freebsd-skq/sys/netinet/raw_ip.c
Bjoern A. Zeeb 7a657e630d Enhance the historic behaviour of raw sockets and jails in a way
that we allow all possible jail IPs as source address rather than
forcing the "primary". While IPv6 naturally has source address
selection, for legacy IP we do not go through the pain in case
IP_HDRINCL was not set. People should bind(2) for that.

This will, for example, allow ping(|6) -S to work correctly for
non-primary addresses.

Reported by:	(ten 211.ru)
Tested by:	(ten 211.ru)
MFC after:	4 days
2010-04-27 15:07:08 +00:00

1101 lines
26 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_mroute.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#endif /*IPSEC*/
#include <security/mac/mac_framework.h>
VNET_DEFINE(struct inpcbhead, ripcb);
VNET_DEFINE(struct inpcbinfo, ripcbinfo);
#define V_ripcb VNET(ripcb)
#define V_ripcbinfo VNET(ripcbinfo)
/*
* Control and data hooks for ipfw, dummynet, divert and so on.
* The data hooks are not used here but it is convenient
* to keep them all in one place.
*/
VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL;
VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL;
int (*ip_dn_ctl_ptr)(struct sockopt *);
int (*ip_dn_io_ptr)(struct mbuf **, int, struct ip_fw_args *);
void (*ip_divert_ptr)(struct mbuf *, int);
int (*ng_ipfw_input_p)(struct mbuf **, int,
struct ip_fw_args *, int);
/*
* Hooks for multicast routing. They all default to NULL, so leave them not
* initialized and rely on BSS being set to 0.
*/
/*
* The socket used to communicate with the multicast routing daemon.
*/
VNET_DEFINE(struct socket *, ip_mrouter);
/*
* The various mrouter and rsvp functions.
*/
int (*ip_mrouter_set)(struct socket *, struct sockopt *);
int (*ip_mrouter_get)(struct socket *, struct sockopt *);
int (*ip_mrouter_done)(void);
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *);
int (*mrt_ioctl)(u_long, caddr_t, int);
int (*legal_vif_num)(int);
u_long (*ip_mcast_src)(int);
void (*rsvp_input_p)(struct mbuf *m, int off);
int (*ip_rsvp_vif)(struct socket *, struct sockopt *);
void (*ip_rsvp_force_done)(struct socket *);
/*
* Hash functions
*/
#define INP_PCBHASH_RAW_SIZE 256
#define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \
(((proto) + (laddr) + (faddr)) % (mask) + 1)
static void
rip_inshash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *pcbhash;
int hash;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
if (inp->inp_ip_p != 0 &&
inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != INADDR_ANY) {
hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr,
inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask);
} else
hash = 0;
pcbhash = &pcbinfo->ipi_hashbase[hash];
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
}
static void
rip_delhash(struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
LIST_REMOVE(inp, inp_hash);
}
/*
* Raw interface to IP protocol.
*/
/*
* Initialize raw connection block q.
*/
static void
rip_zone_change(void *tag)
{
uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets);
}
static int
rip_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp = mem;
INP_LOCK_INIT(inp, "inp", "rawinp");
return (0);
}
void
rip_init(void)
{
in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE,
1, "ripcb", rip_inpcb_init, NULL, UMA_ZONE_NOFREE);
EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
#ifdef VIMAGE
void
rip_destroy(void)
{
in_pcbinfo_destroy(&V_ripcbinfo);
}
#endif
static int
rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n,
struct sockaddr_in *ripsrc)
{
int policyfail = 0;
INP_RLOCK_ASSERT(last);
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject(n, last)) {
policyfail = 1;
}
#endif /* IPSEC */
#ifdef MAC
if (!policyfail && mac_inpcb_check_deliver(last, n) != 0)
policyfail = 1;
#endif
/* Check the minimum TTL for socket. */
if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl)
policyfail = 1;
if (!policyfail) {
struct mbuf *opts = NULL;
struct socket *so;
so = last->inp_socket;
if ((last->inp_flags & INP_CONTROLOPTS) ||
(so->so_options & (SO_TIMESTAMP | SO_BINTIME)))
ip_savecontrol(last, &opts, ip, n);
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv,
(struct sockaddr *)ripsrc, n, opts) == 0) {
/* should notify about lost packet */
m_freem(n);
if (opts)
m_freem(opts);
SOCKBUF_UNLOCK(&so->so_rcv);
} else
sorwakeup_locked(so);
} else
m_freem(n);
return (policyfail);
}
/*
* Setup generic address and protocol structures for raw_input routine, then
* pass them along with mbuf chain.
