_data) +
|
|
sizeof(struct scsi_report_luns_lundata))) {
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 6,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (retval);
|
|
}
|
|
|
|
request_lun = (struct ctl_lun *)
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
lun_datalen = sizeof(*lun_data) +
|
|
(num_luns * sizeof(struct scsi_report_luns_lundata));
|
|
|
|
ctsio->kern_data_ptr = malloc(lun_datalen, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
lun_data = (struct scsi_report_luns_data *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
if (lun_datalen < alloc_len) {
|
|
ctsio->residual = alloc_len - lun_datalen;
|
|
ctsio->kern_data_len = lun_datalen;
|
|
ctsio->kern_total_len = lun_datalen;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
|
|
|
|
memset(lun_data, 0, lun_datalen);
|
|
|
|
/*
|
|
* We set this to the actual data length, regardless of how much
|
|
* space we actually have to return results. If the user looks at
|
|
* this value, he'll know whether or not he allocated enough space
|
|
* and reissue the command if necessary. We don't support well
|
|
* known logical units, so if the user asks for that, return none.
|
|
*/
|
|
scsi_ulto4b(lun_datalen - 8, lun_data->length);
|
|
|
|
mtx_lock(&control_softc->ctl_lock);
|
|
for (num_filled = 0, lun = STAILQ_FIRST(&control_softc->lun_list);
|
|
(lun != NULL) && (num_filled < num_luns);
|
|
lun = STAILQ_NEXT(lun, links)) {
|
|
|
|
if (lun->lun <= 0xff) {
|
|
/*
|
|
* Peripheral addressing method, bus number 0.
|
|
*/
|
|
lun_data->luns[num_filled].lundata[0] =
|
|
RPL_LUNDATA_ATYP_PERIPH;
|
|
lun_data->luns[num_filled].lundata[1] = lun->lun;
|
|
num_filled++;
|
|
} else if (lun->lun <= 0x3fff) {
|
|
/*
|
|
* Flat addressing method.
|
|
*/
|
|
lun_data->luns[num_filled].lundata[0] =
|
|
RPL_LUNDATA_ATYP_FLAT |
|
|
(lun->lun & RPL_LUNDATA_FLAT_LUN_MASK);
|
|
#ifdef OLDCTLHEADERS
|
|
(SRLD_ADDR_FLAT << SRLD_ADDR_SHIFT) |
|
|
(lun->lun & SRLD_BUS_LUN_MASK);
|
|
#endif
|
|
lun_data->luns[num_filled].lundata[1] =
|
|
#ifdef OLDCTLHEADERS
|
|
lun->lun >> SRLD_BUS_LUN_BITS;
|
|
#endif
|
|
lun->lun >> RPL_LUNDATA_FLAT_LUN_BITS;
|
|
num_filled++;
|
|
} else {
|
|
printf("ctl_report_luns: bogus LUN number %jd, "
|
|
"skipping\n", (intmax_t)lun->lun);
|
|
}
|
|
/*
|
|
* According to SPC-3, rev 14 section 6.21:
|
|
*
|
|
* "The execution of a REPORT LUNS command to any valid and
|
|
* installed logical unit shall clear the REPORTED LUNS DATA
|
|
* HAS CHANGED unit attention condition for all logical
|
|
* units of that target with respect to the requesting
|
|
* initiator. A valid and installed logical unit is one
|
|
* having a PERIPHERAL QUALIFIER of 000b in the standard
|
|
* INQUIRY data (see 6.4.2)."
|
|
*
|
|
* If request_lun is NULL, the LUN this report luns command
|
|
* was issued to is either disabled or doesn't exist. In that
|
|
* case, we shouldn't clear any pending lun change unit
|
|
* attention.
|
|
*/
|
|
if (request_lun != NULL)
|
|
lun->pending_sense[initidx].ua_pending &=
|
|
~CTL_UA_LUN_CHANGE;
|
|
}
|
|
mtx_unlock(&control_softc->ctl_lock);
|
|
|
|
/*
|
|
* We can only return SCSI_STATUS_CHECK_COND when we can't satisfy
|
|
* this request.
|
|
*/
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
ctl_request_sense(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_request_sense *cdb;
|
|
struct scsi_sense_data *sense_ptr;
|
|
struct ctl_lun *lun;
|
|
uint32_t initidx;
|
|
int have_error;
|
|
scsi_sense_data_type sense_format;
|
|
|
|
cdb = (struct scsi_request_sense *)ctsio->cdb;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_request_sense\n"));
|
|
|
|
/*
|
|
* Determine which sense format the user wants.
|
|
*/
|
|
if (cdb->byte2 & SRS_DESC)
|
|
sense_format = SSD_TYPE_DESC;
|
|
else
|
|
sense_format = SSD_TYPE_FIXED;
|
|
|
|
ctsio->kern_data_ptr = malloc(sizeof(*sense_ptr), M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
sense_ptr = (struct scsi_sense_data *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
/*
|
|
* struct scsi_sense_data, which is currently set to 256 bytes, is
|
|
* larger than the largest allowed value for the length field in the
|
|
* REQUEST SENSE CDB, which is 252 bytes as of SPC-4.
|
|
*/
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = cdb->length;
|
|
ctsio->kern_total_len = cdb->length;
|
|
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
/*
|
|
* If we don't have a LUN, we don't have any pending sense.
|
|
*/
|
|
if (lun == NULL)
|
|
goto no_sense;
|
|
|
|
have_error = 0;
|
|
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
|
|
/*
|
|
* Check for pending sense, and then for pending unit attentions.
|
|
* Pending sense gets returned first, then pending unit attentions.
|
|
*/
|
|
mtx_lock(&lun->ctl_softc->ctl_lock);
|
|
if (ctl_is_set(lun->have_ca, initidx)) {
|
|
scsi_sense_data_type stored_format;
|
|
|
|
/*
|
|
* Check to see which sense format was used for the stored
|
|
* sense data.
|
|
*/
|
|
stored_format = scsi_sense_type(
|
|
&lun->pending_sense[initidx].sense);
|
|
|
|
/*
|
|
* If the user requested a different sense format than the
|
|
* one we stored, then we need to convert it to the other
|
|
* format. If we're going from descriptor to fixed format
|
|
* sense data, we may lose things in translation, depending
|
|
* on what options were used.
|
|
*
|
|
* If the stored format is SSD_TYPE_NONE (i.e. invalid),
|
|
* for some reason we'll just copy it out as-is.
|
|
*/
|
|
if ((stored_format == SSD_TYPE_FIXED)
|
|
&& (sense_format == SSD_TYPE_DESC))
|
|
ctl_sense_to_desc((struct scsi_sense_data_fixed *)
|
|
&lun->pending_sense[initidx].sense,
|
|
(struct scsi_sense_data_desc *)sense_ptr);
|
|
else if ((stored_format == SSD_TYPE_DESC)
|
|
&& (sense_format == SSD_TYPE_FIXED))
|
|
ctl_sense_to_fixed((struct scsi_sense_data_desc *)
|
|
&lun->pending_sense[initidx].sense,
|
|
(struct scsi_sense_data_fixed *)sense_ptr);
|
|
else
|
|
memcpy(sense_ptr, &lun->pending_sense[initidx].sense,
|
|
ctl_min(sizeof(*sense_ptr),
|
|
sizeof(lun->pending_sense[initidx].sense)));
|
|
|
|
ctl_clear_mask(lun->have_ca, initidx);
|
|
have_error = 1;
|
|
} else if (lun->pending_sense[initidx].ua_pending != CTL_UA_NONE) {
|
|
ctl_ua_type ua_type;
|
|
|
|
ua_type = ctl_build_ua(lun->pending_sense[initidx].ua_pending,
|
|
sense_ptr, sense_format);
|
|
if (ua_type != CTL_UA_NONE) {
|
|
have_error = 1;
|
|
/* We're reporting this UA, so clear it */
|
|
lun->pending_sense[initidx].ua_pending &= ~ua_type;
|
|
}
|
|
}
|
|
mtx_unlock(&lun->ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* We already have a pending error, return it.
|
|
*/
|
|
if (have_error != 0) {
|
|
/*
|
|
* We report the SCSI status as OK, since the status of the
|
|
* request sense command itself is OK.
|
|
*/
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
/*
|
|
* We report 0 for the sense length, because we aren't doing
|
|
* autosense in this case. We're reporting sense as
|
|
* parameter data.
|
|
*/
|
|
ctsio->sense_len = 0;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
no_sense:
|
|
|
|
/*
|
|
* No sense information to report, so we report that everything is
|
|
* okay.
|
|
*/
|
|
ctl_set_sense_data(sense_ptr,
|
|
lun,
|
|
sense_format,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_NO_SENSE,
|
|
/*asc*/ 0x00,
|
|
/*ascq*/ 0x00,
|
|
SSD_ELEM_NONE);
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
/*
|
|
* We report 0 for the sense length, because we aren't doing
|
|
* autosense in this case. We're reporting sense as parameter data.
|
|
*/
|
|
ctsio->sense_len = 0;
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_tur(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_tur\n"));
|
|
|
|
if (lun == NULL)
|
|
return (-EINVAL);
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
ctsio->io_hdr.status = CTL_SUCCESS;
|
|
|
|
ctl_done((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
#ifdef notyet
|
|
static int
|
|
ctl_cmddt_inquiry(struct ctl_scsiio *ctsio)
|
|
{
|
|
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len)
|
|
{
|
|
struct scsi_vpd_supported_pages *pages;
|
|
int sup_page_size;
|
|
struct ctl_lun *lun;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
sup_page_size = sizeof(struct scsi_vpd_supported_pages) +
|
|
SCSI_EVPD_NUM_SUPPORTED_PAGES;
|
|
/*
|
|
* XXX KDM GFP_??? We probably don't want to wait here,
|
|
* unless we end up having a process/thread context.
|
|
*/
|
|
ctsio->kern_data_ptr = malloc(sup_page_size, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
pages = (struct scsi_vpd_supported_pages *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
if (sup_page_size < alloc_len) {
|
|
ctsio->residual = alloc_len - sup_page_size;
|
|
ctsio->kern_data_len = sup_page_size;
|
|
ctsio->kern_total_len = sup_page_size;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
memset(pages, 0, sup_page_size);
|
|
|
|
/*
|
|
* The control device is always connected. The disk device, on the
|
|
* other hand, may not be online all the time. Need to change this
|
|
* to figure out whether the disk device is actually online or not.
|
|
*/
|
|
if (lun != NULL)
|
|
pages->device = (SID_QUAL_LU_CONNECTED << 5) |
|
|
lun->be_lun->lun_type;
|
|
else
|
|
pages->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
|
|
|
|
pages->length = SCSI_EVPD_NUM_SUPPORTED_PAGES;
|
|
/* Supported VPD pages */
|
|
pages->page_list[0] = SVPD_SUPPORTED_PAGES;
|
|
/* Serial Number */
|
|
pages->page_list[1] = SVPD_UNIT_SERIAL_NUMBER;
|
|
/* Device Identification */
|
|
pages->page_list[2] = SVPD_DEVICE_ID;
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
static int
|
|
ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len)
|
|
{
|
|
struct scsi_vpd_unit_serial_number *sn_ptr;
|
|
struct ctl_lun *lun;
|
|
#ifndef CTL_USE_BACKEND_SN
|
|
char tmpstr[32];
|
|
#endif
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
/* XXX KDM which malloc flags here?? */
|
|
ctsio->kern_data_ptr = malloc(sizeof(*sn_ptr), M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
sn_ptr = (struct scsi_vpd_unit_serial_number *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
if (sizeof(*sn_ptr) < alloc_len) {
|
|
ctsio->residual = alloc_len - sizeof(*sn_ptr);
|
|
ctsio->kern_data_len = sizeof(*sn_ptr);
|
|
ctsio->kern_total_len = sizeof(*sn_ptr);
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
memset(sn_ptr, 0, sizeof(*sn_ptr));
|
|
|
|
/*
|
|
* The control device is always connected. The disk device, on the
|
|
* other hand, may not be online all the time. Need to change this
|
|
* to figure out whether the disk device is actually online or not.
|
|
*/
|
|
if (lun != NULL)
|
|
sn_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
|
|
lun->be_lun->lun_type;
|
|
else
|
|
sn_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
|
|
|
|
sn_ptr->page_code = SVPD_UNIT_SERIAL_NUMBER;
|
|
sn_ptr->length = ctl_min(sizeof(*sn_ptr) - 4, CTL_SN_LEN);
|
|
#ifdef CTL_USE_BACKEND_SN
|
|
/*
|
|
* If we don't have a LUN, we just leave the serial number as
|
|
* all spaces.
|
|
*/
|
|
memset(sn_ptr->serial_num, 0x20, sizeof(sn_ptr->serial_num));
|
|
if (lun != NULL) {
|
|
strncpy((char *)sn_ptr->serial_num,
|
|
(char *)lun->be_lun->serial_num, CTL_SN_LEN);
|
|
}
|
|
#else
|
|
/*
|
|
* Note that we're using a non-unique serial number here,
|
|
*/
|
|
snprintf(tmpstr, sizeof(tmpstr), "MYSERIALNUMIS000");
|
|
memset(sn_ptr->serial_num, 0x20, sizeof(sn_ptr->serial_num));
|
|
strncpy(sn_ptr->serial_num, tmpstr, ctl_min(CTL_SN_LEN,
|
|
ctl_min(sizeof(tmpstr), sizeof(*sn_ptr) - 4)));
|
|
#endif
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
|
|
static int
|
|
ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len)
|
|
{
|
|
struct scsi_vpd_device_id *devid_ptr;
|
|
struct scsi_vpd_id_descriptor *desc, *desc1;
|
|
struct scsi_vpd_id_descriptor *desc2, *desc3; /* for types 4h and 5h */
|
|
struct scsi_vpd_id_t10 *t10id;
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
struct ctl_frontend *fe;
|
|
#ifndef CTL_USE_BACKEND_SN
|
|
char tmpstr[32];
|
|
#endif /* CTL_USE_BACKEND_SN */
|
|
int devid_len;
|
|
|
|
ctl_softc = control_softc;
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
devid_len = sizeof(struct scsi_vpd_device_id) +
|
|
sizeof(struct scsi_vpd_id_descriptor) +
|
|
sizeof(struct scsi_vpd_id_t10) + CTL_DEVID_LEN +
|
|
sizeof(struct scsi_vpd_id_descriptor) + CTL_WWPN_LEN +
|
|
sizeof(struct scsi_vpd_id_descriptor) +
|
|
sizeof(struct scsi_vpd_id_rel_trgt_port_id) +
|
|
sizeof(struct scsi_vpd_id_descriptor) +
|
|
sizeof(struct scsi_vpd_id_trgt_port_grp_id);
|
|
|
|
/* XXX KDM which malloc flags here ?? */
|
|
ctsio->kern_data_ptr = malloc(devid_len, M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
devid_ptr = (struct scsi_vpd_device_id *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
if (devid_len < alloc_len) {
|
|
ctsio->residual = alloc_len - devid_len;
|
|
ctsio->kern_data_len = devid_len;
|
|
ctsio->kern_total_len = devid_len;
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
ctsio->kern_sg_entries = 0;
|
|
|
|
desc = (struct scsi_vpd_id_descriptor *)devid_ptr->desc_list;
|
|
t10id = (struct scsi_vpd_id_t10 *)&desc->identifier[0];
|
|
desc1 = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
|
|
sizeof(struct scsi_vpd_id_t10) + CTL_DEVID_LEN);
|
|
desc2 = (struct scsi_vpd_id_descriptor *)(&desc1->identifier[0] +
|
|
CTL_WWPN_LEN);
|
|
desc3 = (struct scsi_vpd_id_descriptor *)(&desc2->identifier[0] +
|
|
sizeof(struct scsi_vpd_id_rel_trgt_port_id));
|
|
memset(devid_ptr, 0, devid_len);
|
|
|
|
/*
|
|
* The control device is always connected. The disk device, on the
|
|
* other hand, may not be online all the time.
|
|
*/
|
|
if (lun != NULL)
|
|
devid_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
|
|
lun->be_lun->lun_type;
|
|
else
|
|
devid_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
|
|
|
|
devid_ptr->page_code = SVPD_DEVICE_ID;
|
|
|
|
scsi_ulto2b(devid_len - 4, devid_ptr->length);
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
fe = ctl_softc->ctl_ports[ctl_port_idx(ctsio->io_hdr.nexus.targ_port)];
|
|
|
|
/*
|
|
* For Fibre channel,
|
|
*/
|
|
if (fe->port_type == CTL_PORT_FC)
|
|
{
|
|
desc->proto_codeset = (SCSI_PROTO_FC << 4) |
|
|
SVPD_ID_CODESET_ASCII;
|
|
desc1->proto_codeset = (SCSI_PROTO_FC << 4) |
|
|
SVPD_ID_CODESET_BINARY;
|
|
}
|
|
else
|
|
{
|
|
desc->proto_codeset = (SCSI_PROTO_SPI << 4) |
|
|
SVPD_ID_CODESET_ASCII;
|
|
desc1->proto_codeset = (SCSI_PROTO_SPI << 4) |
|
|
SVPD_ID_CODESET_BINARY;
|
|
}
|
|
desc2->proto_codeset = desc3->proto_codeset = desc1->proto_codeset;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* We're using a LUN association here. i.e., this device ID is a
|
|
* per-LUN identifier.
|
|
*/
|
|
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN | SVPD_ID_TYPE_T10;
|
|
desc->length = sizeof(*t10id) + CTL_DEVID_LEN;
|
|
strncpy((char *)t10id->vendor, CTL_VENDOR, sizeof(t10id->vendor));
|
|
|
|
/*
|
|
* desc1 is for the WWPN which is a port asscociation.
|
|
*/
|
|
desc1->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT | SVPD_ID_TYPE_NAA;
|
|
desc1->length = CTL_WWPN_LEN;
|
|
/* XXX Call Reggie's get_WWNN func here then add port # to the end */
|
|
/* For testing just create the WWPN */
|
|
#if 0
|
|
ddb_GetWWNN((char *)desc1->identifier);
|
|
|
|
/* NOTE: if the port is 0 or 8 we don't want to subtract 1 */
|
|
/* This is so Copancontrol will return something sane */
|
|
if (ctsio->io_hdr.nexus.targ_port!=0 &&
|
|
ctsio->io_hdr.nexus.targ_port!=8)
|
|
desc1->identifier[7] += ctsio->io_hdr.nexus.targ_port-1;
|
|
else
|
|
desc1->identifier[7] += ctsio->io_hdr.nexus.targ_port;
|
|
#endif
|
|
|
|
be64enc(desc1->identifier, fe->wwpn);
|
|
|
|
/*
|
|
* desc2 is for the Relative Target Port(type 4h) identifier
|
|
*/
|
|
desc2->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT
|
|
| SVPD_ID_TYPE_RELTARG;
|
|
desc2->length = 4;
|
|
//#if 0
|
|
/* NOTE: if the port is 0 or 8 we don't want to subtract 1 */
|
|
/* This is so Copancontrol will return something sane */
|
|
if (ctsio->io_hdr.nexus.targ_port!=0 &&
|
|
ctsio->io_hdr.nexus.targ_port!=8)
|
|
desc2->identifier[3] = ctsio->io_hdr.nexus.targ_port - 1;
|
|
else
|
|
desc2->identifier[3] = ctsio->io_hdr.nexus.targ_port;
|
|
//#endif
|
|
|
|
/*
|
|
* desc3 is for the Target Port Group(type 5h) identifier
|
|
*/
|
|
desc3->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT
|
|
| SVPD_ID_TYPE_TPORTGRP;
|
|
desc3->length = 4;
|
|
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS || ctl_is_single)
|
|
desc3->identifier[3] = 1;
|
|
else
|
|
desc3->identifier[3] = 2;
|
|
|
|
#ifdef CTL_USE_BACKEND_SN
|
|
/*
|
|
* If we've actually got a backend, copy the device id from the
|
|
* per-LUN data. Otherwise, set it to all spaces.
