freebsd-skq/sys/ia64/include/bus.h
Marcel Moolenaar 26279767e4 Some code churn:
o   Eliminate IA64_PHYS_TO_RR6 and change all places where the macro is used
    by calling either bus_space_map() or pmap_mapdev().
o   Implement bus_space_map() in terms of pmap_mapdev() and implement
    bus_space_unmap() in terms of pmap_unmapdev().
o   Have ia64_pib hold the uncached virtual address of the processor interrupt
    block throughout the kernel's life and access the elements of the PIB
    through this structure pointer.

This is a non-functional change with the exception of using ia64_ld1() and
ia64_st8() to write to the PIB. We were still using assignments, for which
the compiler generates semaphore reads -- which cause undefined behaviour
for uncacheable memory. Note also that the memory barriers in ipi_send() are
critical for proper functioning.

With all the mapping of uncached memory done by pmap_mapdev(), we can keep
track of the translations and wire them in the CPU. This then eliminates
the need to reserve a whole region for uncached I/O and it eliminates
translation traps for device I/O accesses.
2010-02-14 16:56:24 +00:00

828 lines
25 KiB
C

/*-
* Copyright (c) 2009 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $FreeBSD$ */
#ifndef _MACHINE_BUS_H_
#define _MACHINE_BUS_H_
#include <machine/_bus.h>
#include <machine/cpufunc.h>
/*
* I/O port reads with ia32 semantics.
*/
#define inb bus_space_read_io_1
#define inw bus_space_read_io_2
#define inl bus_space_read_io_4
#define outb bus_space_write_io_1
#define outw bus_space_write_io_2
#define outl bus_space_write_io_4
/*
* Values for the ia64 bus space tag, not to be used directly by MI code.
*/
#define IA64_BUS_SPACE_IO 0 /* space is i/o space */
#define IA64_BUS_SPACE_MEM 1 /* space is mem space */
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
#define BUS_SPACE_MAXSIZE_24BIT 0xFFFFFF
#define BUS_SPACE_MAXSIZE_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXSIZE 0xFFFFFFFFFFFFFFFF
#define BUS_SPACE_MAXADDR_24BIT 0xFFFFFF
#define BUS_SPACE_MAXADDR_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXADDR 0xFFFFFFFFFFFFFFFF
#define BUS_SPACE_UNRESTRICTED (~0)
/*
* Map and unmap a region of device bus space into CPU virtual address space.
*/
int
bus_space_map(bus_space_tag_t, bus_addr_t, bus_size_t, int,
bus_space_handle_t *);
void
bus_space_unmap(bus_space_tag_t, bus_space_handle_t, bus_size_t size);
/*
* Get a new handle for a subregion of an already-mapped area of bus space.
*/
static __inline int
bus_space_subregion(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, bus_size_t size __unused, bus_space_handle_t *nbshp)
{
*nbshp = bsh + ofs;
return (0);
}
/*
* Allocate a region of memory that is accessible to devices in bus space.
*/
int
bus_space_alloc(bus_space_tag_t bst, bus_addr_t rstart, bus_addr_t rend,
bus_size_t size, bus_size_t align, bus_size_t boundary, int flags,
bus_addr_t *addrp, bus_space_handle_t *bshp);
/*
* Free a region of bus space accessible memory.
*/
void
bus_space_free(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t size);
/*
* Bus read/write barrier method.
*/
static __inline void
bus_space_barrier(bus_space_tag_t bst __unused, bus_space_handle_t bsh __unused,
bus_size_t ofs __unused, bus_size_t size __unused, int flags __unused)
{
ia64_mf_a();
ia64_mf();
}
/*
* Read 1 unit of data from bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned.
*/
uint8_t bus_space_read_io_1(u_long);
uint16_t bus_space_read_io_2(u_long);
uint32_t bus_space_read_io_4(u_long);
uint64_t bus_space_read_io_8(u_long);
static __inline uint8_t
bus_space_read_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint8_t val;
val = (__predict_false(bst == IA64_BUS_SPACE_IO))
? bus_space_read_io_1(bsh + ofs)
: ia64_ld1((void *)(bsh + ofs));
return (val);
}
static __inline uint16_t
bus_space_read_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint16_t val;
val = (__predict_false(bst == IA64_BUS_SPACE_IO))
? bus_space_read_io_2(bsh + ofs)
: ia64_ld2((void *)(bsh + ofs));
return (val);
}
static __inline uint32_t
bus_space_read_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint32_t val;
val = (__predict_false(bst == IA64_BUS_SPACE_IO))
? bus_space_read_io_4(bsh + ofs)
: ia64_ld4((void *)(bsh + ofs));
return (val);
}
static __inline uint64_t
bus_space_read_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint64_t val;
val = (__predict_false(bst == IA64_BUS_SPACE_IO))
? bus_space_read_io_8(bsh + ofs)
: ia64_ld8((void *)(bsh + ofs));
return (val);
}
/*
* Write 1 unit of data to bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value.