*/
void
rip_input(struct mbuf *m, int off)
{
struct ifnet *ifp;
struct ip *ip = mtod(m, struct ip *);
int proto = ip->ip_p;
struct inpcb *inp, *last;
struct sockaddr_in ripsrc;
int hash;
bzero(&ripsrc, sizeof(ripsrc));
ripsrc.sin_len = sizeof(ripsrc);
ripsrc.sin_family = AF_INET;
ripsrc.sin_addr = ip->ip_src;
last = NULL;
ifp = m->m_pkthdr.rcvif;
hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr,
ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask);
INP_INFO_RLOCK(&V_ripcbinfo);
LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) {
if (inp->inp_ip_p != proto)
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
if (inp->inp_faddr.s_addr != ip->ip_src.s_addr)
continue;
if (jailed_without_vnet(inp->inp_cred)) {
/*
* XXX: If faddr was bound to multicast group,
* jailed raw socket will drop datagram.
*/
if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0)
continue;
}
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, (int)M_COPYALL);
if (n != NULL)
(void) rip_append(last, ip, n, &ripsrc);
/* XXX count dropped packet */
INP_RUNLOCK(last);
}
INP_RLOCK(inp);
last = inp;
}
LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) {
if (inp->inp_ip_p && inp->inp_ip_p != proto)
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (!in_nullhost(inp->inp_laddr) &&
!in_hosteq(inp->inp_laddr, ip->ip_dst))
continue;
if (!in_nullhost(inp->inp_faddr) &&
!in_hosteq(inp->inp_faddr, ip->ip_src))
continue;
if (jailed_without_vnet(inp->inp_cred)) {
/*
* Allow raw socket in jail to receive multicast;
* assume process had PRIV_NETINET_RAW at attach,
* and fall through into normal filter path if so.
*/
if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0)
continue;
}
/*
* If this raw socket has multicast state, and we
* have received a multicast, check if this socket
* should receive it, as multicast filtering is now
* the responsibility of the transport layer.
*/
if (inp->inp_moptions != NULL &&
IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
/*
* If the incoming datagram is for IGMP, allow it
* through unconditionally to the raw socket.
*
* In the case of IGMPv2, we may not have explicitly
* joined the group, and may have set IFF_ALLMULTI
* on the interface. imo_multi_filter() may discard
* control traffic we actually need to see.
*
* Userland multicast routing daemons should continue
* filter the control traffic appropriately.
*/
int blocked;
blocked = MCAST_PASS;
if (proto != IPPROTO_IGMP) {
struct sockaddr_in group;
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(inp->inp_moptions,
ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&ripsrc);
}
if (blocked != MCAST_PASS) {
IPSTAT_INC(ips_notmember);
continue;
}
}
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, (int)M_COPYALL);
if (n != NULL)
(void) rip_append(last, ip, n, &ripsrc);
/* XXX count dropped packet */
INP_RUNLOCK(last);
}
INP_RLOCK(inp);
last = inp;
}
INP_INFO_RUNLOCK(&V_ripcbinfo);
if (last != NULL) {
if (rip_append(last, ip, m, &ripsrc) != 0)
IPSTAT_INC(ips_delivered);
INP_RUNLOCK(last);
} else {
m_freem(m);
IPSTAT_INC(ips_noproto);
IPSTAT_DEC(ips_delivered);
}
}
/*
* Generate IP header and pass packet to ip_output. Tack on options user may
* have setup with control call.