|
|
*/
|
|
if (lun != NULL) {
|
|
/*
|
|
* Copy the backend's LUN ID.
|
|
*/
|
|
strncpy((char *)t10id->vendor_spec_id,
|
|
(char *)lun->be_lun->device_id, CTL_DEVID_LEN);
|
|
} else {
|
|
/*
|
|
* No backend, set this to spaces.
|
|
*/
|
|
memset(t10id->vendor_spec_id, 0x20, CTL_DEVID_LEN);
|
|
}
|
|
#else
|
|
snprintf(tmpstr, sizeof(tmpstr), "MYDEVICEIDIS%4d",
|
|
(lun != NULL) ? (int)lun->lun : 0);
|
|
strncpy(t10id->vendor_spec_id, tmpstr, ctl_min(CTL_DEVID_LEN,
|
|
sizeof(tmpstr)));
|
|
#endif
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
static int
|
|
ctl_inquiry_evpd(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_inquiry *cdb;
|
|
int alloc_len, retval;
|
|
|
|
cdb = (struct scsi_inquiry *)ctsio->cdb;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
alloc_len = scsi_2btoul(cdb->length);
|
|
|
|
switch (cdb->page_code) {
|
|
case SVPD_SUPPORTED_PAGES:
|
|
retval = ctl_inquiry_evpd_supported(ctsio, alloc_len);
|
|
break;
|
|
case SVPD_UNIT_SERIAL_NUMBER:
|
|
retval = ctl_inquiry_evpd_serial(ctsio, alloc_len);
|
|
break;
|
|
case SVPD_DEVICE_ID:
|
|
retval = ctl_inquiry_evpd_devid(ctsio, alloc_len);
|
|
break;
|
|
default:
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 2,
|
|
/*bit_valid*/ 0,
|
|
/*bit*/ 0);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
break;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ctl_inquiry_std(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_inquiry_data *inq_ptr;
|
|
struct scsi_inquiry *cdb;
|
|
struct ctl_softc *ctl_softc;
|
|
struct ctl_lun *lun;
|
|
uint32_t alloc_len;
|
|
int is_fc;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
/*
|
|
* Figure out whether we're talking to a Fibre Channel port or not.
|
|
* We treat the ioctl front end, and any SCSI adapters, as packetized
|
|
* SCSI front ends.
|
|
*/
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (ctl_softc->ctl_ports[ctl_port_idx(ctsio->io_hdr.nexus.targ_port)]->port_type !=
|
|
CTL_PORT_FC)
|
|
is_fc = 0;
|
|
else
|
|
is_fc = 1;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
lun = ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
cdb = (struct scsi_inquiry *)ctsio->cdb;
|
|
alloc_len = scsi_2btoul(cdb->length);
|
|
|
|
/*
|
|
* We malloc the full inquiry data size here and fill it
|
|
* in. If the user only asks for less, we'll give him
|
|
* that much.
|
|
*/
|
|
/* XXX KDM what malloc flags should we use here?? */
|
|
ctsio->kern_data_ptr = malloc(sizeof(*inq_ptr), M_CTL, M_WAITOK);
|
|
if (ctsio->kern_data_ptr == NULL) {
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
ctsio->scsi_status = SCSI_STATUS_BUSY;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
inq_ptr = (struct scsi_inquiry_data *)ctsio->kern_data_ptr;
|
|
ctsio->kern_sg_entries = 0;
|
|
ctsio->kern_data_resid = 0;
|
|
ctsio->kern_rel_offset = 0;
|
|
|
|
if (sizeof(*inq_ptr) < alloc_len) {
|
|
ctsio->residual = alloc_len - sizeof(*inq_ptr);
|
|
ctsio->kern_data_len = sizeof(*inq_ptr);
|
|
ctsio->kern_total_len = sizeof(*inq_ptr);
|
|
} else {
|
|
ctsio->residual = 0;
|
|
ctsio->kern_data_len = alloc_len;
|
|
ctsio->kern_total_len = alloc_len;
|
|
}
|
|
|
|
memset(inq_ptr, 0, sizeof(*inq_ptr));
|
|
|
|
/*
|
|
* If we have a LUN configured, report it as connected. Otherwise,
|
|
* report that it is offline or no device is supported, depending
|
|
* on the value of inquiry_pq_no_lun.
|
|
*
|
|
* According to the spec (SPC-4 r34), the peripheral qualifier
|
|
* SID_QUAL_LU_OFFLINE (001b) is used in the following scenario:
|
|
*
|
|
* "A peripheral device having the specified peripheral device type
|
|
* is not connected to this logical unit. However, the device
|
|
* server is capable of supporting the specified peripheral device
|
|
* type on this logical unit."
|
|
*
|
|
* According to the same spec, the peripheral qualifier
|
|
* SID_QUAL_BAD_LU (011b) is used in this scenario:
|
|
*
|
|
* "The device server is not capable of supporting a peripheral
|
|
* device on this logical unit. For this peripheral qualifier the
|
|
* peripheral device type shall be set to 1Fh. All other peripheral
|
|
* device type values are reserved for this peripheral qualifier."
|
|
*
|
|
* Given the text, it would seem that we probably want to report that
|
|
* the LUN is offline here. There is no LUN connected, but we can
|
|
* support a LUN at the given LUN number.
|
|
*
|
|
* In the real world, though, it sounds like things are a little
|
|
* different:
|
|
*
|
|
* - Linux, when presented with a LUN with the offline peripheral
|
|
* qualifier, will create an sg driver instance for it. So when
|
|
* you attach it to CTL, you wind up with a ton of sg driver
|
|
* instances. (One for every LUN that Linux bothered to probe.)
|
|
* Linux does this despite the fact that it issues a REPORT LUNs
|
|
* to LUN 0 to get the inventory of supported LUNs.
|
|
*
|
|
* - There is other anecdotal evidence (from Emulex folks) about
|
|
* arrays that use the offline peripheral qualifier for LUNs that
|
|
* are on the "passive" path in an active/passive array.
|
|
*
|
|
* So the solution is provide a hopefully reasonable default
|
|
* (return bad/no LUN) and allow the user to change the behavior
|
|
* with a tunable/sysctl variable.
|
|
*/
|
|
if (lun != NULL)
|
|
inq_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
|
|
lun->be_lun->lun_type;
|
|
else if (ctl_softc->inquiry_pq_no_lun == 0)
|
|
inq_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
|
|
else
|
|
inq_ptr->device = (SID_QUAL_BAD_LU << 5) | T_NODEVICE;
|
|
|
|
/* RMB in byte 2 is 0 */
|
|
inq_ptr->version = SCSI_REV_SPC3;
|
|
|
|
/*
|
|
* According to SAM-3, even if a device only supports a single
|
|
* level of LUN addressing, it should still set the HISUP bit:
|
|
*
|
|
* 4.9.1 Logical unit numbers overview
|
|
*
|
|
* All logical unit number formats described in this standard are
|
|
* hierarchical in structure even when only a single level in that
|
|
* hierarchy is used. The HISUP bit shall be set to one in the
|
|
* standard INQUIRY data (see SPC-2) when any logical unit number
|
|
* format described in this standard is used. Non-hierarchical
|
|
* formats are outside the scope of this standard.
|
|
*
|
|
* Therefore we set the HiSup bit here.
|
|
*
|
|
* The reponse format is 2, per SPC-3.
|
|
*/
|
|
inq_ptr->response_format = SID_HiSup | 2;
|
|
|
|
inq_ptr->additional_length = sizeof(*inq_ptr) - 4;
|
|
CTL_DEBUG_PRINT(("additional_length = %d\n",
|
|
inq_ptr->additional_length));
|
|
|
|
inq_ptr->spc3_flags = SPC3_SID_TPGS_IMPLICIT;
|
|
/* 16 bit addressing */
|
|
if (is_fc == 0)
|
|
inq_ptr->spc2_flags = SPC2_SID_ADDR16;
|
|
/* XXX set the SID_MultiP bit here if we're actually going to
|
|
respond on multiple ports */
|
|
inq_ptr->spc2_flags |= SPC2_SID_MultiP;
|
|
|
|
/* 16 bit data bus, synchronous transfers */
|
|
/* XXX these flags don't apply for FC */
|
|
if (is_fc == 0)
|
|
inq_ptr->flags = SID_WBus16 | SID_Sync;
|
|
/*
|
|
* XXX KDM do we want to support tagged queueing on the control
|
|
* device at all?
|
|
*/
|
|
if ((lun == NULL)
|
|
|| (lun->be_lun->lun_type != T_PROCESSOR))
|
|
inq_ptr->flags |= SID_CmdQue;
|
|
/*
|
|
* Per SPC-3, unused bytes in ASCII strings are filled with spaces.
|
|
* We have 8 bytes for the vendor name, and 16 bytes for the device
|
|
* name and 4 bytes for the revision.
|
|
*/
|
|
strncpy(inq_ptr->vendor, CTL_VENDOR, sizeof(inq_ptr->vendor));
|
|
if (lun == NULL) {
|
|
strcpy(inq_ptr->product, CTL_DIRECT_PRODUCT);
|
|
} else {
|
|
switch (lun->be_lun->lun_type) {
|
|
case T_DIRECT:
|
|
strcpy(inq_ptr->product, CTL_DIRECT_PRODUCT);
|
|
break;
|
|
case T_PROCESSOR:
|
|
strcpy(inq_ptr->product, CTL_PROCESSOR_PRODUCT);
|
|
break;
|
|
default:
|
|
strcpy(inq_ptr->product, CTL_UNKNOWN_PRODUCT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX make this a macro somewhere so it automatically gets
|
|
* incremented when we make changes.
|
|
*/
|
|
strncpy(inq_ptr->revision, "0001", sizeof(inq_ptr->revision));
|
|
|
|
/*
|
|
* For parallel SCSI, we support double transition and single
|
|
* transition clocking. We also support QAS (Quick Arbitration
|
|
* and Selection) and Information Unit transfers on both the
|
|
* control and array devices.
|
|
*/
|
|
if (is_fc == 0)
|
|
inq_ptr->spi3data = SID_SPI_CLOCK_DT_ST | SID_SPI_QAS |
|
|
SID_SPI_IUS;
|
|
|
|
/* SAM-3 */
|
|
scsi_ulto2b(0x0060, inq_ptr->version1);
|
|
/* SPC-3 (no version claimed) XXX should we claim a version? */
|
|
scsi_ulto2b(0x0300, inq_ptr->version2);
|
|
if (is_fc) {
|
|
/* FCP-2 ANSI INCITS.350:2003 */
|
|
scsi_ulto2b(0x0917, inq_ptr->version3);
|
|
} else {
|
|
/* SPI-4 ANSI INCITS.362:200x */
|
|
scsi_ulto2b(0x0B56, inq_ptr->version3);
|
|
}
|
|
|
|
if (lun == NULL) {
|
|
/* SBC-2 (no version claimed) XXX should we claim a version? */
|
|
scsi_ulto2b(0x0320, inq_ptr->version4);
|
|
} else {
|
|
switch (lun->be_lun->lun_type) {
|
|
case T_DIRECT:
|
|
/*
|
|
* SBC-2 (no version claimed) XXX should we claim a
|
|
* version?
|
|
*/
|
|
scsi_ulto2b(0x0320, inq_ptr->version4);
|
|
break;
|
|
case T_PROCESSOR:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctsio->scsi_status = SCSI_STATUS_OK;
|
|
if (ctsio->kern_data_len > 0) {
|
|
ctsio->be_move_done = ctl_config_move_done;
|
|
ctl_datamove((union ctl_io *)ctsio);
|
|
} else {
|
|
ctsio->io_hdr.status = CTL_SUCCESS;
|
|
ctl_done((union ctl_io *)ctsio);
|
|
}
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
int
|
|
ctl_inquiry(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct scsi_inquiry *cdb;
|
|
int retval;
|
|
|
|
cdb = (struct scsi_inquiry *)ctsio->cdb;
|
|
|
|
retval = 0;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_inquiry\n"));
|
|
|
|
/*
|
|
* Right now, we don't support the CmdDt inquiry information.
|
|
* This would be nice to support in the future. When we do
|
|
* support it, we should change this test so that it checks to make
|
|
* sure SI_EVPD and SI_CMDDT aren't both set at the same time.
|
|
*/
|
|
#ifdef notyet
|
|
if (((cdb->byte2 & SI_EVPD)
|
|
&& (cdb->byte2 & SI_CMDDT)))
|
|
#endif
|
|
if (cdb->byte2 & SI_CMDDT) {
|
|
/*
|
|
* Point to the SI_CMDDT bit. We might change this
|
|
* when we support SI_CMDDT, but since both bits would be
|
|
* "wrong", this should probably just stay as-is then.
|
|
*/
|
|
ctl_set_invalid_field(ctsio,
|
|
/*sks_valid*/ 1,
|
|
/*command*/ 1,
|
|
/*field*/ 1,
|
|
/*bit_valid*/ 1,
|
|
/*bit*/ 1);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
if (cdb->byte2 & SI_EVPD)
|
|
retval = ctl_inquiry_evpd(ctsio);
|
|
#ifdef notyet
|
|
else if (cdb->byte2 & SI_CMDDT)
|
|
retval = ctl_inquiry_cmddt(ctsio);
|
|
#endif
|
|
else
|
|
retval = ctl_inquiry_std(ctsio);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* For known CDB types, parse the LBA and length.
|
|
*/
|
|
static int
|
|
ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint32_t *len)
|
|
{
|
|
if (io->io_hdr.io_type != CTL_IO_SCSI)
|
|
return (1);
|
|
|
|
switch (io->scsiio.cdb[0]) {
|
|
case READ_6:
|
|
case WRITE_6: {
|
|
struct scsi_rw_6 *cdb;
|
|
|
|
cdb = (struct scsi_rw_6 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_3btoul(cdb->addr);
|
|
/* only 5 bits are valid in the most significant address byte */
|
|
*lba &= 0x1fffff;
|
|
*len = cdb->length;
|
|
break;
|
|
}
|
|
case READ_10:
|
|
case WRITE_10: {
|
|
struct scsi_rw_10 *cdb;
|
|
|
|
cdb = (struct scsi_rw_10 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_4btoul(cdb->addr);
|
|
*len = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_10: {
|
|
struct scsi_write_verify_10 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_10 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_4btoul(cdb->addr);
|
|
*len = scsi_2btoul(cdb->length);
|
|
break;
|
|
}
|
|
case READ_12:
|
|
case WRITE_12: {
|
|
struct scsi_rw_12 *cdb;
|
|
|
|
cdb = (struct scsi_rw_12 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_4btoul(cdb->addr);
|
|
*len = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_12: {
|
|
struct scsi_write_verify_12 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_12 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_4btoul(cdb->addr);
|
|
*len = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
case READ_16:
|
|
case WRITE_16: {
|
|
struct scsi_rw_16 *cdb;
|
|
|
|
cdb = (struct scsi_rw_16 *)io->scsiio.cdb;
|
|
|
|
*lba = scsi_8btou64(cdb->addr);
|
|
*len = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
case WRITE_VERIFY_16: {
|
|
struct scsi_write_verify_16 *cdb;
|
|
|
|
cdb = (struct scsi_write_verify_16 *)io->scsiio.cdb;
|
|
|
|
|
|
*lba = scsi_8btou64(cdb->addr);
|
|
*len = scsi_4btoul(cdb->length);
|
|
break;
|
|
}
|
|
default:
|
|
return (1);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static ctl_action
|
|
ctl_extent_check_lba(uint64_t lba1, uint32_t len1, uint64_t lba2, uint32_t len2)
|
|
{
|
|
uint64_t endlba1, endlba2;
|
|
|
|
endlba1 = lba1 + len1 - 1;
|
|
endlba2 = lba2 + len2 - 1;
|
|
|
|
if ((endlba1 < lba2)
|
|
|| (endlba2 < lba1))
|
|
return (CTL_ACTION_PASS);
|
|
else
|
|
return (CTL_ACTION_BLOCK);
|
|
}
|
|
|
|
static ctl_action
|
|
ctl_extent_check(union ctl_io *io1, union ctl_io *io2)
|
|
{
|
|
uint64_t lba1, lba2;
|
|
uint32_t len1, len2;
|
|
int retval;
|
|
|
|
retval = ctl_get_lba_len(io1, &lba1, &len1);
|
|
if (retval != 0)
|
|
return (CTL_ACTION_ERROR);
|
|
|
|
retval = ctl_get_lba_len(io2, &lba2, &len2);
|
|
if (retval != 0)
|
|
return (CTL_ACTION_ERROR);
|
|
|
|
return (ctl_extent_check_lba(lba1, len1, lba2, len2));
|
|
}
|
|
|
|
static ctl_action
|
|
ctl_check_for_blockage(union ctl_io *pending_io, union ctl_io *ooa_io)
|
|
{
|
|
struct ctl_cmd_entry *pending_entry, *ooa_entry;
|
|
ctl_serialize_action *serialize_row;
|
|
|
|
/*
|
|
* The initiator attempted multiple untagged commands at the same
|
|
* time. Can't do that.
|
|
*/
|
|
if ((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
|
|
&& (ooa_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
|
|
&& ((pending_io->io_hdr.nexus.targ_port ==
|
|
ooa_io->io_hdr.nexus.targ_port)
|
|
&& (pending_io->io_hdr.nexus.initid.id ==
|
|
ooa_io->io_hdr.nexus.initid.id))
|
|
&& ((ooa_io->io_hdr.flags & CTL_FLAG_ABORT) == 0))
|
|
return (CTL_ACTION_OVERLAP);
|
|
|
|
/*
|
|
* The initiator attempted to send multiple tagged commands with
|
|
* the same ID. (It's fine if different initiators have the same
|
|
* tag ID.)
|
|
*
|
|
* Even if all of those conditions are true, we don't kill the I/O
|
|
* if the command ahead of us has been aborted. We won't end up
|
|
* sending it to the FETD, and it's perfectly legal to resend a
|
|
* command with the same tag number as long as the previous
|
|
* instance of this tag number has been aborted somehow.
|
|
*/
|
|
if ((pending_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
|
|
&& (ooa_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
|
|
&& (pending_io->scsiio.tag_num == ooa_io->scsiio.tag_num)
|
|
&& ((pending_io->io_hdr.nexus.targ_port ==
|
|
ooa_io->io_hdr.nexus.targ_port)
|
|
&& (pending_io->io_hdr.nexus.initid.id ==
|
|
ooa_io->io_hdr.nexus.initid.id))
|
|
&& ((ooa_io->io_hdr.flags & CTL_FLAG_ABORT) == 0))
|
|
return (CTL_ACTION_OVERLAP_TAG);
|
|
|
|
/*
|
|
* If we get a head of queue tag, SAM-3 says that we should
|
|
* immediately execute it.
|
|
*
|
|
* What happens if this command would normally block for some other
|
|
* reason? e.g. a request sense with a head of queue tag
|
|
* immediately after a write. Normally that would block, but this
|
|
* will result in its getting executed immediately...
|
|
*
|
|
* We currently return "pass" instead of "skip", so we'll end up
|
|
* going through the rest of the queue to check for overlapped tags.