*/
void bus_space_write_io_1(u_long, uint8_t);
void bus_space_write_io_2(u_long, uint16_t);
void bus_space_write_io_4(u_long, uint32_t);
void bus_space_write_io_8(u_long, uint64_t);
static __inline void
bus_space_write_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint8_t val)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_io_1(bsh + ofs, val);
else
ia64_st1((void *)(bsh + ofs), val);
}
static __inline void
bus_space_write_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint16_t val)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_io_2(bsh + ofs, val);
else
ia64_st2((void *)(bsh + ofs), val);
}
static __inline void
bus_space_write_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint32_t val)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_io_4(bsh + ofs, val);
else
ia64_st4((void *)(bsh + ofs), val);
}
static __inline void
bus_space_write_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint64_t val)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_io_8(bsh + ofs, val);
else
ia64_st8((void *)(bsh + ofs), val);
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned in the buffer passed by reference.
*/
void bus_space_read_multi_io_1(u_long, uint8_t *, size_t);
void bus_space_read_multi_io_2(u_long, uint16_t *, size_t);
void bus_space_read_multi_io_4(u_long, uint32_t *, size_t);
void bus_space_read_multi_io_8(u_long, uint64_t *, size_t);
static __inline void
bus_space_read_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_multi_io_1(bsh + ofs, bufp, count);
else {
while (count-- > 0)
*bufp++ = ia64_ld1((void *)(bsh + ofs));
}
}
static __inline void
bus_space_read_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_multi_io_2(bsh + ofs, bufp, count);
else {
while (count-- > 0)
*bufp++ = ia64_ld2((void *)(bsh + ofs));
}
}
static __inline void
bus_space_read_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_multi_io_4(bsh + ofs, bufp, count);
else {
while (count-- > 0)
*bufp++ = ia64_ld4((void *)(bsh + ofs));
}
}
static __inline void
bus_space_read_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_multi_io_8(bsh + ofs, bufp, count);
else {
while (count-- > 0)
*bufp++ = ia64_ld8((void *)(bsh + ofs));
}
}
/*
* Write count units of data to bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference.
*/
void bus_space_write_multi_io_1(u_long, const uint8_t *, size_t);
void bus_space_write_multi_io_2(u_long, const uint16_t *, size_t);
void bus_space_write_multi_io_4(u_long, const uint32_t *, size_t);
void bus_space_write_multi_io_8(u_long, const uint64_t *, size_t);
static __inline void
bus_space_write_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_multi_io_1(bsh + ofs, bufp, count);
else {
while (count-- > 0)
ia64_st1((void *)(bsh + ofs), *bufp++);
}
}
static __inline void
bus_space_write_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_multi_io_2(bsh + ofs, bufp, count);
else {
while (count-- > 0)
ia64_st2((void *)(bsh + ofs), *bufp++);
}
}
static __inline void
bus_space_write_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_multi_io_4(bsh + ofs, bufp, count);
else {
while (count-- > 0)
ia64_st4((void *)(bsh + ofs), *bufp++);
}
}
static __inline void
bus_space_write_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_multi_io_8(bsh + ofs, bufp, count);
else {
while (count-- > 0)
ia64_st8((void *)(bsh + ofs), *bufp++);
}
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is written to the buffer passed by reference and read from successive
* bus space addresses. Access is unordered.
*/
void bus_space_read_region_io_1(u_long, uint8_t *, size_t);
void bus_space_read_region_io_2(u_long, uint16_t *, size_t);
void bus_space_read_region_io_4(u_long, uint32_t *, size_t);
void bus_space_read_region_io_8(u_long, uint64_t *, size_t);
static __inline void
bus_space_read_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_region_io_1(bsh + ofs, bufp, count);
else {
uint8_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
*bufp++ = ia64_ld1(bsp++);
}
}
static __inline void
bus_space_read_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_region_io_2(bsh + ofs, bufp, count);
else {
uint16_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
*bufp++ = ia64_ld2(bsp++);
}
}
static __inline void
bus_space_read_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_region_io_4(bsh + ofs, bufp, count);
else {
uint32_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
*bufp++ = ia64_ld4(bsp++);
}
}
static __inline void
bus_space_read_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_read_region_io_8(bsh + ofs, bufp, count);
else {
uint64_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
*bufp++ = ia64_ld8(bsp++);
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference and written to successive
* bus space addresses. Access is unordered.