*/
int
rip_output(struct mbuf *m, struct socket *so, u_long dst)
{
struct ip *ip;
int error;
struct inpcb *inp = sotoinpcb(so);
int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) |
IP_ALLOWBROADCAST;
/*
* If the user handed us a complete IP packet, use it. Otherwise,
* allocate an mbuf for a header and fill it in.
*/
if ((inp->inp_flags & INP_HDRINCL) == 0) {
if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
m_freem(m);
return(EMSGSIZE);
}
M_PREPEND(m, sizeof(struct ip), M_DONTWAIT);
if (m == NULL)
return(ENOBUFS);
INP_RLOCK(inp);
ip = mtod(m, struct ip *);
ip->ip_tos = inp->inp_ip_tos;
if (inp->inp_flags & INP_DONTFRAG)
ip->ip_off = IP_DF;
else
ip->ip_off = 0;
ip->ip_p = inp->inp_ip_p;
ip->ip_len = m->m_pkthdr.len;
ip->ip_src = inp->inp_laddr;
if (jailed(inp->inp_cred)) {
/*
* prison_local_ip4() would be good enough but would
* let a source of INADDR_ANY pass, which we do not
* want to see from jails. We do not go through the
* pain of in_pcbladdr() for raw sockets.
*/
if (ip->ip_src.s_addr == INADDR_ANY)
error = prison_get_ip4(inp->inp_cred,
&ip->ip_src);
else
error = prison_local_ip4(inp->inp_cred,
&ip->ip_src);
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
}
ip->ip_dst.s_addr = dst;
ip->ip_ttl = inp->inp_ip_ttl;
} else {
if (m->m_pkthdr.len > IP_MAXPACKET) {
m_freem(m);
return(EMSGSIZE);
}
INP_RLOCK(inp);
ip = mtod(m, struct ip *);
error = prison_check_ip4(inp->inp_cred, &ip->ip_src);
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Don't allow both user specified and setsockopt options,
* and don't allow packet length sizes that will crash.
*/
if (((ip->ip_hl != (sizeof (*ip) >> 2)) && inp->inp_options)
|| (ip->ip_len > m->m_pkthdr.len)
|| (ip->ip_len < (ip->ip_hl << 2))) {
INP_RUNLOCK(inp);
m_freem(m);
return (EINVAL);
}
if (ip->ip_id == 0)
ip->ip_id = ip_newid();
/*
* XXX prevent ip_output from overwriting header fields.
*/
flags |= IP_RAWOUTPUT;
IPSTAT_INC(ips_rawout);
}
if (inp->inp_flags & INP_ONESBCAST)
flags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
error = ip_output(m, inp->inp_options, NULL, flags,
inp->inp_moptions, inp);
INP_RUNLOCK(inp);
return (error);
}
/*
* Raw IP socket option processing.
*
* IMPORTANT NOTE regarding access control: Traditionally, raw sockets could
* only be created by a privileged process, and as such, socket option
* operations to manage system properties on any raw socket were allowed to
* take place without explicit additional access control checks. However,
* raw sockets can now also be created in jail(), and therefore explicit
* checks are now required. Likewise, raw sockets can be used by a process
* after it gives up privilege, so some caution is required. For options
* passed down to the IP layer via ip_ctloutput(), checks are assumed to be
* performed in ip_ctloutput() and therefore no check occurs here.
* Unilaterally checking priv_check() here breaks normal IP socket option
* operations on raw sockets.
*
* When adding new socket options here, make sure to add access control
* checks here as necessary.