|
|
*
|
|
* XXX KDM check for other types of blockage first??
|
|
*/
|
|
if (pending_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
|
|
return (CTL_ACTION_PASS);
|
|
|
|
/*
|
|
* Ordered tags have to block until all items ahead of them
|
|
* have completed. If we get called with an ordered tag, we always
|
|
* block, if something else is ahead of us in the queue.
|
|
*/
|
|
if (pending_io->scsiio.tag_type == CTL_TAG_ORDERED)
|
|
return (CTL_ACTION_BLOCK);
|
|
|
|
/*
|
|
* Simple tags get blocked until all head of queue and ordered tags
|
|
* ahead of them have completed. I'm lumping untagged commands in
|
|
* with simple tags here. XXX KDM is that the right thing to do?
|
|
*/
|
|
if (((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
|
|
|| (pending_io->scsiio.tag_type == CTL_TAG_SIMPLE))
|
|
&& ((ooa_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
|
|
|| (ooa_io->scsiio.tag_type == CTL_TAG_ORDERED)))
|
|
return (CTL_ACTION_BLOCK);
|
|
|
|
pending_entry = &ctl_cmd_table[pending_io->scsiio.cdb[0]];
|
|
ooa_entry = &ctl_cmd_table[ooa_io->scsiio.cdb[0]];
|
|
|
|
serialize_row = ctl_serialize_table[ooa_entry->seridx];
|
|
|
|
switch (serialize_row[pending_entry->seridx]) {
|
|
case CTL_SER_BLOCK:
|
|
return (CTL_ACTION_BLOCK);
|
|
break; /* NOTREACHED */
|
|
case CTL_SER_EXTENT:
|
|
return (ctl_extent_check(pending_io, ooa_io));
|
|
break; /* NOTREACHED */
|
|
case CTL_SER_PASS:
|
|
return (CTL_ACTION_PASS);
|
|
break; /* NOTREACHED */
|
|
case CTL_SER_SKIP:
|
|
return (CTL_ACTION_SKIP);
|
|
break;
|
|
default:
|
|
panic("invalid serialization value %d",
|
|
serialize_row[pending_entry->seridx]);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
return (CTL_ACTION_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Check for blockage or overlaps against the OOA (Order Of Arrival) queue.
|
|
* Assumptions:
|
|
* - caller holds ctl_lock
|
|
* - pending_io is generally either incoming, or on the blocked queue
|
|
* - starting I/O is the I/O we want to start the check with.
|
|
*/
|
|
static ctl_action
|
|
ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
|
|
union ctl_io *starting_io)
|
|
{
|
|
union ctl_io *ooa_io;
|
|
ctl_action action;
|
|
|
|
/*
|
|
* Run back along the OOA queue, starting with the current
|
|
* blocked I/O and going through every I/O before it on the
|
|
* queue. If starting_io is NULL, we'll just end up returning
|
|
* CTL_ACTION_PASS.
|
|
*/
|
|
for (ooa_io = starting_io; ooa_io != NULL;
|
|
ooa_io = (union ctl_io *)TAILQ_PREV(&ooa_io->io_hdr, ctl_ooaq,
|
|
ooa_links)){
|
|
|
|
/*
|
|
* This routine just checks to see whether
|
|
* cur_blocked is blocked by ooa_io, which is ahead
|
|
* of it in the queue. It doesn't queue/dequeue
|
|
* cur_blocked.
|
|
*/
|
|
action = ctl_check_for_blockage(pending_io, ooa_io);
|
|
switch (action) {
|
|
case CTL_ACTION_BLOCK:
|
|
case CTL_ACTION_OVERLAP:
|
|
case CTL_ACTION_OVERLAP_TAG:
|
|
case CTL_ACTION_SKIP:
|
|
case CTL_ACTION_ERROR:
|
|
return (action);
|
|
break; /* NOTREACHED */
|
|
case CTL_ACTION_PASS:
|
|
break;
|
|
default:
|
|
panic("invalid action %d", action);
|
|
break; /* NOTREACHED */
|
|
}
|
|
}
|
|
|
|
return (CTL_ACTION_PASS);
|
|
}
|
|
|
|
/*
|
|
* Assumptions:
|
|
* - An I/O has just completed, and has been removed from the per-LUN OOA
|
|
* queue, so some items on the blocked queue may now be unblocked.
|
|
* - The caller holds ctl_softc->ctl_lock
|
|
*/
|
|
static int
|
|
ctl_check_blocked(struct ctl_lun *lun)
|
|
{
|
|
union ctl_io *cur_blocked, *next_blocked;
|
|
|
|
/*
|
|
* Run forward from the head of the blocked queue, checking each
|
|
* entry against the I/Os prior to it on the OOA queue to see if
|
|
* there is still any blockage.
|
|
*
|
|
* We cannot use the TAILQ_FOREACH() macro, because it can't deal
|
|
* with our removing a variable on it while it is traversing the
|
|
* list.
|
|
*/
|
|
for (cur_blocked = (union ctl_io *)TAILQ_FIRST(&lun->blocked_queue);
|
|
cur_blocked != NULL; cur_blocked = next_blocked) {
|
|
union ctl_io *prev_ooa;
|
|
ctl_action action;
|
|
|
|
next_blocked = (union ctl_io *)TAILQ_NEXT(&cur_blocked->io_hdr,
|
|
blocked_links);
|
|
|
|
prev_ooa = (union ctl_io *)TAILQ_PREV(&cur_blocked->io_hdr,
|
|
ctl_ooaq, ooa_links);
|
|
|
|
/*
|
|
* If cur_blocked happens to be the first item in the OOA
|
|
* queue now, prev_ooa will be NULL, and the action
|
|
* returned will just be CTL_ACTION_PASS.
|
|
*/
|
|
action = ctl_check_ooa(lun, cur_blocked, prev_ooa);
|
|
|
|
switch (action) {
|
|
case CTL_ACTION_BLOCK:
|
|
/* Nothing to do here, still blocked */
|
|
break;
|
|
case CTL_ACTION_OVERLAP:
|
|
case CTL_ACTION_OVERLAP_TAG:
|
|
/*
|
|
* This shouldn't happen! In theory we've already
|
|
* checked this command for overlap...
|
|
*/
|
|
break;
|
|
case CTL_ACTION_PASS:
|
|
case CTL_ACTION_SKIP: {
|
|
struct ctl_softc *softc;
|
|
struct ctl_cmd_entry *entry;
|
|
uint32_t initidx;
|
|
uint8_t opcode;
|
|
int isc_retval;
|
|
|
|
/*
|
|
* The skip case shouldn't happen, this transaction
|
|
* should have never made it onto the blocked queue.
|
|
*/
|
|
/*
|
|
* This I/O is no longer blocked, we can remove it
|
|
* from the blocked queue. Since this is a TAILQ
|
|
* (doubly linked list), we can do O(1) removals
|
|
* from any place on the list.
|
|
*/
|
|
TAILQ_REMOVE(&lun->blocked_queue, &cur_blocked->io_hdr,
|
|
blocked_links);
|
|
cur_blocked->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
|
|
|
|
if (cur_blocked->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC){
|
|
/*
|
|
* Need to send IO back to original side to
|
|
* run
|
|
*/
|
|
union ctl_ha_msg msg_info;
|
|
|
|
msg_info.hdr.original_sc =
|
|
cur_blocked->io_hdr.original_sc;
|
|
msg_info.hdr.serializing_sc = cur_blocked;
|
|
msg_info.hdr.msg_type = CTL_MSG_R2R;
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
&msg_info, sizeof(msg_info), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:Check Blocked error from "
|
|
"ctl_ha_msg_send %d\n",
|
|
isc_retval);
|
|
}
|
|
break;
|
|
}
|
|
opcode = cur_blocked->scsiio.cdb[0];
|
|
entry = &ctl_cmd_table[opcode];
|
|
softc = control_softc;
|
|
|
|
initidx = ctl_get_initindex(&cur_blocked->io_hdr.nexus);
|
|
|
|
/*
|
|
* Check this I/O for LUN state changes that may
|
|
* have happened while this command was blocked.
|
|
* The LUN state may have been changed by a command
|
|
* ahead of us in the queue, so we need to re-check
|
|
* for any states that can be caused by SCSI
|
|
* commands.
|
|
*/
|
|
if (ctl_scsiio_lun_check(softc, lun, entry,
|
|
&cur_blocked->scsiio) == 0) {
|
|
cur_blocked->io_hdr.flags |=
|
|
CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(&lun->ctl_softc->rtr_queue,
|
|
&cur_blocked->io_hdr, links);
|
|
/*
|
|
* In the non CTL_DONE_THREAD case, we need
|
|
* to wake up the work thread here. When
|
|
* we're processing completed requests from
|
|
* the work thread context, we'll pop back
|
|
* around and end up pulling things off the
|
|
* RtR queue. When we aren't processing
|
|
* things from the work thread context,
|
|
* though, we won't ever check the RtR queue.
|
|
* So we need to wake up the thread to clear
|
|
* things off the queue. Otherwise this
|
|
* transaction will just sit on the RtR queue
|
|
* until a new I/O comes in. (Which may or
|
|
* may not happen...)
|
|
*/
|
|
#ifndef CTL_DONE_THREAD
|
|
ctl_wakeup_thread();
|
|
#endif
|
|
} else
|
|
ctl_done_lock(cur_blocked, /*have_lock*/ 1);
|
|
break;
|
|
}
|
|
default:
|
|
/*
|
|
* This probably shouldn't happen -- we shouldn't
|
|
* get CTL_ACTION_ERROR, or anything else.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* This routine (with one exception) checks LUN flags that can be set by
|
|
* commands ahead of us in the OOA queue. These flags have to be checked
|
|
* when a command initially comes in, and when we pull a command off the
|
|
* blocked queue and are preparing to execute it. The reason we have to
|
|
* check these flags for commands on the blocked queue is that the LUN
|
|
* state may have been changed by a command ahead of us while we're on the
|
|
* blocked queue.
|
|
*
|
|
* Ordering is somewhat important with these checks, so please pay
|
|
* careful attention to the placement of any new checks.
|
|
*/
|
|
static int
|
|
ctl_scsiio_lun_check(struct ctl_softc *ctl_softc, struct ctl_lun *lun,
|
|
struct ctl_cmd_entry *entry, struct ctl_scsiio *ctsio)
|
|
{
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
/*
|
|
* If this shelf is a secondary shelf controller, we have to reject
|
|
* any media access commands.
|
|
*/
|
|
#if 0
|
|
/* No longer needed for HA */
|
|
if (((ctl_softc->flags & CTL_FLAG_MASTER_SHELF) == 0)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_SECONDARY) == 0)) {
|
|
ctl_set_lun_standby(ctsio);
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Check for a reservation conflict. If this command isn't allowed
|
|
* even on reserved LUNs, and if this initiator isn't the one who
|
|
* reserved us, reject the command with a reservation conflict.
|
|
*/
|
|
if ((lun->flags & CTL_LUN_RESERVED)
|
|
&& ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_RESV) == 0)) {
|
|
if ((ctsio->io_hdr.nexus.initid.id != lun->rsv_nexus.initid.id)
|
|
|| (ctsio->io_hdr.nexus.targ_port != lun->rsv_nexus.targ_port)
|
|
|| (ctsio->io_hdr.nexus.targ_target.id !=
|
|
lun->rsv_nexus.targ_target.id)) {
|
|
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
}
|
|
|
|
if ( (lun->flags & CTL_LUN_PR_RESERVED)
|
|
&& ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_PR_RESV) == 0)) {
|
|
uint32_t residx;
|
|
|
|
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
|
|
/*
|
|
* if we aren't registered or it's a res holder type
|
|
* reservation and this isn't the res holder then set a
|
|
* conflict.
|
|
* NOTE: Commands which might be allowed on write exclusive
|
|
* type reservations are checked in the particular command
|
|
* for a conflict. Read and SSU are the only ones.
|
|
*/
|
|
if (!lun->per_res[residx].registered
|
|
|| (residx != lun->pr_res_idx && lun->res_type < 4)) {
|
|
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR;
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
}
|
|
|
|
if ((lun->flags & CTL_LUN_OFFLINE)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_OFFLINE) == 0)) {
|
|
ctl_set_lun_not_ready(ctsio);
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* If the LUN is stopped, see if this particular command is allowed
|
|
* for a stopped lun. Otherwise, reject it with 0x04,0x02.
|
|
*/
|
|
if ((lun->flags & CTL_LUN_STOPPED)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_STOPPED) == 0)) {
|
|
/* "Logical unit not ready, initializing cmd. required" */
|
|
ctl_set_lun_stopped(ctsio);
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
if ((lun->flags & CTL_LUN_INOPERABLE)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_INOPERABLE) == 0)) {
|
|
/* "Medium format corrupted" */
|
|
ctl_set_medium_format_corrupted(ctsio);
|
|
retval = 1;
|
|
goto bailout;
|
|
}
|
|
|
|
bailout:
|
|
return (retval);
|
|
|
|
}
|
|
|
|
static void
|
|
ctl_failover_io(union ctl_io *io, int have_lock)
|
|
{
|
|
ctl_set_busy(&io->scsiio);
|
|
ctl_done_lock(io, have_lock);
|
|
}
|
|
|
|
static void
|
|
ctl_failover(void)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
union ctl_io *next_io, *pending_io;
|
|
union ctl_io *io;
|
|
int lun_idx;
|
|
int i;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
/*
|
|
* Remove any cmds from the other SC from the rtr queue. These
|
|
* will obviously only be for LUNs for which we're the primary.
|
|
* We can't send status or get/send data for these commands.
|
|
* Since they haven't been executed yet, we can just remove them.
|
|
* We'll either abort them or delete them below, depending on
|
|
* which HA mode we're in.
|
|
*/
|
|
for (io = (union ctl_io *)STAILQ_FIRST(&ctl_softc->rtr_queue);
|
|
io != NULL; io = next_io) {
|
|
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
|
|
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
|
|
STAILQ_REMOVE(&ctl_softc->rtr_queue, &io->io_hdr,
|
|
ctl_io_hdr, links);
|
|
}
|
|
|
|
for (lun_idx=0; lun_idx < ctl_softc->num_luns; lun_idx++) {
|
|
lun = ctl_softc->ctl_luns[lun_idx];
|
|
if (lun==NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Processor LUNs are primary on both sides.
|
|
* XXX will this always be true?
|
|
*/
|
|
if (lun->be_lun->lun_type == T_PROCESSOR)
|
|
continue;
|
|
|
|
if ((lun->flags & CTL_LUN_PRIMARY_SC)
|
|
&& (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)) {
|
|
printf("FAILOVER: primary lun %d\n", lun_idx);
|
|
/*
|
|
* Remove all commands from the other SC. First from the
|
|
* blocked queue then from the ooa queue. Once we have
|
|
* removed them. Call ctl_check_blocked to see if there
|
|
* is anything that can run.
|
|
*/
|
|
for (io = (union ctl_io *)TAILQ_FIRST(
|
|
&lun->blocked_queue); io != NULL; io = next_io) {
|
|
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&io->io_hdr, blocked_links);
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) {
|
|
TAILQ_REMOVE(&lun->blocked_queue,
|
|
&io->io_hdr,blocked_links);
|
|
io->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
|
|
TAILQ_REMOVE(&lun->ooa_queue,
|
|
&io->io_hdr, ooa_links);
|
|
|
|
ctl_free_io_internal(io, 1);
|
|
}
|
|
}
|
|
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
|
|
io != NULL; io = next_io) {
|
|
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&io->io_hdr, ooa_links);
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) {
|
|
|
|
TAILQ_REMOVE(&lun->ooa_queue,
|
|
&io->io_hdr,
|
|
ooa_links);
|
|
|
|
ctl_free_io_internal(io, 1);
|
|
}
|
|
}
|
|
ctl_check_blocked(lun);
|
|
} else if ((lun->flags & CTL_LUN_PRIMARY_SC)
|
|
&& (ctl_softc->ha_mode == CTL_HA_MODE_XFER)) {
|
|
|
|
printf("FAILOVER: primary lun %d\n", lun_idx);
|
|
/*
|
|
* Abort all commands from the other SC. We can't
|
|
* send status back for them now. These should get
|
|
* cleaned up when they are completed or come out
|
|
* for a datamove operation.
|
|
*/
|
|
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
|
|
io != NULL; io = next_io) {
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&io->io_hdr, ooa_links);
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
|
|
io->io_hdr.flags |= CTL_FLAG_ABORT;
|
|
}
|
|
} else if (((lun->flags & CTL_LUN_PRIMARY_SC) == 0)
|
|
&& (ctl_softc->ha_mode == CTL_HA_MODE_XFER)) {
|
|
|
|
printf("FAILOVER: secondary lun %d\n", lun_idx);
|
|
|
|
lun->flags |= CTL_LUN_PRIMARY_SC;
|
|
|
|
/*
|
|
* We send all I/O that was sent to this controller
|
|
* and redirected to the other side back with
|
|
* busy status, and have the initiator retry it.
|
|
* Figuring out how much data has been transferred,
|
|
* etc. and picking up where we left off would be
|
|
* very tricky.
|
|
*
|
|
* XXX KDM need to remove I/O from the blocked
|
|
* queue as well!
|
|
*/
|
|
for (pending_io = (union ctl_io *)TAILQ_FIRST(
|
|
&lun->ooa_queue); pending_io != NULL;
|
|
pending_io = next_io) {
|
|
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&pending_io->io_hdr, ooa_links);
|
|
|
|
pending_io->io_hdr.flags &=
|
|
~CTL_FLAG_SENT_2OTHER_SC;
|
|
|
|
if (pending_io->io_hdr.flags &
|
|
CTL_FLAG_IO_ACTIVE) {
|
|
pending_io->io_hdr.flags |=
|
|
CTL_FLAG_FAILOVER;
|
|
} else {
|
|
ctl_set_busy(&pending_io->scsiio);
|
|
ctl_done_lock(pending_io,
|
|
/*have_lock*/1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build Unit Attention
|
|
*/
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_ASYM_ACC_CHANGE;
|
|
}
|
|
} else if (((lun->flags & CTL_LUN_PRIMARY_SC) == 0)
|
|
&& (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)) {
|
|
printf("FAILOVER: secondary lun %d\n", lun_idx);
|
|
/*
|
|
* if the first io on the OOA is not on the RtR queue
|
|
* add it.
