354 lines
10 KiB
C
354 lines
10 KiB
C
/******************************************************************************
|
|
* os.h
|
|
*
|
|
* random collection of macros and definition
|
|
*/
|
|
|
|
#ifndef _XEN_OS_H_
|
|
#define _XEN_OS_H_
|
|
#include <machine/param.h>
|
|
|
|
#ifdef PAE
|
|
#define CONFIG_X86_PAE
|
|
#endif
|
|
|
|
#if defined(XEN) && !defined(__XEN_INTERFACE_VERSION__)
|
|
/*
|
|
* Can update to a more recent version when we implement
|
|
* the hypercall page
|
|
*/
|
|
#define __XEN_INTERFACE_VERSION__ 0x00030204
|
|
#endif
|
|
|
|
#include <xen/interface/xen.h>
|
|
|
|
/* Force a proper event-channel callback from Xen. */
|
|
void force_evtchn_callback(void);
|
|
|
|
#define likely(x) __builtin_expect((x),1)
|
|
#define unlikely(x) __builtin_expect((x),0)
|
|
|
|
#ifndef vtophys
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#endif
|
|
|
|
extern int gdtset;
|
|
#ifdef SMP
|
|
#include <sys/time.h> /* XXX for pcpu.h */
|
|
#include <sys/pcpu.h> /* XXX for PCPU_GET */
|
|
static inline int
|
|
smp_processor_id(void)
|
|
{
|
|
if (likely(gdtset))
|
|
return PCPU_GET(cpuid);
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
#define smp_processor_id() 0
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL (void *)0
|
|
#endif
|
|
|
|
#ifndef PANIC_IF
|
|
#define PANIC_IF(exp) if (unlikely(exp)) {printk("panic - %s: %s:%d\n",#exp, __FILE__, __LINE__); panic("%s: %s:%d", #exp, __FILE__, __LINE__);}
|
|
#endif
|
|
|
|
extern shared_info_t *HYPERVISOR_shared_info;
|
|
|
|
/* Somewhere in the middle of the GCC 2.96 development cycle, we implemented
|
|
a mechanism by which the user can annotate likely branch directions and
|
|
expect the blocks to be reordered appropriately. Define __builtin_expect
|
|
to nothing for earlier compilers. */
|
|
|
|
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
|
|
static inline void rep_nop(void)
|
|
{
|
|
__asm__ __volatile__ ( "rep;nop" : : : "memory" );
|
|
}
|
|
#define cpu_relax() rep_nop()
|
|
|
|
|
|
#if __GNUC__ == 2 && __GNUC_MINOR__ < 96
|
|
#define __builtin_expect(x, expected_value) (x)
|
|
#endif
|
|
|
|
#define per_cpu(var, cpu) (pcpu_find((cpu))->pc_ ## var)
|
|
|
|
/* crude memory allocator for memory allocation early in
|
|
* boot
|
|
*/
|
|
void *bootmem_alloc(unsigned int size);
|
|
void bootmem_free(void *ptr, unsigned int size);
|
|
|
|
|
|
/* Everything below this point is not included by assembler (.S) files. */
|
|
#ifndef __ASSEMBLY__
|
|
#include <sys/types.h>
|
|
|
|
void printk(const char *fmt, ...);
|
|
|
|
/* some function prototypes */
|
|
void trap_init(void);
|
|
|
|
/*
|
|
* STI/CLI equivalents. These basically set and clear the virtual
|
|
* event_enable flag in teh shared_info structure. Note that when
|
|
* the enable bit is set, there may be pending events to be handled.
|
|
* We may therefore call into do_hypervisor_callback() directly.
|
|
*/
|
|
|
|
|
|
#define __cli() \
|
|
do { \
|
|
vcpu_info_t *_vcpu; \
|
|
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; \
|
|
_vcpu->evtchn_upcall_mask = 1; \
|
|
barrier(); \
|
|
} while (0)
|
|
|
|
#define __sti() \
|
|
do { \
|
|
vcpu_info_t *_vcpu; \
|
|
barrier(); \
|
|
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; \
|
|
_vcpu->evtchn_upcall_mask = 0; \
|
|
barrier(); /* unmask then check (avoid races) */ \
|
|
if ( unlikely(_vcpu->evtchn_upcall_pending) ) \
|
|
force_evtchn_callback(); \
|
|
} while (0)
|
|
|
|
#define __restore_flags(x) \
|
|
do { \
|
|
vcpu_info_t *_vcpu; \
|
|
barrier(); \
|
|
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; \
|
|
if ((_vcpu->evtchn_upcall_mask = (x)) == 0) { \
|
|
barrier(); /* unmask then check (avoid races) */ \
|
|
if ( unlikely(_vcpu->evtchn_upcall_pending) ) \
|
|
force_evtchn_callback(); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Add critical_{enter, exit}?