*/
int
rip_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
int error, optval;
if (sopt->sopt_level != IPPROTO_IP) {
if ((sopt->sopt_level == SOL_SOCKET) &&
(sopt->sopt_name == SO_SETFIB)) {
inp->inp_inc.inc_fibnum = so->so_fibnum;
return (0);
}
return (EINVAL);
}
error = 0;
switch (sopt->sopt_dir) {
case SOPT_GET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
optval = inp->inp_flags & INP_HDRINCL;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD: /* ADD actually returns the body... */
case IP_FW_GET:
case IP_FW_TABLE_GETSIZE:
case IP_FW_TABLE_LIST:
case IP_FW_NAT_GET_CONFIG:
case IP_FW_NAT_GET_LOG:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_GET:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break ;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_mrouter_get ? ip_mrouter_get(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
case SOPT_SET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval)
inp->inp_flags |= INP_HDRINCL;
else
inp->inp_flags &= ~INP_HDRINCL;
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD:
case IP_FW_DEL:
case IP_FW_FLUSH:
case IP_FW_ZERO:
case IP_FW_RESETLOG:
case IP_FW_TABLE_ADD:
case IP_FW_TABLE_DEL:
case IP_FW_TABLE_FLUSH:
case IP_FW_NAT_CFG:
case IP_FW_NAT_DEL:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL:
case IP_DUMMYNET_FLUSH:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT ;
break ;
case IP_RSVP_ON:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_init(so);
break;
case IP_RSVP_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_done();
break;
case IP_RSVP_VIF_ON:
case IP_RSVP_VIF_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_vif ?
ip_rsvp_vif(so, sopt) : EINVAL;
break;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_mrouter_set ? ip_mrouter_set(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
}
return (error);
}
/*
* This function exists solely to receive the PRC_IFDOWN messages which are
* sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls
* in_ifadown() to remove all routes corresponding to that address. It also
* receives the PRC_IFUP messages from if_up() and reinstalls the interface
* routes.
*/
void
rip_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
struct in_ifaddr *ia;
struct ifnet *ifp;
int err;
int flags;
switch (cmd) {
case PRC_IFDOWN:
IN_IFADDR_RLOCK();
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (ia->ia_ifa.ifa_addr == sa
&& (ia->ia_flags & IFA_ROUTE)) {
ifa_ref(&ia->ia_ifa);
IN_IFADDR_RUNLOCK();
/*
* in_ifscrub kills the interface route.
*/
in_ifscrub(ia->ia_ifp, ia);
/*
* in_ifadown gets rid of all the rest of the
* routes. This is not quite the right thing
* to do, but at least if we are running a
* routing process they will come back.
*/
in_ifadown(&ia->ia_ifa, 0);
ifa_free(&ia->ia_ifa);
break;
}
}
if (ia == NULL) /* If ia matched, already unlocked. */
IN_IFADDR_RUNLOCK();
break;
case PRC_IFUP:
IN_IFADDR_RLOCK();
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (ia->ia_ifa.ifa_addr == sa)
break;
}
if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) {
IN_IFADDR_RUNLOCK();
return;
}
ifa_ref(&ia->ia_ifa);
IN_IFADDR_RUNLOCK();
flags = RTF_UP;
ifp = ia->ia_ifa.ifa_ifp;
if ((ifp->if_flags & IFF_LOOPBACK)
|| (ifp->if_flags & IFF_POINTOPOINT))
flags |= RTF_HOST;
err = rtinit(&ia->ia_ifa, RTM_ADD, flags);
if (err == 0)
ia->ia_flags |= IFA_ROUTE;
err = ifa_add_loopback_route((struct ifaddr *)ia, sa);
ifa_free(&ia->ia_ifa);
break;
}
}
u_long rip_sendspace = 9216;
u_long rip_recvspace = 9216;
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW,
&rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW,
&rip_recvspace, 0, "Maximum space for incoming raw IP datagrams");
static int
rip_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("rip_attach: inp != NULL"));
error = priv_check(td, PRIV_NETINET_RAW);
if (error)
return (error);
if (proto >= IPPROTO_MAX || proto < 0)
return EPROTONOSUPPORT;
error = soreserve(so, rip_sendspace, rip_recvspace);
if (error)
return (error);
INP_INFO_WLOCK(&V_ripcbinfo);
error = in_pcballoc(so, &V_ripcbinfo);
if (error) {
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (error);
}
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_p = proto;
inp->inp_ip_ttl = V_ip_defttl;
rip_inshash(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
INP_WUNLOCK(inp);
return (0);
}
static void
rip_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("rip_detach: not closed"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
if (so == V_ip_mrouter && ip_mrouter_done)