|
|
*/
|
|
lun->flags |= CTL_LUN_PRIMARY_SC;
|
|
|
|
pending_io = (union ctl_io *)TAILQ_FIRST(
|
|
&lun->ooa_queue);
|
|
if (pending_io==NULL) {
|
|
printf("Nothing on OOA queue\n");
|
|
continue;
|
|
}
|
|
|
|
pending_io->io_hdr.flags &= ~CTL_FLAG_SENT_2OTHER_SC;
|
|
if ((pending_io->io_hdr.flags &
|
|
CTL_FLAG_IS_WAS_ON_RTR) == 0) {
|
|
pending_io->io_hdr.flags |=
|
|
CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
|
|
&pending_io->io_hdr, links);
|
|
}
|
|
#if 0
|
|
else
|
|
{
|
|
printf("Tag 0x%04x is running\n",
|
|
pending_io->scsiio.tag_num);
|
|
}
|
|
#endif
|
|
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&pending_io->io_hdr, ooa_links);
|
|
for (pending_io=next_io; pending_io != NULL;
|
|
pending_io = next_io) {
|
|
pending_io->io_hdr.flags &=
|
|
~CTL_FLAG_SENT_2OTHER_SC;
|
|
next_io = (union ctl_io *)TAILQ_NEXT(
|
|
&pending_io->io_hdr, ooa_links);
|
|
if (pending_io->io_hdr.flags &
|
|
CTL_FLAG_IS_WAS_ON_RTR) {
|
|
#if 0
|
|
printf("Tag 0x%04x is running\n",
|
|
pending_io->scsiio.tag_num);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
switch (ctl_check_ooa(lun, pending_io,
|
|
(union ctl_io *)TAILQ_PREV(
|
|
&pending_io->io_hdr, ctl_ooaq,
|
|
ooa_links))) {
|
|
|
|
case CTL_ACTION_BLOCK:
|
|
TAILQ_INSERT_TAIL(&lun->blocked_queue,
|
|
&pending_io->io_hdr,
|
|
blocked_links);
|
|
pending_io->io_hdr.flags |=
|
|
CTL_FLAG_BLOCKED;
|
|
break;
|
|
case CTL_ACTION_PASS:
|
|
case CTL_ACTION_SKIP:
|
|
pending_io->io_hdr.flags |=
|
|
CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(
|
|
&ctl_softc->rtr_queue,
|
|
&pending_io->io_hdr, links);
|
|
break;
|
|
case CTL_ACTION_OVERLAP:
|
|
ctl_set_overlapped_cmd(
|
|
(struct ctl_scsiio *)pending_io);
|
|
ctl_done_lock(pending_io,
|
|
/*have_lock*/ 1);
|
|
break;
|
|
case CTL_ACTION_OVERLAP_TAG:
|
|
ctl_set_overlapped_tag(
|
|
(struct ctl_scsiio *)pending_io,
|
|
pending_io->scsiio.tag_num & 0xff);
|
|
ctl_done_lock(pending_io,
|
|
/*have_lock*/ 1);
|
|
break;
|
|
case CTL_ACTION_ERROR:
|
|
default:
|
|
ctl_set_internal_failure(
|
|
(struct ctl_scsiio *)pending_io,
|
|
0, // sks_valid
|
|
0); //retry count
|
|
ctl_done_lock(pending_io,
|
|
/*have_lock*/ 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build Unit Attention
|
|
*/
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
lun->pending_sense[i].ua_pending |=
|
|
CTL_UA_ASYM_ACC_CHANGE;
|
|
}
|
|
} else {
|
|
panic("Unhandled HA mode failover, LUN flags = %#x, "
|
|
"ha_mode = #%x", lun->flags, ctl_softc->ha_mode);
|
|
}
|
|
}
|
|
ctl_pause_rtr = 0;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
}
|
|
|
|
static int
|
|
ctl_scsiio_precheck(struct ctl_softc *ctl_softc, struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_cmd_entry *entry;
|
|
uint8_t opcode;
|
|
uint32_t initidx;
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
lun = NULL;
|
|
|
|
opcode = ctsio->cdb[0];
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
if ((ctsio->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
|
|
&& (ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun] != NULL)) {
|
|
lun = ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun];
|
|
/*
|
|
* If the LUN is invalid, pretend that it doesn't exist.
|
|
* It will go away as soon as all pending I/O has been
|
|
* completed.
|
|
*/
|
|
if (lun->flags & CTL_LUN_DISABLED) {
|
|
lun = NULL;
|
|
} else {
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr = lun;
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_BACKEND_LUN].ptr =
|
|
lun->be_lun;
|
|
if (lun->be_lun->lun_type == T_PROCESSOR) {
|
|
ctsio->io_hdr.flags |= CTL_FLAG_CONTROL_DEV;
|
|
}
|
|
}
|
|
} else {
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr = NULL;
|
|
ctsio->io_hdr.ctl_private[CTL_PRIV_BACKEND_LUN].ptr = NULL;
|
|
}
|
|
|
|
entry = &ctl_cmd_table[opcode];
|
|
|
|
ctsio->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
|
|
ctsio->io_hdr.flags |= entry->flags & CTL_FLAG_DATA_MASK;
|
|
|
|
/*
|
|
* Check to see whether we can send this command to LUNs that don't
|
|
* exist. This should pretty much only be the case for inquiry
|
|
* and request sense. Further checks, below, really require having
|
|
* a LUN, so we can't really check the command anymore. Just put
|
|
* it on the rtr queue.
|
|
*/
|
|
if (lun == NULL) {
|
|
if (entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
|
|
goto queue_rtr;
|
|
|
|
ctl_set_unsupported_lun(ctsio);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
} else {
|
|
/*
|
|
* Every I/O goes into the OOA queue for a particular LUN, and
|
|
* stays there until completion.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
|
|
|
|
/*
|
|
* Make sure we support this particular command on this LUN.
|
|
* e.g., we don't support writes to the control LUN.
|
|
*/
|
|
switch (lun->be_lun->lun_type) {
|
|
case T_PROCESSOR:
|
|
if (((entry->flags & CTL_CMD_FLAG_OK_ON_PROC) == 0)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
|
|
== 0)) {
|
|
ctl_set_invalid_opcode(ctsio);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
break;
|
|
case T_DIRECT:
|
|
if (((entry->flags & CTL_CMD_FLAG_OK_ON_SLUN) == 0)
|
|
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
|
|
== 0)){
|
|
ctl_set_invalid_opcode(ctsio);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
break;
|
|
default:
|
|
printf("Unsupported CTL LUN type %d\n",
|
|
lun->be_lun->lun_type);
|
|
panic("Unsupported CTL LUN type %d\n",
|
|
lun->be_lun->lun_type);
|
|
break; /* NOTREACHED */
|
|
}
|
|
}
|
|
|
|
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
|
|
|
|
/*
|
|
* If we've got a request sense, it'll clear the contingent
|
|
* allegiance condition. Otherwise, if we have a CA condition for
|
|
* this initiator, clear it, because it sent down a command other
|
|
* than request sense.
|
|
*/
|
|
if ((opcode != REQUEST_SENSE)
|
|
&& (ctl_is_set(lun->have_ca, initidx)))
|
|
ctl_clear_mask(lun->have_ca, initidx);
|
|
|
|
/*
|
|
* If the command has this flag set, it handles its own unit
|
|
* attention reporting, we shouldn't do anything. Otherwise we
|
|
* check for any pending unit attentions, and send them back to the
|
|
* initiator. We only do this when a command initially comes in,
|
|
* not when we pull it off the blocked queue.
|
|
*
|
|
* According to SAM-3, section 5.3.2, the order that things get
|
|
* presented back to the host is basically unit attentions caused
|
|
* by some sort of reset event, busy status, reservation conflicts
|
|
* or task set full, and finally any other status.
|
|
*
|
|
* One issue here is that some of the unit attentions we report
|
|
* don't fall into the "reset" category (e.g. "reported luns data
|
|
* has changed"). So reporting it here, before the reservation
|
|
* check, may be technically wrong. I guess the only thing to do
|
|
* would be to check for and report the reset events here, and then
|
|
* check for the other unit attention types after we check for a
|
|
* reservation conflict.
|
|
*
|
|
* XXX KDM need to fix this
|
|
*/
|
|
if ((entry->flags & CTL_CMD_FLAG_NO_SENSE) == 0) {
|
|
ctl_ua_type ua_type;
|
|
|
|
ua_type = lun->pending_sense[initidx].ua_pending;
|
|
if (ua_type != CTL_UA_NONE) {
|
|
scsi_sense_data_type sense_format;
|
|
|
|
if (lun != NULL)
|
|
sense_format = (lun->flags &
|
|
CTL_LUN_SENSE_DESC) ? SSD_TYPE_DESC :
|
|
SSD_TYPE_FIXED;
|
|
else
|
|
sense_format = SSD_TYPE_FIXED;
|
|
|
|
ua_type = ctl_build_ua(ua_type, &ctsio->sense_data,
|
|
sense_format);
|
|
if (ua_type != CTL_UA_NONE) {
|
|
ctsio->scsi_status = SCSI_STATUS_CHECK_COND;
|
|
ctsio->io_hdr.status = CTL_SCSI_ERROR |
|
|
CTL_AUTOSENSE;
|
|
ctsio->sense_len = SSD_FULL_SIZE;
|
|
lun->pending_sense[initidx].ua_pending &=
|
|
~ua_type;
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (ctl_scsiio_lun_check(ctl_softc, lun, entry, ctsio) != 0) {
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* XXX CHD this is where we want to send IO to other side if
|
|
* this LUN is secondary on this SC. We will need to make a copy
|
|
* of the IO and flag the IO on this side as SENT_2OTHER and the flag
|
|
* the copy we send as FROM_OTHER.
|
|
* We also need to stuff the address of the original IO so we can
|
|
* find it easily. Something similar will need be done on the other
|
|
* side so when we are done we can find the copy.
|
|
*/
|
|
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0) {
|
|
union ctl_ha_msg msg_info;
|
|
int isc_retval;
|
|
|
|
ctsio->io_hdr.flags |= CTL_FLAG_SENT_2OTHER_SC;
|
|
|
|
msg_info.hdr.msg_type = CTL_MSG_SERIALIZE;
|
|
msg_info.hdr.original_sc = (union ctl_io *)ctsio;
|
|
#if 0
|
|
printf("1. ctsio %p\n", ctsio);
|
|
#endif
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
msg_info.hdr.nexus = ctsio->io_hdr.nexus;
|
|
msg_info.scsi.tag_num = ctsio->tag_num;
|
|
msg_info.scsi.tag_type = ctsio->tag_type;
|
|
memcpy(msg_info.scsi.cdb, ctsio->cdb, CTL_MAX_CDBLEN);
|
|
|
|
ctsio->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
|
|
|
|
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
(void *)&msg_info, sizeof(msg_info), 0)) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
printf("CTL:precheck, ctl_ha_msg_send returned %d\n",
|
|
isc_retval);
|
|
printf("CTL:opcode is %x\n",opcode);
|
|
} else {
|
|
#if 0
|
|
printf("CTL:Precheck sent msg, opcode is %x\n",opcode);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* XXX KDM this I/O is off the incoming queue, but hasn't
|
|
* been inserted on any other queue. We may need to come
|
|
* up with a holding queue while we wait for serialization
|
|
* so that we have an idea of what we're waiting for from
|
|
* the other side.
|
|
*/
|
|
goto bailout_unlock;
|
|
}
|
|
|
|
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
|
|
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr,
|
|
ctl_ooaq, ooa_links))) {
|
|
case CTL_ACTION_BLOCK:
|
|
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
|
|
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
|
|
blocked_links);
|
|
goto bailout_unlock;
|
|
break; /* NOTREACHED */
|
|
case CTL_ACTION_PASS:
|
|
case CTL_ACTION_SKIP:
|
|
goto queue_rtr;
|
|
break; /* NOTREACHED */
|
|
case CTL_ACTION_OVERLAP:
|
|
ctl_set_overlapped_cmd(ctsio);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
case CTL_ACTION_OVERLAP_TAG:
|
|
ctl_set_overlapped_tag(ctsio, ctsio->tag_num & 0xff);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
case CTL_ACTION_ERROR:
|
|
default:
|
|
ctl_set_internal_failure(ctsio,
|
|
/*sks_valid*/ 0,
|
|
/*retry_count*/ 0);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
goto bailout_unlock;
|
|
|
|
queue_rtr:
|
|
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue, &ctsio->io_hdr, links);
|
|
|
|
bailout_unlock:
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ctl_scsiio(struct ctl_scsiio *ctsio)
|
|
{
|
|
int retval;
|
|
struct ctl_cmd_entry *entry;
|
|
|
|
retval = CTL_RETVAL_COMPLETE;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_scsiio cdb[0]=%02X\n", ctsio->cdb[0]));
|
|
|
|
entry = &ctl_cmd_table[ctsio->cdb[0]];
|
|
|
|
/*
|
|
* If this I/O has been aborted, just send it straight to
|
|
* ctl_done() without executing it.
|
|
*/
|
|
if (ctsio->io_hdr.flags & CTL_FLAG_ABORT) {
|
|
ctl_done((union ctl_io *)ctsio);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* All the checks should have been handled by ctl_scsiio_precheck().
|
|
* We should be clear now to just execute the I/O.
|
|
*/
|
|
retval = entry->execute(ctsio);
|
|
|
|
bailout:
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Since we only implement one target right now, a bus reset simply resets
|
|
* our single target.
|
|
*/
|
|
static int
|
|
ctl_bus_reset(struct ctl_softc *ctl_softc, union ctl_io *io)
|
|
{
|
|
return(ctl_target_reset(ctl_softc, io, CTL_UA_BUS_RESET));
|
|
}
|
|
|
|
static int
|
|
ctl_target_reset(struct ctl_softc *ctl_softc, union ctl_io *io,
|
|
ctl_ua_type ua_type)
|
|
{
|
|
struct ctl_lun *lun;
|
|
int retval;
|
|
|
|
if (!(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
|
|
union ctl_ha_msg msg_info;
|
|
|
|
io->io_hdr.flags |= CTL_FLAG_SENT_2OTHER_SC;
|
|
msg_info.hdr.nexus = io->io_hdr.nexus;
|
|
if (ua_type==CTL_UA_TARG_RESET)
|
|
msg_info.task.task_action = CTL_TASK_TARGET_RESET;
|
|
else
|
|
msg_info.task.task_action = CTL_TASK_BUS_RESET;
|
|
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
|
|
msg_info.hdr.original_sc = NULL;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
if (CTL_HA_STATUS_SUCCESS != ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
(void *)&msg_info, sizeof(msg_info), 0)) {
|
|
}
|
|
}
|
|
retval = 0;
|
|
|
|
STAILQ_FOREACH(lun, &ctl_softc->lun_list, links)
|
|
retval += ctl_lun_reset(lun, io, ua_type);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* The LUN should always be set. The I/O is optional, and is used to
|
|
* distinguish between I/Os sent by this initiator, and by other
|
|
* initiators. We set unit attention for initiators other than this one.
|
|
* SAM-3 is vague on this point. It does say that a unit attention should
|
|
* be established for other initiators when a LUN is reset (see section
|
|
* 5.7.3), but it doesn't specifically say that the unit attention should
|
|
* be established for this particular initiator when a LUN is reset. Here
|
|
* is the relevant text, from SAM-3 rev 8:
|
|
*
|
|
* 5.7.2 When a SCSI initiator port aborts its own tasks
|
|
*
|
|
* When a SCSI initiator port causes its own task(s) to be aborted, no
|
|
* notification that the task(s) have been aborted shall be returned to
|
|
* the SCSI initiator port other than the completion response for the
|
|
* command or task management function action that caused the task(s) to
|
|
* be aborted and notification(s) associated with related effects of the
|
|
* action (e.g., a reset unit attention condition).
|
|
*
|
|
* XXX KDM for now, we're setting unit attention for all initiators.
|
|
*/
|
|
static int
|
|
ctl_lun_reset(struct ctl_lun *lun, union ctl_io *io, ctl_ua_type ua_type)
|
|
{
|
|
union ctl_io *xio;
|
|
#if 0
|
|
uint32_t initindex;
|
|
#endif
|
|
int i;
|
|
|
|
/*
|
|
* Run through the OOA queue and abort each I/O.
|
|
*/
|
|
#if 0
|
|
TAILQ_FOREACH((struct ctl_io_hdr *)xio, &lun->ooa_queue, ooa_links) {
|
|
#endif
|
|
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
|
|
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
|
|
xio->io_hdr.flags |= CTL_FLAG_ABORT;
|
|
}
|
|
|
|
/*
|
|
* This version sets unit attention for every
|
|
*/
|
|
#if 0
|
|
initindex = ctl_get_initindex(&io->io_hdr.nexus);
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
if (initindex == i)
|
|
continue;
|
|
lun->pending_sense[i].ua_pending |= ua_type;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A reset (any kind, really) clears reservations established with
|
|
* RESERVE/RELEASE. It does not clear reservations established
|
|
* with PERSISTENT RESERVE OUT, but we don't support that at the
|
|
* moment anyway. See SPC-2, section 5.6. SPC-3 doesn't address
|
|
* reservations made with the RESERVE/RELEASE commands, because
|
|
* those commands are obsolete in SPC-3.
|
|
*/
|
|
lun->flags &= ~CTL_LUN_RESERVED;
|
|
|
|
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
|
|
ctl_clear_mask(lun->have_ca, i);
|
|
lun->pending_sense[i].ua_pending |= ua_type;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ctl_abort_task(union ctl_io *io)
|
|
{
|
|
union ctl_io *xio;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
#if 0
|
|
struct sbuf sb;
|
|
char printbuf[128];
|
|
#endif
|
|
int found;
|
|
|
|
ctl_softc = control_softc;
|
|
found = 0;
|
|
|
|
/*
|
|
* Look up the LUN.
|
|
*/
|
|
if ((io->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
|
|
&& (ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun] != NULL))
|
|
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
|
|
else
|
|
goto bailout;
|
|
|
|
#if 0
|
|
printf("ctl_abort_task: called for lun %lld, tag %d type %d\n",
|
|
lun->lun, io->taskio.tag_num, io->taskio.tag_type);
|
|
#endif
|
|
|
|
/*
|
|
* Run through the OOA queue and attempt to find the given I/O.
|
|
* The target port, initiator ID, tag type and tag number have to
|
|
* match the values that we got from the initiator. If we have an
|
|
* untagged command to abort, simply abort the first untagged command
|
|
* we come to. We only allow one untagged command at a time of course.
|
|
*/
|
|
#if 0
|
|
TAILQ_FOREACH((struct ctl_io_hdr *)xio, &lun->ooa_queue, ooa_links) {
|
|
#endif
|
|
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
|
|
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
|
|
#if 0
|
|
sbuf_new(&sb, printbuf, sizeof(printbuf), SBUF_FIXEDLEN);
|
|
|
|
sbuf_printf(&sb, "LUN %lld tag %d type %d%s%s%s%s: ",
|
|
lun->lun, xio->scsiio.tag_num,
|
|
xio->scsiio.tag_type,
|
|
(xio->io_hdr.blocked_links.tqe_prev
|
|
== NULL) ? "" : " BLOCKED",
|
|
(xio->io_hdr.flags &
|
|
CTL_FLAG_DMA_INPROG) ? " DMA" : "",
|
|
(xio->io_hdr.flags &
|
|
CTL_FLAG_ABORT) ? " ABORT" : ""),
|
|
(xio->io_hdr.flags &
|
|
CTL_FLAG_IS_WAS_ON_RTR ? " RTR" : "");
|
|
ctl_scsi_command_string(&xio->scsiio, NULL, &sb);
|
|
sbuf_finish(&sb);
|
|
printf("%s\n", sbuf_data(&sb));
|
|
#endif
|
|
|
|
if ((xio->io_hdr.nexus.targ_port == io->io_hdr.nexus.targ_port)
|
|
&& (xio->io_hdr.nexus.initid.id ==
|
|
io->io_hdr.nexus.initid.id)) {
|
|
/*
|
|
* If the abort says that the task is untagged, the
|
|
* task in the queue must be untagged. Otherwise,
|
|
* we just check to see whether the tag numbers
|
|
* match. This is because the QLogic firmware
|
|
* doesn't pass back the tag type in an abort
|
|
* request.
|
|
*/
|
|
#if 0
|
|
if (((xio->scsiio.tag_type == CTL_TAG_UNTAGGED)
|
|
&& (io->taskio.tag_type == CTL_TAG_UNTAGGED))
|
|
|| (xio->scsiio.tag_num == io->taskio.tag_num)) {
|
|
#endif
|
|
/*
|
|
* XXX KDM we've got problems with FC, because it
|
|
* doesn't send down a tag type with aborts. So we
|
|
* can only really go by the tag number...