|
|
*
|
|
*/
|
|
#define __save_and_cli(x) \
|
|
do { \
|
|
vcpu_info_t *_vcpu; \
|
|
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; \
|
|
(x) = _vcpu->evtchn_upcall_mask; \
|
|
_vcpu->evtchn_upcall_mask = 1; \
|
|
barrier(); \
|
|
} while (0)
|
|
|
|
|
|
#define cli() __cli()
|
|
#define sti() __sti()
|
|
#define save_flags(x) __save_flags(x)
|
|
#define restore_flags(x) __restore_flags(x)
|
|
#define save_and_cli(x) __save_and_cli(x)
|
|
|
|
#define local_irq_save(x) __save_and_cli(x)
|
|
#define local_irq_restore(x) __restore_flags(x)
|
|
#define local_irq_disable() __cli()
|
|
#define local_irq_enable() __sti()
|
|
|
|
#define mtx_lock_irqsave(lock, x) {local_irq_save((x)); mtx_lock_spin((lock));}
|
|
#define mtx_unlock_irqrestore(lock, x) {mtx_unlock_spin((lock)); local_irq_restore((x)); }
|
|
#define spin_lock_irqsave mtx_lock_irqsave
|
|
#define spin_unlock_irqrestore mtx_unlock_irqrestore
|
|
|
|
|
|
#ifdef SMP
|
|
#define smp_mb() mb()
|
|
#define smp_rmb() rmb()
|
|
#define smp_wmb() wmb()
|
|
#define smp_read_barrier_depends() read_barrier_depends()
|
|
#define set_mb(var, value) do { xchg(&var, value); } while (0)
|
|
#else
|
|
#define smp_mb() barrier()
|
|
#define smp_rmb() barrier()
|
|
#define smp_wmb() barrier()
|
|
#define smp_read_barrier_depends() do { } while(0)
|
|
#define set_mb(var, value) do { var = value; barrier(); } while (0)
|
|
#endif
|
|
|
|
|
|
/* This is a barrier for the compiler only, NOT the processor! */
|
|
#define barrier() __asm__ __volatile__("": : :"memory")
|
|
|
|
#define LOCK_PREFIX ""
|
|
#define LOCK ""
|
|
#define ADDR (*(volatile long *) addr)
|
|
/*
|
|
* Make sure gcc doesn't try to be clever and move things around
|
|
* on us. We need to use _exactly_ the address the user gave us,
|
|
* not some alias that contains the same information.
|
|
*/
|
|
typedef struct { volatile int counter; } atomic_t;
|
|
|
|
|
|
|
|
#define xen_xchg(ptr,v) \
|
|
((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
|
|
struct __xchg_dummy { unsigned long a[100]; };
|
|
#define __xg(x) ((volatile struct __xchg_dummy *)(x))
|
|
static __inline unsigned long __xchg(unsigned long x, volatile void * ptr,
|
|
int size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
__asm__ __volatile__("xchgb %b0,%1"
|
|
:"=q" (x)
|
|
:"m" (*__xg(ptr)), "0" (x)
|
|
:"memory");
|
|
break;
|
|
case 2:
|
|
__asm__ __volatile__("xchgw %w0,%1"
|
|
:"=r" (x)
|
|
:"m" (*__xg(ptr)), "0" (x)
|
|
:"memory");
|
|
break;
|
|
case 4:
|
|
__asm__ __volatile__("xchgl %0,%1"
|
|
:"=r" (x)
|
|
:"m" (*__xg(ptr)), "0" (x)
|
|
:"memory");
|
|
break;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline int test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
static __inline int constant_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
|
|
}
|
|
|
|
static __inline int variable_test_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__(
|
|
"btl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit)
|
|
:"m" (ADDR),"Ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
constant_test_bit((nr),(addr)) : \
|
|
variable_test_bit((nr),(addr)))
|
|
|
|
|
|
/**
|
|
* set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btsl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
/**
|
|
* clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
/**
|
|
* atomic_inc - increment atomic variable
|
|
* @v: pointer of type atomic_t
|
|
*
|
|
* Atomically increments @v by 1. Note that the guaranteed
|
|
* useful range of an atomic_t is only 24 bits.
|
|
*/
|
|
static __inline__ void atomic_inc(atomic_t *v)
|
|
{
|
|
__asm__ __volatile__(
|
|
LOCK "incl %0"
|
|
:"=m" (v->counter)
|
|
:"m" (v->counter));
|
|
}
|
|
|
|
|
|
#define rdtscll(val) \
|
|
__asm__ __volatile__("rdtsc" : "=A" (val))
|
|
|
|
|
|
|
|
/*
|
|
* Kernel pointers have redundant information, so we can use a
|
|
* scheme where we can return either an error code or a dentry
|
|
* pointer with the same return value.
|
|
*
|
|
* This should be a per-architecture thing, to allow different
|
|
* error and pointer decisions.
|
|
*/
|
|
#define IS_ERR_VALUE(x) unlikely((x) > (unsigned long)-1000L)
|
|
|
|
static inline void *ERR_PTR(long error)
|
|
{
|
|
return (void *) error;
|
|
}
|
|
|
|
static inline long PTR_ERR(const void *ptr)
|
|
{
|
|
return (long) ptr;
|
|
}
|
|
|
|
static inline long IS_ERR(const void *ptr)
|
|
{
|
|
return IS_ERR_VALUE((unsigned long)ptr);
|
|
}
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _OS_H_ */
|