ip_mrouter_done();
if (ip_rsvp_force_done)
ip_rsvp_force_done(so);
if (so == V_ip_rsvpd)
ip_rsvp_done();
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
}
static void
rip_dodisconnect(struct socket *so, struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
rip_delhash(inp);
inp->inp_faddr.s_addr = INADDR_ANY;
rip_inshash(inp);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED;
SOCK_UNLOCK(so);
}
static void
rip_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_abort: inp == NULL"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_dodisconnect(so, inp);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
}
static void
rip_close(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_close: inp == NULL"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_dodisconnect(so, inp);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
}
static int
rip_disconnect(struct socket *so)
{
struct inpcb *inp;
if ((so->so_state & SS_ISCONNECTED) == 0)
return (ENOTCONN);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_disconnect: inp == NULL"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_dodisconnect(so, inp);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (0);
}
static int
rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
int error;
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
error = prison_check_ip4(td->td_ucred, &addr->sin_addr);
if (error != 0)
return (error);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_bind: inp == NULL"));
if (TAILQ_EMPTY(&V_ifnet) ||
(addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) ||
(addr->sin_addr.s_addr &&
(inp->inp_flags & INP_BINDANY) == 0 &&
ifa_ifwithaddr_check((struct sockaddr *)addr) == 0))
return (EADDRNOTAVAIL);
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
inp->inp_laddr = addr->sin_addr;
rip_inshash(inp);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (0);
}
static int
rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
if (TAILQ_EMPTY(&V_ifnet))
return (EADDRNOTAVAIL);
if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK)
return (EAFNOSUPPORT);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_connect: inp == NULL"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
inp->inp_faddr = addr->sin_addr;
rip_inshash(inp);
soisconnected(so);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (0);
}
static int
rip_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_shutdown: inp == NULL"));
INP_WLOCK(inp);
socantsendmore(so);
INP_WUNLOCK(inp);
return (0);
}
static int
rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
u_long dst;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_send: inp == NULL"));
/*
* Note: 'dst' reads below are unlocked.
*/
if (so->so_state & SS_ISCONNECTED) {
if (nam) {
m_freem(m);
return (EISCONN);
}
dst = inp->inp_faddr.s_addr; /* Unlocked read. */
} else {
if (nam == NULL) {
m_freem(m);
return (ENOTCONN);
}
dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr;
}
return (rip_output(m, so, dst));
}
static int
rip_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = V_ripcbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xinpcb);
return (0);
}
if (req->newptr != 0)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_ripcbinfo);
gencnt = V_ripcbinfo.ipi_gencnt;
n = V_ripcbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_ripcbinfo);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return (ENOMEM);
INP_INFO_RLOCK(&V_ripcbinfo);
for (inp = LIST_FIRST(V_ripcbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_ripcbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xi, sizeof xi);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_ripcbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_WLOCK(inp);
if (!in_pcbrele(inp))
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_ripcbinfo);
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
INP_INFO_RLOCK(&V_ripcbinfo);
xig.xig_gen = V_ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_ripcbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_ripcbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLFLAG_RD, 0, 0,
rip_pcblist, "S,xinpcb", "List of active raw IP sockets");
struct pr_usrreqs rip_usrreqs = {
.pru_abort = rip_abort,
.pru_attach = rip_attach,
.pru_bind = rip_bind,
.pru_connect = rip_connect,
.pru_control = in_control,
.pru_detach = rip_detach,
.pru_disconnect = rip_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = rip_send,
.pru_shutdown = rip_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = rip_close,
};