|
|
* This may cause problems with parallel SCSI.
|
|
* Need to figure that out!!
|
|
*/
|
|
if (xio->scsiio.tag_num == io->taskio.tag_num) {
|
|
xio->io_hdr.flags |= CTL_FLAG_ABORT;
|
|
found = 1;
|
|
if ((io->io_hdr.flags &
|
|
CTL_FLAG_FROM_OTHER_SC) == 0 &&
|
|
!(lun->flags & CTL_LUN_PRIMARY_SC)) {
|
|
union ctl_ha_msg msg_info;
|
|
|
|
io->io_hdr.flags |=
|
|
CTL_FLAG_SENT_2OTHER_SC;
|
|
msg_info.hdr.nexus = io->io_hdr.nexus;
|
|
msg_info.task.task_action =
|
|
CTL_TASK_ABORT_TASK;
|
|
msg_info.task.tag_num =
|
|
io->taskio.tag_num;
|
|
msg_info.task.tag_type =
|
|
io->taskio.tag_type;
|
|
msg_info.hdr.msg_type =
|
|
CTL_MSG_MANAGE_TASKS;
|
|
msg_info.hdr.original_sc = NULL;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
#if 0
|
|
printf("Sent Abort to other side\n");
|
|
#endif
|
|
if (CTL_HA_STATUS_SUCCESS !=
|
|
ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
(void *)&msg_info,
|
|
sizeof(msg_info), 0)) {
|
|
}
|
|
}
|
|
#if 0
|
|
printf("ctl_abort_task: found I/O to abort\n");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bailout:
|
|
|
|
if (found == 0) {
|
|
/*
|
|
* This isn't really an error. It's entirely possible for
|
|
* the abort and command completion to cross on the wire.
|
|
* This is more of an informative/diagnostic error.
|
|
*/
|
|
#if 0
|
|
printf("ctl_abort_task: ABORT sent for nonexistent I/O: "
|
|
"%d:%d:%d:%d tag %d type %d\n",
|
|
io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_lun, io->taskio.tag_num,
|
|
io->taskio.tag_type);
|
|
#endif
|
|
return (1);
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Assumptions: caller holds ctl_softc->ctl_lock
|
|
*
|
|
* This routine cannot block! It must be callable from an interrupt
|
|
* handler as well as from the work thread.
|
|
*/
|
|
static void
|
|
ctl_run_task_queue(struct ctl_softc *ctl_softc)
|
|
{
|
|
union ctl_io *io, *next_io;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_run_task_queue\n"));
|
|
|
|
for (io = (union ctl_io *)STAILQ_FIRST(&ctl_softc->task_queue);
|
|
io != NULL; io = next_io) {
|
|
int retval;
|
|
const char *task_desc;
|
|
|
|
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
|
|
|
|
retval = 0;
|
|
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_TASK: {
|
|
task_desc = ctl_scsi_task_string(&io->taskio);
|
|
if (task_desc != NULL) {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_TASK_REPORT,
|
|
csevent_LogType_Trace,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"CTL: received task: %s",task_desc);
|
|
#endif
|
|
} else {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_TASK_REPORT,
|
|
csevent_LogType_Trace,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"CTL: received unknown task "
|
|
"type: %d (%#x)",
|
|
io->taskio.task_action,
|
|
io->taskio.task_action);
|
|
#endif
|
|
}
|
|
switch (io->taskio.task_action) {
|
|
case CTL_TASK_ABORT_TASK:
|
|
retval = ctl_abort_task(io);
|
|
break;
|
|
case CTL_TASK_ABORT_TASK_SET:
|
|
break;
|
|
case CTL_TASK_CLEAR_ACA:
|
|
break;
|
|
case CTL_TASK_CLEAR_TASK_SET:
|
|
break;
|
|
case CTL_TASK_LUN_RESET: {
|
|
struct ctl_lun *lun;
|
|
uint32_t targ_lun;
|
|
int retval;
|
|
|
|
targ_lun = io->io_hdr.nexus.targ_lun;
|
|
|
|
if ((targ_lun < CTL_MAX_LUNS)
|
|
&& (ctl_softc->ctl_luns[targ_lun] != NULL))
|
|
lun = ctl_softc->ctl_luns[targ_lun];
|
|
else {
|
|
retval = 1;
|
|
break;
|
|
}
|
|
|
|
if (!(io->io_hdr.flags &
|
|
CTL_FLAG_FROM_OTHER_SC)) {
|
|
union ctl_ha_msg msg_info;
|
|
|
|
io->io_hdr.flags |=
|
|
CTL_FLAG_SENT_2OTHER_SC;
|
|
msg_info.hdr.msg_type =
|
|
CTL_MSG_MANAGE_TASKS;
|
|
msg_info.hdr.nexus = io->io_hdr.nexus;
|
|
msg_info.task.task_action =
|
|
CTL_TASK_LUN_RESET;
|
|
msg_info.hdr.original_sc = NULL;
|
|
msg_info.hdr.serializing_sc = NULL;
|
|
if (CTL_HA_STATUS_SUCCESS !=
|
|
ctl_ha_msg_send(CTL_HA_CHAN_CTL,
|
|
(void *)&msg_info,
|
|
sizeof(msg_info), 0)) {
|
|
}
|
|
}
|
|
|
|
retval = ctl_lun_reset(lun, io,
|
|
CTL_UA_LUN_RESET);
|
|
break;
|
|
}
|
|
case CTL_TASK_TARGET_RESET:
|
|
retval = ctl_target_reset(ctl_softc, io,
|
|
CTL_UA_TARG_RESET);
|
|
break;
|
|
case CTL_TASK_BUS_RESET:
|
|
retval = ctl_bus_reset(ctl_softc, io);
|
|
break;
|
|
case CTL_TASK_PORT_LOGIN:
|
|
break;
|
|
case CTL_TASK_PORT_LOGOUT:
|
|
break;
|
|
default:
|
|
printf("ctl_run_task_queue: got unknown task "
|
|
"management event %d\n",
|
|
io->taskio.task_action);
|
|
break;
|
|
}
|
|
if (retval == 0)
|
|
io->io_hdr.status = CTL_SUCCESS;
|
|
else
|
|
io->io_hdr.status = CTL_ERROR;
|
|
|
|
STAILQ_REMOVE(&ctl_softc->task_queue, &io->io_hdr,
|
|
ctl_io_hdr, links);
|
|
/*
|
|
* This will queue this I/O to the done queue, but the
|
|
* work thread won't be able to process it until we
|
|
* return and the lock is released.
|
|
*/
|
|
ctl_done_lock(io, /*have_lock*/ 1);
|
|
break;
|
|
}
|
|
default: {
|
|
|
|
printf("%s: invalid I/O type %d msg %d cdb %x"
|
|
" iptl: %ju:%d:%ju:%d tag 0x%04x\n",
|
|
__func__, io->io_hdr.io_type,
|
|
io->io_hdr.msg_type, io->scsiio.cdb[0],
|
|
(uintmax_t)io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
(uintmax_t)io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_lun,
|
|
(io->io_hdr.io_type == CTL_IO_TASK) ?
|
|
io->taskio.tag_num : io->scsiio.tag_num);
|
|
STAILQ_REMOVE(&ctl_softc->task_queue, &io->io_hdr,
|
|
ctl_io_hdr, links);
|
|
ctl_free_io_internal(io, 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ctl_softc->flags &= ~CTL_FLAG_TASK_PENDING;
|
|
}
|
|
|
|
/*
|
|
* For HA operation. Handle commands that come in from the other
|
|
* controller.
|
|
*/
|
|
static void
|
|
ctl_handle_isc(union ctl_io *io)
|
|
{
|
|
int free_io;
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
|
|
|
|
switch (io->io_hdr.msg_type) {
|
|
case CTL_MSG_SERIALIZE:
|
|
free_io = ctl_serialize_other_sc_cmd(&io->scsiio,
|
|
/*have_lock*/ 0);
|
|
break;
|
|
case CTL_MSG_R2R: {
|
|
uint8_t opcode;
|
|
struct ctl_cmd_entry *entry;
|
|
|
|
/*
|
|
* This is only used in SER_ONLY mode.
|
|
*/
|
|
free_io = 0;
|
|
opcode = io->scsiio.cdb[0];
|
|
entry = &ctl_cmd_table[opcode];
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
if (ctl_scsiio_lun_check(ctl_softc, lun,
|
|
entry, (struct ctl_scsiio *)io) != 0) {
|
|
ctl_done_lock(io, /*have_lock*/ 1);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
break;
|
|
}
|
|
io->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
|
|
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
|
|
&io->io_hdr, links);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
break;
|
|
}
|
|
case CTL_MSG_FINISH_IO:
|
|
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
|
|
free_io = 0;
|
|
ctl_done_lock(io, /*have_lock*/ 0);
|
|
} else {
|
|
free_io = 1;
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr,
|
|
ooa_links);
|
|
STAILQ_REMOVE(&ctl_softc->task_queue,
|
|
&io->io_hdr, ctl_io_hdr, links);
|
|
ctl_check_blocked(lun);
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
}
|
|
break;
|
|
case CTL_MSG_PERS_ACTION:
|
|
ctl_hndl_per_res_out_on_other_sc(
|
|
(union ctl_ha_msg *)&io->presio.pr_msg);
|
|
free_io = 1;
|
|
break;
|
|
case CTL_MSG_BAD_JUJU:
|
|
free_io = 0;
|
|
ctl_done_lock(io, /*have_lock*/ 0);
|
|
break;
|
|
case CTL_MSG_DATAMOVE:
|
|
/* Only used in XFER mode */
|
|
free_io = 0;
|
|
ctl_datamove_remote(io);
|
|
break;
|
|
case CTL_MSG_DATAMOVE_DONE:
|
|
/* Only used in XFER mode */
|
|
free_io = 0;
|
|
io->scsiio.be_move_done(io);
|
|
break;
|
|
default:
|
|
free_io = 1;
|
|
printf("%s: Invalid message type %d\n",
|
|
__func__, io->io_hdr.msg_type);
|
|
break;
|
|
}
|
|
if (free_io)
|
|
ctl_free_io_internal(io, 0);
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the match type in the case of a match, or CTL_LUN_PAT_NONE if
|
|
* there is no match.
|
|
*/
|
|
static ctl_lun_error_pattern
|
|
ctl_cmd_pattern_match(struct ctl_scsiio *ctsio, struct ctl_error_desc *desc)
|
|
{
|
|
struct ctl_cmd_entry *entry;
|
|
ctl_lun_error_pattern filtered_pattern, pattern;
|
|
uint8_t opcode;
|
|
|
|
pattern = desc->error_pattern;
|
|
|
|
/*
|
|
* XXX KDM we need more data passed into this function to match a
|
|
* custom pattern, and we actually need to implement custom pattern
|
|
* matching.
|
|
*/
|
|
if (pattern & CTL_LUN_PAT_CMD)
|
|
return (CTL_LUN_PAT_CMD);
|
|
|
|
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_ANY)
|
|
return (CTL_LUN_PAT_ANY);
|
|
|
|
opcode = ctsio->cdb[0];
|
|
entry = &ctl_cmd_table[opcode];
|
|
|
|
filtered_pattern = entry->pattern & pattern;
|
|
|
|
/*
|
|
* If the user requested specific flags in the pattern (e.g.
|
|
* CTL_LUN_PAT_RANGE), make sure the command supports all of those
|
|
* flags.
|
|
*
|
|
* If the user did not specify any flags, it doesn't matter whether
|
|
* or not the command supports the flags.
|
|
*/
|
|
if ((filtered_pattern & ~CTL_LUN_PAT_MASK) !=
|
|
(pattern & ~CTL_LUN_PAT_MASK))
|
|
return (CTL_LUN_PAT_NONE);
|
|
|
|
/*
|
|
* If the user asked for a range check, see if the requested LBA
|
|
* range overlaps with this command's LBA range.
|
|
*/
|
|
if (filtered_pattern & CTL_LUN_PAT_RANGE) {
|
|
uint64_t lba1;
|
|
uint32_t len1;
|
|
ctl_action action;
|
|
int retval;
|
|
|
|
retval = ctl_get_lba_len((union ctl_io *)ctsio, &lba1, &len1);
|
|
if (retval != 0)
|
|
return (CTL_LUN_PAT_NONE);
|
|
|
|
action = ctl_extent_check_lba(lba1, len1, desc->lba_range.lba,
|
|
desc->lba_range.len);
|
|
/*
|
|
* A "pass" means that the LBA ranges don't overlap, so
|
|
* this doesn't match the user's range criteria.
|
|
*/
|
|
if (action == CTL_ACTION_PASS)
|
|
return (CTL_LUN_PAT_NONE);
|
|
}
|
|
|
|
return (filtered_pattern);
|
|
}
|
|
|
|
/*
|
|
* Called with the CTL lock held.
|
|
*/
|
|
static void
|
|
ctl_inject_error(struct ctl_lun *lun, union ctl_io *io)
|
|
{
|
|
struct ctl_error_desc *desc, *desc2;
|
|
|
|
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
|
|
ctl_lun_error_pattern pattern;
|
|
/*
|
|
* Check to see whether this particular command matches
|
|
* the pattern in the descriptor.
|
|
*/
|
|
pattern = ctl_cmd_pattern_match(&io->scsiio, desc);
|
|
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_NONE)
|
|
continue;
|
|
|
|
switch (desc->lun_error & CTL_LUN_INJ_TYPE) {
|
|
case CTL_LUN_INJ_ABORTED:
|
|
ctl_set_aborted(&io->scsiio);
|
|
break;
|
|
case CTL_LUN_INJ_MEDIUM_ERR:
|
|
ctl_set_medium_error(&io->scsiio);
|
|
break;
|
|
case CTL_LUN_INJ_UA:
|
|
/* 29h/00h POWER ON, RESET, OR BUS DEVICE RESET
|
|
* OCCURRED */
|
|
ctl_set_ua(&io->scsiio, 0x29, 0x00);
|
|
break;
|
|
case CTL_LUN_INJ_CUSTOM:
|
|
/*
|
|
* We're assuming the user knows what he is doing.
|
|
* Just copy the sense information without doing
|
|
* checks.
|
|
*/
|
|
bcopy(&desc->custom_sense, &io->scsiio.sense_data,
|
|
ctl_min(sizeof(desc->custom_sense),
|
|
sizeof(io->scsiio.sense_data)));
|
|
io->scsiio.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
io->scsiio.sense_len = SSD_FULL_SIZE;
|
|
io->io_hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
|
|
break;
|
|
case CTL_LUN_INJ_NONE:
|
|
default:
|
|
/*
|
|
* If this is an error injection type we don't know
|
|
* about, clear the continuous flag (if it is set)
|
|
* so it will get deleted below.
|
|
*/
|
|
desc->lun_error &= ~CTL_LUN_INJ_CONTINUOUS;
|
|
break;
|
|
}
|
|
/*
|
|
* By default, each error injection action is a one-shot
|
|
*/
|
|
if (desc->lun_error & CTL_LUN_INJ_CONTINUOUS)
|
|
continue;
|
|
|
|
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc, links);
|
|
|
|
free(desc, M_CTL);
|
|
}
|
|
}
|
|
|
|
#ifdef CTL_IO_DELAY
|
|
static void
|
|
ctl_datamove_timer_wakeup(void *arg)
|
|
{
|
|
union ctl_io *io;
|
|
|
|
io = (union ctl_io *)arg;
|
|
|
|
ctl_datamove(io);
|
|
}
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
/*
|
|
* Assumption: caller does NOT hold ctl_lock
|
|
*/
|
|
void
|
|
ctl_datamove(union ctl_io *io)
|
|
{
|
|
void (*fe_datamove)(union ctl_io *io);
|
|
|
|
CTL_DEBUG_PRINT(("ctl_datamove\n"));
|
|
|
|
#ifdef CTL_TIME_IO
|
|
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
|
|
char str[256];
|
|
char path_str[64];
|
|
struct sbuf sb;
|
|
|
|
ctl_scsi_path_string(io, path_str, sizeof(path_str));
|
|
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
|
|
|
|
sbuf_cat(&sb, path_str);
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI:
|
|
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
|
|
sbuf_printf(&sb, "\n");
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
|
|
io->scsiio.tag_num, io->scsiio.tag_type);
|
|
break;
|
|
case CTL_IO_TASK:
|
|
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
|
|
"Tag Type: %d\n", io->taskio.task_action,
|
|
io->taskio.tag_num, io->taskio.tag_type);
|
|
break;
|
|
default:
|
|
printf("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
|
|
panic("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
|
|
break;
|
|
}
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "ctl_datamove: %jd seconds\n",
|
|
(intmax_t)time_uptime - io->io_hdr.start_time);
|
|
sbuf_finish(&sb);
|
|
printf("%s", sbuf_data(&sb));
|
|
}
|
|
#endif /* CTL_TIME_IO */
|
|
|
|
mtx_lock(&control_softc->ctl_lock);
|
|
#ifdef CTL_IO_DELAY
|
|
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
|
|
struct ctl_lun *lun;
|
|
|
|
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
|
|
} else {
|
|
struct ctl_lun *lun;
|
|
|
|
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
if ((lun != NULL)
|
|
&& (lun->delay_info.datamove_delay > 0)) {
|
|
struct callout *callout;
|
|
|
|
callout = (struct callout *)&io->io_hdr.timer_bytes;
|
|
callout_init(callout, /*mpsafe*/ 1);
|
|
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
|
|
callout_reset(callout,
|
|
lun->delay_info.datamove_delay * hz,
|
|
ctl_datamove_timer_wakeup, io);
|
|
if (lun->delay_info.datamove_type ==
|
|
CTL_DELAY_TYPE_ONESHOT)
|
|
lun->delay_info.datamove_delay = 0;
|
|
mtx_unlock(&control_softc->ctl_lock);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* If we have any pending task management commands, process them
|
|
* first. This is necessary to eliminate a race condition with the
|
|
* FETD:
|
|
*
|
|
* - FETD submits a task management command, like an abort.
|
|
* - Back end calls fe_datamove() to move the data for the aborted
|
|
* command. The FETD can't really accept it, but if it did, it
|
|
* would end up transmitting data for a command that the initiator
|
|
* told us to abort.
|
|
*
|
|
* We close the race by processing all pending task management
|
|
* commands here (we can't block!), and then check this I/O to see
|
|
* if it has been aborted. If so, return it to the back end with
|
|
* bad status, so the back end can say return an error to the back end
|
|
* and then when the back end returns an error, we can return the
|
|
* aborted command to the FETD, so it can clean up its resources.
|
|
*/
|
|
if (control_softc->flags & CTL_FLAG_TASK_PENDING)
|
|
ctl_run_task_queue(control_softc);
|
|
|
|
/*
|
|
* This command has been aborted. Set the port status, so we fail
|
|
* the data move.
|
|
*/
|
|
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
|
|
printf("ctl_datamove: tag 0x%04x on (%ju:%d:%ju:%d) aborted\n",
|
|
io->scsiio.tag_num,(uintmax_t)io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
(uintmax_t)io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_lun);
|
|
io->io_hdr.status = CTL_CMD_ABORTED;
|
|
io->io_hdr.port_status = 31337;
|
|
mtx_unlock(&control_softc->ctl_lock);
|
|
/*
|
|
* Note that the backend, in this case, will get the
|
|
* callback in its context. In other cases it may get
|
|
* called in the frontend's interrupt thread context.
|
|
*/
|
|
io->scsiio.be_move_done(io);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're in XFER mode and this I/O is from the other shelf
|
|
* controller, we need to send the DMA to the other side to
|
|
* actually transfer the data to/from the host. In serialize only
|
|
* mode the transfer happens below CTL and ctl_datamove() is only
|
|
* called on the machine that originally received the I/O.
|
|
*/
|
|
if ((control_softc->ha_mode == CTL_HA_MODE_XFER)
|
|
&& (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
|
|
union ctl_ha_msg msg;
|
|
uint32_t sg_entries_sent;
|
|
int do_sg_copy;
|
|
int i;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
msg.hdr.msg_type = CTL_MSG_DATAMOVE;
|
|
msg.hdr.original_sc = io->io_hdr.original_sc;
|
|
msg.hdr.serializing_sc = io;
|
|
msg.hdr.nexus = io->io_hdr.nexus;
|
|
msg.dt.flags = io->io_hdr.flags;
|
|
/*
|
|
* We convert everything into a S/G list here. We can't
|
|
* pass by reference, only by value between controllers.
|
|
* So we can't pass a pointer to the S/G list, only as many
|
|
* S/G entries as we can fit in here. If it's possible for
|
|
* us to get more than CTL_HA_MAX_SG_ENTRIES S/G entries,
|
|
* then we need to break this up into multiple transfers.
|
|
*/
|
|
if (io->scsiio.kern_sg_entries == 0) {
|
|
msg.dt.kern_sg_entries = 1;
|
|
/*
|
|
* If this is in cached memory, flush the cache
|
|
* before we send the DMA request to the other
|
|
* controller. We want to do this in either the
|
|
* read or the write case. The read case is
|
|
* straightforward. In the write case, we want to
|
|
* make sure nothing is in the local cache that
|
|
* could overwrite the DMAed data.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
|
|
/*
|
|
* XXX KDM use bus_dmamap_sync() here.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Convert to a physical address if this is a
|
|
* virtual address.
|
|
*/
|
|
if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
|
|
msg.dt.sg_list[0].addr =
|
|
io->scsiio.kern_data_ptr;
|
|
} else {
|
|
/*
|
|
* XXX KDM use busdma here!
|
|
*/
|
|
#if 0
|
|
msg.dt.sg_list[0].addr = (void *)
|
|
vtophys(io->scsiio.kern_data_ptr);
|
|
#endif
|
|
}
|
|
|
|
msg.dt.sg_list[0].len = io->scsiio.kern_data_len;
|
|
do_sg_copy = 0;
|
|
} else {
|
|
struct ctl_sg_entry *sgl;
|
|
|
|
do_sg_copy = 1;
|
|
msg.dt.kern_sg_entries = io->scsiio.kern_sg_entries;
|
|
sgl = (struct ctl_sg_entry *)io->scsiio.kern_data_ptr;
|
|
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
|
|
/*
|
|
* XXX KDM use bus_dmamap_sync() here.
|
|
*/
|
|
}
|
|
}
|
|
|
|
msg.dt.kern_data_len = io->scsiio.kern_data_len;
|
|
msg.dt.kern_total_len = io->scsiio.kern_total_len;
|
|
msg.dt.kern_data_resid = io->scsiio.kern_data_resid;
|
|
msg.dt.kern_rel_offset = io->scsiio.kern_rel_offset;
|
|
msg.dt.sg_sequence = 0;
|
|
|
|
/*
|
|
* Loop until we've sent all of the S/G entries. On the
|
|
* other end, we'll recompose these S/G entries into one
|
|
* contiguous list before passing it to the
|
|
*/
|
|
for (sg_entries_sent = 0; sg_entries_sent <
|
|
msg.dt.kern_sg_entries; msg.dt.sg_sequence++) {
|
|
msg.dt.cur_sg_entries = ctl_min((sizeof(msg.dt.sg_list)/
|
|
sizeof(msg.dt.sg_list[0])),
|
|
msg.dt.kern_sg_entries - sg_entries_sent);
|
|
|
|
if (do_sg_copy != 0) {
|
|
struct ctl_sg_entry *sgl;
|
|
int j;
|
|
|
|
sgl = (struct ctl_sg_entry *)
|
|
io->scsiio.kern_data_ptr;
|
|
/*
|
|
* If this is in cached memory, flush the cache
|
|
* before we send the DMA request to the other
|
|
* controller. We want to do this in either
|
|
* the * read or the write case. The read
|
|
* case is straightforward. In the write
|
|
* case, we want to make sure nothing is
|
|
* in the local cache that could overwrite
|
|
* the DMAed data.
|
|
*/
|
|
|
|
for (i = sg_entries_sent, j = 0;
|
|
i < msg.dt.cur_sg_entries; i++, j++) {
|
|
if ((io->io_hdr.flags &
|
|
CTL_FLAG_NO_DATASYNC) == 0) {
|
|
/*
|
|
* XXX KDM use bus_dmamap_sync()
|
|
*/
|
|
}
|
|
if ((io->io_hdr.flags &
|
|
CTL_FLAG_BUS_ADDR) == 0) {
|
|
/*
|
|
* XXX KDM use busdma.
|
|
*/
|
|
#if 0
|
|
msg.dt.sg_list[j].addr =(void *)
|
|
vtophys(sgl[i].addr);
|
|
#endif
|
|
} else {
|
|
msg.dt.sg_list[j].addr =
|
|
sgl[i].addr;
|
|
}
|
|
msg.dt.sg_list[j].len = sgl[i].len;
|
|
}
|
|
}
|
|
|
|
sg_entries_sent += msg.dt.cur_sg_entries;
|
|
if (sg_entries_sent >= msg.dt.kern_sg_entries)
|
|
msg.dt.sg_last = 1;
|
|
else
|
|
msg.dt.sg_last = 0;
|
|
|
|
/*
|
|
* XXX KDM drop and reacquire the lock here?
|
|
*/
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
|
|
sizeof(msg), 0) > CTL_HA_STATUS_SUCCESS) {
|
|
/*
|
|
* XXX do something here.
|
|
*/
|
|
}
|
|
|
|
msg.dt.sent_sg_entries = sg_entries_sent;
|
|
}
|
|
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
|
|
if (io->io_hdr.flags & CTL_FLAG_FAILOVER)
|
|
ctl_failover_io(io, /*have_lock*/ 1);
|
|
|
|
} else {
|
|
|
|
/*
|
|
* Lookup the fe_datamove() function for this particular
|
|
* front end.
|
|
*/
|
|
fe_datamove =
|
|
control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
|
|
mtx_unlock(&control_softc->ctl_lock);
|
|
|
|
fe_datamove(io);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ctl_send_datamove_done(union ctl_io *io, int have_lock)
|
|
{
|
|
union ctl_ha_msg msg;
|
|
int isc_status;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
|
|
msg.hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
|
|
msg.hdr.original_sc = io;
|
|
msg.hdr.serializing_sc = io->io_hdr.serializing_sc;
|
|
msg.hdr.nexus = io->io_hdr.nexus;
|
|
msg.hdr.status = io->io_hdr.status;
|
|
msg.scsi.tag_num = io->scsiio.tag_num;
|
|
msg.scsi.tag_type = io->scsiio.tag_type;
|
|
msg.scsi.scsi_status = io->scsiio.scsi_status;
|
|
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
|
|
sizeof(io->scsiio.sense_data));
|
|
msg.scsi.sense_len = io->scsiio.sense_len;
|
|
msg.scsi.sense_residual = io->scsiio.sense_residual;
|
|
msg.scsi.fetd_status = io->io_hdr.port_status;
|
|
msg.scsi.residual = io->scsiio.residual;
|
|
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
|
|
ctl_failover_io(io, /*have_lock*/ have_lock);
|
|
return;
|
|
}
|
|
|
|
isc_status = ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg), 0);
|
|
if (isc_status > CTL_HA_STATUS_SUCCESS) {
|
|
/* XXX do something if this fails */
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* The DMA to the remote side is done, now we need to tell the other side
|
|
* we're done so it can continue with its data movement.
|
|
*/
|
|
static void
|
|
ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq)
|
|
{
|
|
union ctl_io *io;
|
|
|
|
io = rq->context;
|
|
|
|
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
|
|
printf("%s: ISC DMA write failed with error %d", __func__,
|
|
rq->ret);
|
|
ctl_set_internal_failure(&io->scsiio,
|
|
/*sks_valid*/ 1,
|
|
/*retry_count*/ rq->ret);
|
|
}
|
|
|
|
ctl_dt_req_free(rq);
|
|
|
|
/*
|
|
* In this case, we had to malloc the memory locally. Free it.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0) {
|
|
int i;
|
|
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
|
|
free(io->io_hdr.local_sglist[i].addr, M_CTL);
|
|
}
|
|
/*
|
|
* The data is in local and remote memory, so now we need to send
|
|
* status (good or back) back to the other side.
|
|
*/
|
|
ctl_send_datamove_done(io, /*have_lock*/ 0);
|
|
}
|
|
|
|
/*
|
|
* We've moved the data from the host/controller into local memory. Now we
|
|
* need to push it over to the remote controller's memory.
|
|
*/
|
|
static int
|
|
ctl_datamove_remote_dm_write_cb(union ctl_io *io)
|
|
{
|
|
int retval;
|
|
|
|
retval = 0;
|
|
|
|
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_WRITE,
|
|
ctl_datamove_remote_write_cb);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
ctl_datamove_remote_write(union ctl_io *io)
|
|
{
|
|
int retval;
|
|
void (*fe_datamove)(union ctl_io *io);
|
|
|
|
/*
|
|
* - Get the data from the host/HBA into local memory.
|
|
* - DMA memory from the local controller to the remote controller.
|
|
* - Send status back to the remote controller.
|
|
*/
|
|
|
|
retval = ctl_datamove_remote_sgl_setup(io);
|
|
if (retval != 0)
|
|
return;
|
|
|
|
/* Switch the pointer over so the FETD knows what to do */
|
|
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
|
|
|
|
/*
|
|
* Use a custom move done callback, since we need to send completion
|
|
* back to the other controller, not to the backend on this side.
|
|
*/
|
|
io->scsiio.be_move_done = ctl_datamove_remote_dm_write_cb;
|
|
|
|
fe_datamove = control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
|
|
|
|
fe_datamove(io);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
static int
|
|
ctl_datamove_remote_dm_read_cb(union ctl_io *io)
|
|
{
|
|
#if 0
|
|
char str[256];
|
|
char path_str[64];
|
|
struct sbuf sb;
|
|
#endif
|
|
|
|
/*
|
|
* In this case, we had to malloc the memory locally. Free it.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0) {
|
|
int i;
|
|
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
|
|
free(io->io_hdr.local_sglist[i].addr, M_CTL);
|
|
}
|
|
|
|
#if 0
|
|
scsi_path_string(io, path_str, sizeof(path_str));
|
|
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
|
|
sbuf_cat(&sb, path_str);
|
|
scsi_command_string(&io->scsiio, NULL, &sb);
|
|
sbuf_printf(&sb, "\n");
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
|
|
io->scsiio.tag_num, io->scsiio.tag_type);
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "%s: flags %#x, status %#x\n", __func__,
|
|
io->io_hdr.flags, io->io_hdr.status);
|
|
sbuf_finish(&sb);
|
|
printk("%s", sbuf_data(&sb));
|
|
#endif
|
|
|
|
|
|
/*
|
|
* The read is done, now we need to send status (good or bad) back
|
|
* to the other side.
|
|
*/
|
|
ctl_send_datamove_done(io, /*have_lock*/ 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq)
|
|
{
|
|
union ctl_io *io;
|
|
void (*fe_datamove)(union ctl_io *io);
|
|
|
|
io = rq->context;
|
|
|
|
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
|
|
printf("%s: ISC DMA read failed with error %d", __func__,
|
|
rq->ret);
|
|
ctl_set_internal_failure(&io->scsiio,
|
|
/*sks_valid*/ 1,
|
|
/*retry_count*/ rq->ret);
|
|
}
|
|
|
|
ctl_dt_req_free(rq);
|
|
|
|
/* Switch the pointer over so the FETD knows what to do */
|
|
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
|
|
|
|
/*
|
|
* Use a custom move done callback, since we need to send completion
|
|
* back to the other controller, not to the backend on this side.
|
|
*/
|
|
io->scsiio.be_move_done = ctl_datamove_remote_dm_read_cb;
|
|
|
|
/* XXX KDM add checks like the ones in ctl_datamove? */
|
|
|
|
fe_datamove = control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
|
|
|
|
fe_datamove(io);
|
|
}
|
|
|
|
static int
|
|
ctl_datamove_remote_sgl_setup(union ctl_io *io)
|
|
{
|
|
struct ctl_sg_entry *local_sglist, *remote_sglist;
|
|
struct ctl_sg_entry *local_dma_sglist, *remote_dma_sglist;
|
|
struct ctl_softc *softc;
|
|
int retval;
|
|
int i;
|
|
|
|
retval = 0;
|
|
softc = control_softc;
|
|
|
|
local_sglist = io->io_hdr.local_sglist;
|
|
local_dma_sglist = io->io_hdr.local_dma_sglist;
|
|
remote_sglist = io->io_hdr.remote_sglist;
|
|
remote_dma_sglist = io->io_hdr.remote_dma_sglist;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) {
|
|
for (i = 0; i < io->scsiio.kern_sg_entries; i++) {
|
|
local_sglist[i].len = remote_sglist[i].len;
|
|
|
|
/*
|
|
* XXX Detect the situation where the RS-level I/O
|
|
* redirector on the other side has already read the
|
|
* data off of the AOR RS on this side, and
|
|
* transferred it to remote (mirror) memory on the
|
|
* other side. Since we already have the data in
|
|
* memory here, we just need to use it.
|
|
*
|
|
* XXX KDM this can probably be removed once we
|
|
* get the cache device code in and take the
|
|
* current AOR implementation out.
|
|
*/
|
|
#ifdef NEEDTOPORT
|
|
if ((remote_sglist[i].addr >=
|
|
(void *)vtophys(softc->mirr->addr))
|
|
&& (remote_sglist[i].addr <
|
|
((void *)vtophys(softc->mirr->addr) +
|
|
CacheMirrorOffset))) {
|
|
local_sglist[i].addr = remote_sglist[i].addr -
|
|
CacheMirrorOffset;
|
|
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
|
|
CTL_FLAG_DATA_IN)
|
|
io->io_hdr.flags |= CTL_FLAG_REDIR_DONE;
|
|
} else {
|
|
local_sglist[i].addr = remote_sglist[i].addr +
|
|
CacheMirrorOffset;
|
|
}
|
|
#endif
|
|
#if 0
|
|
printf("%s: local %p, remote %p, len %d\n",
|
|
__func__, local_sglist[i].addr,
|
|
remote_sglist[i].addr, local_sglist[i].len);
|
|
#endif
|
|
}
|
|
} else {
|
|
uint32_t len_to_go;
|
|
|
|
/*
|
|
* In this case, we don't have automatically allocated
|
|
* memory for this I/O on this controller. This typically
|
|
* happens with internal CTL I/O -- e.g. inquiry, mode
|
|
* sense, etc. Anything coming from RAIDCore will have
|
|
* a mirror area available.
|
|
*/
|
|
len_to_go = io->scsiio.kern_data_len;
|
|
|
|
/*
|
|
* Clear the no datasync flag, we have to use malloced
|
|
* buffers.
|
|
*/
|
|
io->io_hdr.flags &= ~CTL_FLAG_NO_DATASYNC;
|
|
|
|
/*
|
|
* The difficult thing here is that the size of the various
|
|
* S/G segments may be different than the size from the
|
|
* remote controller. That'll make it harder when DMAing
|
|
* the data back to the other side.
|
|
*/
|
|
for (i = 0; (i < sizeof(io->io_hdr.remote_sglist) /
|
|
sizeof(io->io_hdr.remote_sglist[0])) &&
|
|
(len_to_go > 0); i++) {
|
|
local_sglist[i].len = ctl_min(len_to_go, 131072);
|
|
CTL_SIZE_8B(local_dma_sglist[i].len,
|
|
local_sglist[i].len);
|
|
local_sglist[i].addr =
|
|
malloc(local_dma_sglist[i].len, M_CTL,M_WAITOK);
|
|
|
|
local_dma_sglist[i].addr = local_sglist[i].addr;
|
|
|
|
if (local_sglist[i].addr == NULL) {
|
|
int j;
|
|
|
|
printf("malloc failed for %zd bytes!",
|
|
local_dma_sglist[i].len);
|
|
for (j = 0; j < i; j++) {
|
|
free(local_sglist[j].addr, M_CTL);
|
|
}
|
|
ctl_set_internal_failure(&io->scsiio,
|
|
/*sks_valid*/ 1,
|
|
/*retry_count*/ 4857);
|
|
retval = 1;
|
|
goto bailout_error;
|
|
|
|
}
|
|
/* XXX KDM do we need a sync here? */
|
|
|
|
len_to_go -= local_sglist[i].len;
|
|
}
|
|
/*
|
|
* Reset the number of S/G entries accordingly. The
|
|
* original number of S/G entries is available in
|
|
* rem_sg_entries.
|
|
*/
|
|
io->scsiio.kern_sg_entries = i;
|
|
|
|
#if 0
|
|
printf("%s: kern_sg_entries = %d\n", __func__,
|
|
io->scsiio.kern_sg_entries);
|
|
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
|
|
printf("%s: sg[%d] = %p, %d (DMA: %d)\n", __func__, i,
|
|
local_sglist[i].addr, local_sglist[i].len,
|
|
local_dma_sglist[i].len);
|
|
#endif
|
|
}
|
|
|
|
|
|
return (retval);
|
|
|
|
bailout_error:
|
|
|
|
ctl_send_datamove_done(io, /*have_lock*/ 0);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
|
|
ctl_ha_dt_cb callback)
|
|
{
|
|
struct ctl_ha_dt_req *rq;
|
|
struct ctl_sg_entry *remote_sglist, *local_sglist;
|
|
struct ctl_sg_entry *remote_dma_sglist, *local_dma_sglist;
|
|
uint32_t local_used, remote_used, total_used;
|
|
int retval;
|
|
int i, j;
|
|
|
|
retval = 0;
|
|
|
|
rq = ctl_dt_req_alloc();
|
|
|
|
/*
|
|
* If we failed to allocate the request, and if the DMA didn't fail
|
|
* anyway, set busy status. This is just a resource allocation
|
|
* failure.
|
|
*/
|
|
if ((rq == NULL)
|
|
&& ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE))
|
|
ctl_set_busy(&io->scsiio);
|
|
|
|
if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE) {
|
|
|
|
if (rq != NULL)
|
|
ctl_dt_req_free(rq);
|
|
|
|
/*
|
|
* The data move failed. We need to return status back
|
|
* to the other controller. No point in trying to DMA
|
|
* data to the remote controller.
|
|
*/
|
|
|
|
ctl_send_datamove_done(io, /*have_lock*/ 0);
|
|
|
|
retval = 1;
|
|
|
|
goto bailout;
|
|
}
|
|
|
|
local_sglist = io->io_hdr.local_sglist;
|
|
local_dma_sglist = io->io_hdr.local_dma_sglist;
|
|
remote_sglist = io->io_hdr.remote_sglist;
|
|
remote_dma_sglist = io->io_hdr.remote_dma_sglist;
|
|
local_used = 0;
|
|
remote_used = 0;
|
|
total_used = 0;
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_REDIR_DONE) {
|
|
rq->ret = CTL_HA_STATUS_SUCCESS;
|
|
rq->context = io;
|
|
callback(rq);
|
|
goto bailout;
|
|
}
|
|
|
|
/*
|
|
* Pull/push the data over the wire from/to the other controller.
|
|
* This takes into account the possibility that the local and
|
|
* remote sglists may not be identical in terms of the size of
|
|
* the elements and the number of elements.
|
|
*
|
|
* One fundamental assumption here is that the length allocated for
|
|
* both the local and remote sglists is identical. Otherwise, we've
|
|
* essentially got a coding error of some sort.
|
|
*/
|
|
for (i = 0, j = 0; total_used < io->scsiio.kern_data_len; ) {
|
|
int isc_ret;
|
|
uint32_t cur_len, dma_length;
|
|
uint8_t *tmp_ptr;
|
|
|
|
rq->id = CTL_HA_DATA_CTL;
|
|
rq->command = command;
|
|
rq->context = io;
|
|
|
|
/*
|
|
* Both pointers should be aligned. But it is possible
|
|
* that the allocation length is not. They should both
|
|
* also have enough slack left over at the end, though,
|
|
* to round up to the next 8 byte boundary.
|
|
*/
|
|
cur_len = ctl_min(local_sglist[i].len - local_used,
|
|
remote_sglist[j].len - remote_used);
|
|
|
|
/*
|
|
* In this case, we have a size issue and need to decrease
|
|
* the size, except in the case where we actually have less
|
|
* than 8 bytes left. In that case, we need to increase
|
|
* the DMA length to get the last bit.
|
|
*/
|
|
if ((cur_len & 0x7) != 0) {
|
|
if (cur_len > 0x7) {
|
|
cur_len = cur_len - (cur_len & 0x7);
|
|
dma_length = cur_len;
|
|
} else {
|
|
CTL_SIZE_8B(dma_length, cur_len);
|
|
}
|
|
|
|
} else
|
|
dma_length = cur_len;
|
|
|
|
/*
|
|
* If we had to allocate memory for this I/O, instead of using
|
|
* the non-cached mirror memory, we'll need to flush the cache
|
|
* before trying to DMA to the other controller.
|
|
*
|
|
* We could end up doing this multiple times for the same
|
|
* segment if we have a larger local segment than remote
|
|
* segment. That shouldn't be an issue.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
|
|
/*
|
|
* XXX KDM use bus_dmamap_sync() here.
|
|
*/
|
|
}
|
|
|
|
rq->size = dma_length;
|
|
|
|
tmp_ptr = (uint8_t *)local_sglist[i].addr;
|
|
tmp_ptr += local_used;
|
|
|
|
/* Use physical addresses when talking to ISC hardware */
|
|
if ((io->io_hdr.flags & CTL_FLAG_BUS_ADDR) == 0) {
|
|
/* XXX KDM use busdma */
|
|
#if 0
|
|
rq->local = vtophys(tmp_ptr);
|
|
#endif
|
|
} else
|
|
rq->local = tmp_ptr;
|
|
|
|
tmp_ptr = (uint8_t *)remote_sglist[j].addr;
|
|
tmp_ptr += remote_used;
|
|
rq->remote = tmp_ptr;
|
|
|
|
rq->callback = NULL;
|
|
|
|
local_used += cur_len;
|
|
if (local_used >= local_sglist[i].len) {
|
|
i++;
|
|
local_used = 0;
|
|
}
|
|
|
|
remote_used += cur_len;
|
|
if (remote_used >= remote_sglist[j].len) {
|
|
j++;
|
|
remote_used = 0;
|
|
}
|
|
total_used += cur_len;
|
|
|
|
if (total_used >= io->scsiio.kern_data_len)
|
|
rq->callback = callback;
|
|
|
|
if ((rq->size & 0x7) != 0) {
|
|
printf("%s: warning: size %d is not on 8b boundary\n",
|
|
__func__, rq->size);
|
|
}
|
|
if (((uintptr_t)rq->local & 0x7) != 0) {
|
|
printf("%s: warning: local %p not on 8b boundary\n",
|
|
__func__, rq->local);
|
|
}
|
|
if (((uintptr_t)rq->remote & 0x7) != 0) {
|
|
printf("%s: warning: remote %p not on 8b boundary\n",
|
|
__func__, rq->local);
|
|
}
|
|
#if 0
|
|
printf("%s: %s: local %#x remote %#x size %d\n", __func__,
|
|
(command == CTL_HA_DT_CMD_WRITE) ? "WRITE" : "READ",
|
|
rq->local, rq->remote, rq->size);
|
|
#endif
|
|
|
|
isc_ret = ctl_dt_single(rq);
|
|
if (isc_ret == CTL_HA_STATUS_WAIT)
|
|
continue;
|
|
|
|
if (isc_ret == CTL_HA_STATUS_DISCONNECT) {
|
|
rq->ret = CTL_HA_STATUS_SUCCESS;
|
|
} else {
|
|
rq->ret = isc_ret;
|
|
}
|
|
callback(rq);
|
|
goto bailout;
|
|
}
|
|
|
|
bailout:
|
|
return (retval);
|
|
|
|
}
|
|
|
|
static void
|
|
ctl_datamove_remote_read(union ctl_io *io)
|
|
{
|
|
int retval;
|
|
int i;
|
|
|
|
/*
|
|
* This will send an error to the other controller in the case of a
|
|
* failure.
|
|
*/
|
|
retval = ctl_datamove_remote_sgl_setup(io);
|
|
if (retval != 0)
|
|
return;
|
|
|
|
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_READ,
|
|
ctl_datamove_remote_read_cb);
|
|
if ((retval != 0)
|
|
&& ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0)) {
|
|
/*
|
|
* Make sure we free memory if there was an error.. The
|
|
* ctl_datamove_remote_xfer() function will send the
|
|
* datamove done message, or call the callback with an
|
|
* error if there is a problem.
|
|
*/
|
|
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
|
|
free(io->io_hdr.local_sglist[i].addr, M_CTL);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process a datamove request from the other controller. This is used for
|
|
* XFER mode only, not SER_ONLY mode. For writes, we DMA into local memory
|
|
* first. Once that is complete, the data gets DMAed into the remote
|
|
* controller's memory. For reads, we DMA from the remote controller's
|
|
* memory into our memory first, and then move it out to the FETD.
|
|
*
|
|
* Should be called without the ctl_lock held.
|
|
*/
|
|
static void
|
|
ctl_datamove_remote(union ctl_io *io)
|
|
{
|
|
struct ctl_softc *softc;
|
|
|
|
softc = control_softc;
|
|
|
|
/*
|
|
* Note that we look for an aborted I/O here, but don't do some of
|
|
* the other checks that ctl_datamove() normally does. We don't
|
|
* need to run the task queue, because this I/O is on the ISC
|
|
* queue, which is executed by the work thread after the task queue.
|
|
* We don't need to run the datamove delay code, since that should
|
|
* have been done if need be on the other controller.
|
|
*/
|
|
mtx_lock(&softc->ctl_lock);
|
|
|
|
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
|
|
|
|
printf("%s: tag 0x%04x on (%d:%d:%d:%d) aborted\n", __func__,
|
|
io->scsiio.tag_num, io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_lun);
|
|
io->io_hdr.status = CTL_CMD_ABORTED;
|
|
io->io_hdr.port_status = 31338;
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
ctl_send_datamove_done(io, /*have_lock*/ 0);
|
|
|
|
return;
|
|
}
|
|
|
|
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT) {
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_datamove_remote_write(io);
|
|
} else if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN){
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_datamove_remote_read(io);
|
|
} else {
|
|
union ctl_ha_msg msg;
|
|
struct scsi_sense_data *sense;
|
|
uint8_t sks[3];
|
|
int retry_count;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
|
|
msg.hdr.msg_type = CTL_MSG_BAD_JUJU;
|
|
msg.hdr.status = CTL_SCSI_ERROR;
|
|
msg.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
|
|
|
|
retry_count = 4243;
|
|
|
|
sense = &msg.scsi.sense_data;
|
|
sks[0] = SSD_SCS_VALID;
|
|
sks[1] = (retry_count >> 8) & 0xff;
|
|
sks[2] = retry_count & 0xff;
|
|
|
|
/* "Internal target failure" */
|
|
scsi_set_sense_data(sense,
|
|
/*sense_format*/ SSD_TYPE_NONE,
|
|
/*current_error*/ 1,
|
|
/*sense_key*/ SSD_KEY_HARDWARE_ERROR,
|
|
/*asc*/ 0x44,
|
|
/*ascq*/ 0x00,
|
|
/*type*/ SSD_ELEM_SKS,
|
|
/*size*/ sizeof(sks),
|
|
/*data*/ sks,
|
|
SSD_ELEM_NONE);
|
|
|
|
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
|
|
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
|
|
ctl_failover_io(io, /*have_lock*/ 1);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
return;
|
|
}
|
|
|
|
mtx_unlock(&softc->ctl_lock);
|
|
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg), 0) >
|
|
CTL_HA_STATUS_SUCCESS) {
|
|
/* XXX KDM what to do if this fails? */
|
|
}
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
ctl_process_done(union ctl_io *io, int have_lock)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
void (*fe_done)(union ctl_io *io);
|
|
uint32_t targ_port = ctl_port_idx(io->io_hdr.nexus.targ_port);
|
|
|
|
CTL_DEBUG_PRINT(("ctl_process_done\n"));
|
|
|
|
fe_done =
|
|
control_softc->ctl_ports[targ_port]->fe_done;
|
|
|
|
#ifdef CTL_TIME_IO
|
|
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
|
|
char str[256];
|
|
char path_str[64];
|
|
struct sbuf sb;
|
|
|
|
ctl_scsi_path_string(io, path_str, sizeof(path_str));
|
|
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
|
|
|
|
sbuf_cat(&sb, path_str);
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI:
|
|
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
|
|
sbuf_printf(&sb, "\n");
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
|
|
io->scsiio.tag_num, io->scsiio.tag_type);
|
|
break;
|
|
case CTL_IO_TASK:
|
|
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
|
|
"Tag Type: %d\n", io->taskio.task_action,
|
|
io->taskio.tag_num, io->taskio.tag_type);
|
|
break;
|
|
default:
|
|
printf("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
|
|
panic("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
|
|
break;
|
|
}
|
|
sbuf_cat(&sb, path_str);
|
|
sbuf_printf(&sb, "ctl_process_done: %jd seconds\n",
|
|
(intmax_t)time_uptime - io->io_hdr.start_time);
|
|
sbuf_finish(&sb);
|
|
printf("%s", sbuf_data(&sb));
|
|
}
|
|
#endif /* CTL_TIME_IO */
|
|
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI:
|
|
break;
|
|
case CTL_IO_TASK:
|
|
ctl_io_error_print(io, NULL);
|
|
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
|
|
ctl_free_io_internal(io, /*have_lock*/ 0);
|
|
else
|
|
fe_done(io);
|
|
return (CTL_RETVAL_COMPLETE);
|
|
break;
|
|
default:
|
|
printf("ctl_process_done: invalid io type %d\n",
|
|
io->io_hdr.io_type);
|
|
panic("ctl_process_done: invalid io type %d\n",
|
|
io->io_hdr.io_type);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
lun = (struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
if (lun == NULL) {
|
|
CTL_DEBUG_PRINT(("NULL LUN for lun %d\n",
|
|
io->io_hdr.nexus.targ_lun));
|
|
fe_done(io);
|
|
goto bailout;
|
|
}
|
|
ctl_softc = lun->ctl_softc;
|
|
|
|
/*
|
|
* Remove this from the OOA queue.
|
|
*/
|
|
if (have_lock == 0)
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* Check to see if we have any errors to inject here. We only
|
|
* inject errors for commands that don't already have errors set.
|
|
*/
|
|
if ((STAILQ_FIRST(&lun->error_list) != NULL)
|
|
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS))
|
|
ctl_inject_error(lun, io);
|
|
|
|
/*
|
|
* XXX KDM how do we treat commands that aren't completed
|
|
* successfully?
|
|
*
|
|
* XXX KDM should we also track I/O latency?
|
|
*/
|
|
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
|
|
uint32_t blocksize;
|
|
#ifdef CTL_TIME_IO
|
|
struct bintime cur_bt;
|
|
#endif
|
|
|
|
if ((lun->be_lun != NULL)
|
|
&& (lun->be_lun->blocksize != 0))
|
|
blocksize = lun->be_lun->blocksize;
|
|
else
|
|
blocksize = 512;
|
|
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI: {
|
|
int isread;
|
|
struct ctl_lba_len lbalen;
|
|
|
|
isread = 0;
|
|
switch (io->scsiio.cdb[0]) {
|
|
case READ_6:
|
|
case READ_10:
|
|
case READ_12:
|
|
case READ_16:
|
|
isread = 1;
|
|
/* FALLTHROUGH */
|
|
case WRITE_6:
|
|
case WRITE_10:
|
|
case WRITE_12:
|
|
case WRITE_16:
|
|
case WRITE_VERIFY_10:
|
|
case WRITE_VERIFY_12:
|
|
case WRITE_VERIFY_16:
|
|
memcpy(&lbalen, io->io_hdr.ctl_private[
|
|
CTL_PRIV_LBA_LEN].bytes, sizeof(lbalen));
|
|
|
|
if (isread) {
|
|
lun->stats.ports[targ_port].bytes[CTL_STATS_READ] +=
|
|
lbalen.len * blocksize;
|
|
lun->stats.ports[targ_port].operations[CTL_STATS_READ]++;
|
|
|
|
#ifdef CTL_TIME_IO
|
|
bintime_add(
|
|
&lun->stats.ports[targ_port].dma_time[CTL_STATS_READ],
|
|
&io->io_hdr.dma_bt);
|
|
lun->stats.ports[targ_port].num_dmas[CTL_STATS_READ] +=
|
|
io->io_hdr.num_dmas;
|
|
getbintime(&cur_bt);
|
|
bintime_sub(&cur_bt,
|
|
&io->io_hdr.start_bt);
|
|
|
|
bintime_add(
|
|
&lun->stats.ports[targ_port].time[CTL_STATS_READ],
|
|
&cur_bt);
|
|
|
|
#if 0
|
|
cs_prof_gettime(&cur_ticks);
|
|
lun->stats.time[CTL_STATS_READ] +=
|
|
cur_ticks -
|
|
io->io_hdr.start_ticks;
|
|
#endif
|
|
#if 0
|
|
lun->stats.time[CTL_STATS_READ] +=
|
|
jiffies - io->io_hdr.start_time;
|
|
#endif
|
|
#endif /* CTL_TIME_IO */
|
|
} else {
|
|
lun->stats.ports[targ_port].bytes[CTL_STATS_WRITE] +=
|
|
lbalen.len * blocksize;
|
|
lun->stats.ports[targ_port].operations[
|
|
CTL_STATS_WRITE]++;
|
|
|
|
#ifdef CTL_TIME_IO
|
|
bintime_add(
|
|
&lun->stats.ports[targ_port].dma_time[CTL_STATS_WRITE],
|
|
&io->io_hdr.dma_bt);
|
|
lun->stats.ports[targ_port].num_dmas[CTL_STATS_WRITE] +=
|
|
io->io_hdr.num_dmas;
|
|
getbintime(&cur_bt);
|
|
bintime_sub(&cur_bt,
|
|
&io->io_hdr.start_bt);
|
|
|
|
bintime_add(
|
|
&lun->stats.ports[targ_port].time[CTL_STATS_WRITE],
|
|
&cur_bt);
|
|
#if 0
|
|
cs_prof_gettime(&cur_ticks);
|
|
lun->stats.ports[targ_port].time[CTL_STATS_WRITE] +=
|
|
cur_ticks -
|
|
io->io_hdr.start_ticks;
|
|
lun->stats.ports[targ_port].time[CTL_STATS_WRITE] +=
|
|
jiffies - io->io_hdr.start_time;
|
|
#endif
|
|
#endif /* CTL_TIME_IO */
|
|
}
|
|
break;
|
|
default:
|
|
lun->stats.ports[targ_port].operations[CTL_STATS_NO_IO]++;
|
|
|
|
#ifdef CTL_TIME_IO
|
|
bintime_add(
|
|
&lun->stats.ports[targ_port].dma_time[CTL_STATS_NO_IO],
|
|
&io->io_hdr.dma_bt);
|
|
lun->stats.ports[targ_port].num_dmas[CTL_STATS_NO_IO] +=
|
|
io->io_hdr.num_dmas;
|
|
getbintime(&cur_bt);
|
|
bintime_sub(&cur_bt, &io->io_hdr.start_bt);
|
|
|
|
bintime_add(&lun->stats.ports[targ_port].time[CTL_STATS_NO_IO],
|
|
&cur_bt);
|
|
|
|
#if 0
|
|
cs_prof_gettime(&cur_ticks);
|
|
lun->stats.ports[targ_port].time[CTL_STATS_NO_IO] +=
|
|
cur_ticks -
|
|
io->io_hdr.start_ticks;
|
|
lun->stats.ports[targ_port].time[CTL_STATS_NO_IO] +=
|
|
jiffies - io->io_hdr.start_time;
|
|
#endif
|
|
#endif /* CTL_TIME_IO */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
|
|
|
|
/*
|
|
* Run through the blocked queue on this LUN and see if anything
|
|
* has become unblocked, now that this transaction is done.
|
|
*/
|
|
ctl_check_blocked(lun);
|
|
|
|
/*
|
|
* If the LUN has been invalidated, free it if there is nothing
|
|
* left on its OOA queue.
|
|
*/
|
|
if ((lun->flags & CTL_LUN_INVALID)
|
|
&& (TAILQ_FIRST(&lun->ooa_queue) == NULL))
|
|
ctl_free_lun(lun);
|
|
|
|
/*
|
|
* If this command has been aborted, make sure we set the status
|
|
* properly. The FETD is responsible for freeing the I/O and doing
|
|
* whatever it needs to do to clean up its state.
|
|
*/
|
|
if (io->io_hdr.flags & CTL_FLAG_ABORT)
|
|
io->io_hdr.status = CTL_CMD_ABORTED;
|
|
|
|
/*
|
|
* We print out status for every task management command. For SCSI
|
|
* commands, we filter out any unit attention errors; they happen
|
|
* on every boot, and would clutter up the log. Note: task
|
|
* management commands aren't printed here, they are printed above,
|
|
* since they should never even make it down here.
|
|
*/
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI: {
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
sense_key = 0;
|
|
|
|
if (((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SCSI_ERROR)
|
|
&& (io->scsiio.scsi_status == SCSI_STATUS_CHECK_COND)) {
|
|
/*
|
|
* Since this is just for printing, no need to
|
|
* show errors here.
|
|
*/
|
|
scsi_extract_sense_len(&io->scsiio.sense_data,
|
|
io->scsiio.sense_len,
|
|
&error_code,
|
|
&sense_key,
|
|
&asc,
|
|
&ascq,
|
|
/*show_errors*/ 0);
|
|
}
|
|
|
|
if (((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
|
|
&& (((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SCSI_ERROR)
|
|
|| (io->scsiio.scsi_status != SCSI_STATUS_CHECK_COND)
|
|
|| (sense_key != SSD_KEY_UNIT_ATTENTION))) {
|
|
|
|
if ((time_uptime - ctl_softc->last_print_jiffies) <= 0){
|
|
ctl_softc->skipped_prints++;
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
} else {
|
|
uint32_t skipped_prints;
|
|
|
|
skipped_prints = ctl_softc->skipped_prints;
|
|
|
|
ctl_softc->skipped_prints = 0;
|
|
ctl_softc->last_print_jiffies = time_uptime;
|
|
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
if (skipped_prints > 0) {
|
|
#ifdef NEEDTOPORT
|
|
csevent_log(CSC_CTL | CSC_SHELF_SW |
|
|
CTL_ERROR_REPORT,
|
|
csevent_LogType_Trace,
|
|
csevent_Severity_Information,
|
|
csevent_AlertLevel_Green,
|
|
csevent_FRU_Firmware,
|
|
csevent_FRU_Unknown,
|
|
"High CTL error volume, %d prints "
|
|
"skipped", skipped_prints);
|
|
#endif
|
|
}
|
|
ctl_io_error_print(io, NULL);
|
|
}
|
|
} else {
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
}
|
|
break;
|
|
}
|
|
case CTL_IO_TASK:
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
ctl_io_error_print(io, NULL);
|
|
break;
|
|
default:
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Tell the FETD or the other shelf controller we're done with this
|
|
* command. Note that only SCSI commands get to this point. Task
|
|
* management commands are completed above.
|
|
*
|
|
* We only send status to the other controller if we're in XFER
|
|
* mode. In SER_ONLY mode, the I/O is done on the controller that
|
|
* received the I/O (from CTL's perspective), and so the status is
|
|
* generated there.
|
|
*
|
|
* XXX KDM if we hold the lock here, we could cause a deadlock
|
|
* if the frontend comes back in in this context to queue
|
|
* something.
|
|
*/
|
|
if ((ctl_softc->ha_mode == CTL_HA_MODE_XFER)
|
|
&& (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
|
|
union ctl_ha_msg msg;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
msg.hdr.msg_type = CTL_MSG_FINISH_IO;
|
|
msg.hdr.original_sc = io->io_hdr.original_sc;
|
|
msg.hdr.nexus = io->io_hdr.nexus;
|
|
msg.hdr.status = io->io_hdr.status;
|
|
msg.scsi.scsi_status = io->scsiio.scsi_status;
|
|
msg.scsi.tag_num = io->scsiio.tag_num;
|
|
msg.scsi.tag_type = io->scsiio.tag_type;
|
|
msg.scsi.sense_len = io->scsiio.sense_len;
|
|
msg.scsi.sense_residual = io->scsiio.sense_residual;
|
|
msg.scsi.residual = io->scsiio.residual;
|
|
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
|
|
sizeof(io->scsiio.sense_data));
|
|
/*
|
|
* We copy this whether or not this is an I/O-related
|
|
* command. Otherwise, we'd have to go and check to see
|
|
* whether it's a read/write command, and it really isn't
|
|
* worth it.
|
|
*/
|
|
memcpy(&msg.scsi.lbalen,
|
|
&io->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes,
|
|
sizeof(msg.scsi.lbalen));;
|
|
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
|
|
sizeof(msg), 0) > CTL_HA_STATUS_SUCCESS) {
|
|
/* XXX do something here */
|
|
}
|
|
|
|
ctl_free_io_internal(io, /*have_lock*/ 0);
|
|
} else
|
|
fe_done(io);
|
|
|
|
bailout:
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Front end should call this if it doesn't do autosense. When the request
|
|
* sense comes back in from the initiator, we'll dequeue this and send it.
|
|
*/
|
|
int
|
|
ctl_queue_sense(union ctl_io *io)
|
|
{
|
|
struct ctl_lun *lun;
|
|
struct ctl_softc *ctl_softc;
|
|
uint32_t initidx;
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_queue_sense\n"));
|
|
|
|
/*
|
|
* LUN lookup will likely move to the ctl_work_thread() once we
|
|
* have our new queueing infrastructure (that doesn't put things on
|
|
* a per-LUN queue initially). That is so that we can handle
|
|
* things like an INQUIRY to a LUN that we don't have enabled. We
|
|
* can't deal with that right now.
|
|
*/
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* If we don't have a LUN for this, just toss the sense
|
|
* information.
|
|
*/
|
|
if ((io->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
|
|
&& (ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun] != NULL))
|
|
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
|
|
else
|
|
goto bailout;
|
|
|
|
initidx = ctl_get_initindex(&io->io_hdr.nexus);
|
|
|
|
/*
|
|
* Already have CA set for this LUN...toss the sense information.
|
|
*/
|
|
if (ctl_is_set(lun->have_ca, initidx))
|
|
goto bailout;
|
|
|
|
memcpy(&lun->pending_sense[initidx].sense, &io->scsiio.sense_data,
|
|
ctl_min(sizeof(lun->pending_sense[initidx].sense),
|
|
sizeof(io->scsiio.sense_data)));
|
|
ctl_set_mask(lun->have_ca, initidx);
|
|
|
|
bailout:
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_free_io(io);
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Primary command inlet from frontend ports. All SCSI and task I/O
|
|
* requests must go through this function.
|
|
*/
|
|
int
|
|
ctl_queue(union ctl_io *io)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_queue cdb[0]=%02X\n", io->scsiio.cdb[0]));
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
#ifdef CTL_TIME_IO
|
|
io->io_hdr.start_time = time_uptime;
|
|
getbintime(&io->io_hdr.start_bt);
|
|
#endif /* CTL_TIME_IO */
|
|
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
switch (io->io_hdr.io_type) {
|
|
case CTL_IO_SCSI:
|
|
STAILQ_INSERT_TAIL(&ctl_softc->incoming_queue, &io->io_hdr,
|
|
links);
|
|
break;
|
|
case CTL_IO_TASK:
|
|
STAILQ_INSERT_TAIL(&ctl_softc->task_queue, &io->io_hdr, links);
|
|
/*
|
|
* Set the task pending flag. This is necessary to close a
|
|
* race condition with the FETD:
|
|
*
|
|
* - FETD submits a task management command, like an abort.
|
|
* - Back end calls fe_datamove() to move the data for the
|
|
* aborted command. The FETD can't really accept it, but
|
|
* if it did, it would end up transmitting data for a
|
|
* command that the initiator told us to abort.
|
|
*
|
|
* We close the race condition by setting the flag here,
|
|
* and checking it in ctl_datamove(), before calling the
|
|
* FETD's fe_datamove routine. If we've got a task
|
|
* pending, we run the task queue and then check to see
|
|
* whether our particular I/O has been aborted.
|
|
*/
|
|
ctl_softc->flags |= CTL_FLAG_TASK_PENDING;
|
|
break;
|
|
default:
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
printf("ctl_queue: unknown I/O type %d\n", io->io_hdr.io_type);
|
|
return (-EINVAL);
|
|
break; /* NOTREACHED */
|
|
}
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_wakeup_thread();
|
|
|
|
return (CTL_RETVAL_COMPLETE);
|
|
}
|
|
|
|
#ifdef CTL_IO_DELAY
|
|
static void
|
|
ctl_done_timer_wakeup(void *arg)
|
|
{
|
|
union ctl_io *io;
|
|
|
|
io = (union ctl_io *)arg;
|
|
ctl_done_lock(io, /*have_lock*/ 0);
|
|
}
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
void
|
|
ctl_done_lock(union ctl_io *io, int have_lock)
|
|
{
|
|
struct ctl_softc *ctl_softc;
|
|
#ifndef CTL_DONE_THREAD
|
|
union ctl_io *xio;
|
|
#endif /* !CTL_DONE_THREAD */
|
|
|
|
ctl_softc = control_softc;
|
|
|
|
if (have_lock == 0)
|
|
mtx_lock(&ctl_softc->ctl_lock);
|
|
|
|
/*
|
|
* Enable this to catch duplicate completion issues.
|
|
*/
|
|
#if 0
|
|
if (io->io_hdr.flags & CTL_FLAG_ALREADY_DONE) {
|
|
printf("%s: type %d msg %d cdb %x iptl: "
|
|
"%d:%d:%d:%d tag 0x%04x "
|
|
"flag %#x status %x\n",
|
|
__func__,
|
|
io->io_hdr.io_type,
|
|
io->io_hdr.msg_type,
|
|
io->scsiio.cdb[0],
|
|
io->io_hdr.nexus.initid.id,
|
|
io->io_hdr.nexus.targ_port,
|
|
io->io_hdr.nexus.targ_target.id,
|
|
io->io_hdr.nexus.targ_lun,
|
|
(io->io_hdr.io_type ==
|
|
CTL_IO_TASK) ?
|
|
io->taskio.tag_num :
|
|
io->scsiio.tag_num,
|
|
io->io_hdr.flags,
|
|
io->io_hdr.status);
|
|
} else
|
|
io->io_hdr.flags |= CTL_FLAG_ALREADY_DONE;
|
|
#endif
|
|
|
|
/*
|
|
* This is an internal copy of an I/O, and should not go through
|
|
* the normal done processing logic.
|
|
*/
|
|
if (io->io_hdr.flags & CTL_FLAG_INT_COPY) {
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to send a msg to the serializing shelf to finish the IO
|
|
* as well. We don't send a finish message to the other shelf if
|
|
* this is a task management command. Task management commands
|
|
* aren't serialized in the OOA queue, but rather just executed on
|
|
* both shelf controllers for commands that originated on that
|
|
* controller.
|
|
*/
|
|
if ((io->io_hdr.flags & CTL_FLAG_SENT_2OTHER_SC)
|
|
&& (io->io_hdr.io_type != CTL_IO_TASK)) {
|
|
union ctl_ha_msg msg_io;
|
|
|
|
msg_io.hdr.msg_type = CTL_MSG_FINISH_IO;
|
|
msg_io.hdr.serializing_sc = io->io_hdr.serializing_sc;
|
|
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_io,
|
|
sizeof(msg_io), 0 ) != CTL_HA_STATUS_SUCCESS) {
|
|
}
|
|
/* continue on to finish IO */
|
|
}
|
|
#ifdef CTL_IO_DELAY
|
|
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
|
|
struct ctl_lun *lun;
|
|
|
|
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
|
|
} else {
|
|
struct ctl_lun *lun;
|
|
|
|
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
if ((lun != NULL)
|
|
&& (lun->delay_info.done_delay > 0)) {
|
|
struct callout *callout;
|
|
|
|
callout = (struct callout *)&io->io_hdr.timer_bytes;
|
|
callout_init(callout, /*mpsafe*/ 1);
|
|
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
|
|
callout_reset(callout,
|
|
lun->delay_info.done_delay * hz,
|
|
ctl_done_timer_wakeup, io);
|
|
if (lun->delay_info.done_type == CTL_DELAY_TYPE_ONESHOT)
|
|
lun->delay_info.done_delay = 0;
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CTL_IO_DELAY */
|
|
|
|
STAILQ_INSERT_TAIL(&ctl_softc->done_queue, &io->io_hdr, links);
|
|
|
|
#ifdef CTL_DONE_THREAD
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
|
|
ctl_wakeup_thread();
|
|
#else /* CTL_DONE_THREAD */
|
|
for (xio = (union ctl_io *)STAILQ_FIRST(&ctl_softc->done_queue);
|
|
xio != NULL;
|
|
xio =(union ctl_io *)STAILQ_FIRST(&ctl_softc->done_queue)) {
|
|
|
|
STAILQ_REMOVE_HEAD(&ctl_softc->done_queue, links);
|
|
|
|
ctl_process_done(xio, /*have_lock*/ 1);
|
|
}
|
|
if (have_lock == 0)
|
|
mtx_unlock(&ctl_softc->ctl_lock);
|
|
#endif /* CTL_DONE_THREAD */
|
|
}
|
|
|
|
void
|
|
ctl_done(union ctl_io *io)
|
|
{
|
|
ctl_done_lock(io, /*have_lock*/ 0);
|
|
}
|
|
|
|
int
|
|
ctl_isc(struct ctl_scsiio *ctsio)
|
|
{
|
|
struct ctl_lun *lun;
|
|
int retval;
|
|
|
|
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_isc: command: %02x\n", ctsio->cdb[0]));
|
|
|
|
CTL_DEBUG_PRINT(("ctl_isc: calling data_submit()\n"));
|
|
|
|
retval = lun->backend->data_submit((union ctl_io *)ctsio);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
|
|
static void
|
|
ctl_work_thread(void *arg)
|
|
{
|
|
struct ctl_softc *softc;
|
|
union ctl_io *io;
|
|
struct ctl_be_lun *be_lun;
|
|
int retval;
|
|
|
|
CTL_DEBUG_PRINT(("ctl_work_thread starting\n"));
|
|
|
|
softc = (struct ctl_softc *)arg;
|
|
if (softc == NULL)
|
|
return;
|
|
|
|
mtx_lock(&softc->ctl_lock);
|
|
for (;;) {
|
|
retval = 0;
|
|
|
|
/*
|
|
* We handle the queues in this order:
|
|
* - task management
|
|
* - ISC
|
|
* - done queue (to free up resources, unblock other commands)
|
|
* - RtR queue
|
|
* - incoming queue
|
|
*
|
|
* If those queues are empty, we break out of the loop and
|
|
* go to sleep.
|
|
*/
|
|
io = (union ctl_io *)STAILQ_FIRST(&softc->task_queue);
|
|
if (io != NULL) {
|
|
ctl_run_task_queue(softc);
|
|
continue;
|
|
}
|
|
io = (union ctl_io *)STAILQ_FIRST(&softc->isc_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&softc->isc_queue, links);
|
|
ctl_handle_isc(io);
|
|
continue;
|
|
}
|
|
io = (union ctl_io *)STAILQ_FIRST(&softc->done_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&softc->done_queue, links);
|
|
/* clear any blocked commands, call fe_done */
|
|
mtx_unlock(&softc->ctl_lock);
|
|
/*
|
|
* XXX KDM
|
|
* Call this without a lock for now. This will
|
|
* depend on whether there is any way the FETD can
|
|
* sleep or deadlock if called with the CTL lock
|
|
* held.
|
|
*/
|
|
retval = ctl_process_done(io, /*have_lock*/ 0);
|
|
mtx_lock(&softc->ctl_lock);
|
|
continue;
|
|
}
|
|
if (!ctl_pause_rtr) {
|
|
io = (union ctl_io *)STAILQ_FIRST(&softc->rtr_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&softc->rtr_queue, links);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
goto execute;
|
|
}
|
|
}
|
|
io = (union ctl_io *)STAILQ_FIRST(&softc->incoming_queue);
|
|
if (io != NULL) {
|
|
STAILQ_REMOVE_HEAD(&softc->incoming_queue, links);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_scsiio_precheck(softc, &io->scsiio);
|
|
mtx_lock(&softc->ctl_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* We might want to move this to a separate thread, so that
|
|
* configuration requests (in this case LUN creations)
|
|
* won't impact the I/O path.
|
|
*/
|
|
be_lun = STAILQ_FIRST(&softc->pending_lun_queue);
|
|
if (be_lun != NULL) {
|
|
STAILQ_REMOVE_HEAD(&softc->pending_lun_queue, links);
|
|
mtx_unlock(&softc->ctl_lock);
|
|
ctl_create_lun(be_lun);
|
|
mtx_lock(&softc->ctl_lock);
|
|
continue;
|
|
}
|
|
|
|
/* XXX KDM use the PDROP flag?? */
|
|
/* Sleep until we have something to do. */
|
|
mtx_sleep(softc, &softc->ctl_lock, PRIBIO, "ctl_work", 0);
|
|
|
|
/* Back to the top of the loop to see what woke us up. */
|
|
continue;
|
|
|
|
execute:
|
|
retval = ctl_scsiio(&io->scsiio);
|
|
switch (retval) {
|
|
case CTL_RETVAL_COMPLETE:
|
|
break;
|
|
default:
|
|
/*
|
|
* Probably need to make sure this doesn't happen.
|
|
*/
|
|
break;
|
|
}
|
|
mtx_lock(&softc->ctl_lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
ctl_wakeup_thread()
|
|
{
|
|
struct ctl_softc *softc;
|
|
|
|
softc = control_softc;
|
|
|
|
wakeup(softc);
|
|
}
|
|
|
|
/* Initialization and failover */
|
|
|
|
void
|
|
ctl_init_isc_msg(void)
|
|
{
|
|
printf("CTL: Still calling this thing\n");
|
|
}
|
|
|
|
/*
|
|
* Init component
|
|
* Initializes component into configuration defined by bootMode
|
|
* (see hasc-sv.c)
|
|
* returns hasc_Status:
|
|
* OK
|
|
* ERROR - fatal error
|
|
*/
|
|
static ctl_ha_comp_status
|
|
ctl_isc_init(struct ctl_ha_component *c)
|
|
{
|
|
ctl_ha_comp_status ret = CTL_HA_COMP_STATUS_OK;
|
|
|
|
c->status = ret;
|
|
return ret;
|
|
}
|
|
|
|
/* Start component
|
|
* Starts component in state requested. If component starts successfully,
|
|
* it must set its own state to the requestrd state
|
|
* When requested state is HASC_STATE_HA, the component may refine it
|
|
* by adding _SLAVE or _MASTER flags.
|
|
* Currently allowed state transitions are:
|
|
* UNKNOWN->HA - initial startup
|
|
* UNKNOWN->SINGLE - initial startup when no parter detected
|
|
* HA->SINGLE - failover
|
|
* returns ctl_ha_comp_status:
|
|
* OK - component successfully started in requested state
|
|
* FAILED - could not start the requested state, failover may
|
|
* be possible
|
|
* ERROR - fatal error detected, no future startup possible
|
|
*/
|
|
static ctl_ha_comp_status
|
|
ctl_isc_start(struct ctl_ha_component *c, ctl_ha_state state)
|
|
{
|
|
ctl_ha_comp_status ret = CTL_HA_COMP_STATUS_OK;
|
|
|
|
// UNKNOWN->HA or UNKNOWN->SINGLE (bootstrap)
|
|
if (c->state == CTL_HA_STATE_UNKNOWN ) {
|
|
ctl_is_single = 0;
|
|
if (ctl_ha_msg_create(CTL_HA_CHAN_CTL, ctl_isc_event_handler)
|
|
!= CTL_HA_STATUS_SUCCESS) {
|
|
printf("ctl_isc_start: ctl_ha_msg_create failed.\n");
|
|
ret = CTL_HA_COMP_STATUS_ERROR;
|
|
}
|
|
} else if (CTL_HA_STATE_IS_HA(c->state)
|
|
&& CTL_HA_STATE_IS_SINGLE(state)){
|
|
// HA->SINGLE transition
|
|
ctl_failover();
|
|
ctl_is_single = 1;
|
|
} else {
|
|
printf("ctl_isc_start:Invalid state transition %X->%X\n",
|
|
c->state, state);
|
|
ret = CTL_HA_COMP_STATUS_ERROR;
|
|
}
|
|
if (CTL_HA_STATE_IS_SINGLE(state))
|
|
ctl_is_single = 1;
|
|
|
|
c->state = state;
|
|
c->status = ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Quiesce component
|
|
* The component must clear any error conditions (set status to OK) and
|
|
* prepare itself to another Start call
|
|
* returns ctl_ha_comp_status:
|
|
* OK
|
|
* ERROR
|
|
*/
|
|
static ctl_ha_comp_status
|
|
ctl_isc_quiesce(struct ctl_ha_component *c)
|
|
{
|
|
int ret = CTL_HA_COMP_STATUS_OK;
|
|
|
|
ctl_pause_rtr = 1;
|
|
c->status = ret;
|
|
return ret;
|
|
}
|
|
|
|
struct ctl_ha_component ctl_ha_component_ctlisc =
|
|
{
|
|
.name = "CTL ISC",
|
|
.state = CTL_HA_STATE_UNKNOWN,
|
|
.init = ctl_isc_init,
|
|
.start = ctl_isc_start,
|
|
.quiesce = ctl_isc_quiesce
|
|
};
|
|
|
|
/*
|
|
* vim: ts=8
|
|
*/
|