*/
void bus_space_write_region_io_1(u_long, const uint8_t *, size_t);
void bus_space_write_region_io_2(u_long, const uint16_t *, size_t);
void bus_space_write_region_io_4(u_long, const uint32_t *, size_t);
void bus_space_write_region_io_8(u_long, const uint64_t *, size_t);
static __inline void
bus_space_write_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_region_io_1(bsh + ofs, bufp, count);
else {
uint8_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st1(bsp++, *bufp++);
}
}
static __inline void
bus_space_write_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_region_io_2(bsh + ofs, bufp, count);
else {
uint16_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st2(bsp++, *bufp++);
}
}
static __inline void
bus_space_write_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_region_io_4(bsh + ofs, bufp, count);
else {
uint32_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st4(bsp++, *bufp++);
}
}
static __inline void
bus_space_write_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_write_region_io_8(bsh + ofs, bufp, count);
else {
uint64_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st8(bsp++, *bufp++);
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value. Writes are unordered.
*/
static __inline void
bus_space_set_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
while (count-- > 0)
bus_space_write_1(bst, bsh, ofs, val);
}
static __inline void
bus_space_set_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
while (count-- > 0)
bus_space_write_2(bst, bsh, ofs, val);
}
static __inline void
bus_space_set_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
while (count-- > 0)
bus_space_write_4(bst, bsh, ofs, val);
}
static __inline void
bus_space_set_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
while (count-- > 0)
bus_space_write_8(bst, bsh, ofs, val);
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value and written to successive bus space addresses.
* Writes are unordered.
*/
void bus_space_set_region_io_1(u_long, uint8_t, size_t);
void bus_space_set_region_io_2(u_long, uint16_t, size_t);
void bus_space_set_region_io_4(u_long, uint32_t, size_t);
void bus_space_set_region_io_8(u_long, uint64_t, size_t);
static __inline void
bus_space_set_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_set_region_io_1(bsh + ofs, val, count);
else {
uint8_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st1(bsp++, val);
}
}
static __inline void
bus_space_set_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_set_region_io_2(bsh + ofs, val, count);
else {
uint16_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st2(bsp++, val);
}
}
static __inline void
bus_space_set_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_set_region_io_4(bsh + ofs, val, count);
else {
uint32_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st4(bsp++, val);
}
}
static __inline void
bus_space_set_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
if (__predict_false(bst == IA64_BUS_SPACE_IO))
bus_space_set_region_io_4(bsh + ofs, val, count);
else {
uint64_t *bsp = (void *)(bsh + ofs);
while (count-- > 0)
ia64_st8(bsp++, val);
}
}
/*
* Copy count units of data from bus space described by the tag and the first
* handle and ofs pair to bus space described by the tag and the second handle
* and ofs pair. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes.
* The data is read from successive bus space addresses and also written to
* successive bus space addresses. Both reads and writes are unordered.
*/
void bus_space_copy_region_io_1(u_long, u_long, size_t);
void bus_space_copy_region_io_2(u_long, u_long, size_t);
void bus_space_copy_region_io_4(u_long, u_long, size_t);
void bus_space_copy_region_io_8(u_long, u_long, size_t);
static __inline void
bus_space_copy_region_1(bus_space_tag_t bst, bus_space_handle_t sbsh,
bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count)
{
uint8_t *dst, *src;
if (__predict_false(bst == IA64_BUS_SPACE_IO)) {
bus_space_copy_region_io_1(sbsh + sofs, dbsh + dofs, count);
return;
}
src = (void *)(sbsh + sofs);
dst = (void *)(dbsh + dofs);
if (src < dst) {
src += count - 1;
dst += count - 1;
while (count-- > 0)
ia64_st1(dst--, ia64_ld1(src--));
} else {
while (count-- > 0)
ia64_st1(dst++, ia64_ld1(src++));
}
}
static __inline void
bus_space_copy_region_2(bus_space_tag_t bst, bus_space_handle_t sbsh,
bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count)
{
uint16_t *dst, *src;
if (__predict_false(bst == IA64_BUS_SPACE_IO)) {
bus_space_copy_region_io_2(sbsh + sofs, dbsh + dofs, count);
return;
}
src = (void *)(sbsh + sofs);
dst = (void *)(dbsh + dofs);
if (src < dst) {
src += count - 1;
dst += count - 1;
while (count-- > 0)
ia64_st2(dst--, ia64_ld2(src--));
} else {
while (count-- > 0)
ia64_st2(dst++, ia64_ld2(src++));
}
}
static __inline void
bus_space_copy_region_4(bus_space_tag_t bst, bus_space_handle_t sbsh,
bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count)
{
uint32_t *dst, *src;
if (__predict_false(bst == IA64_BUS_SPACE_IO)) {
bus_space_copy_region_io_4(sbsh + sofs, dbsh + dofs, count);
return;
}
src = (void *)(sbsh + sofs);
dst = (void *)(dbsh + dofs);
if (src < dst) {
src += count - 1;
dst += count - 1;
while (count-- > 0)
ia64_st4(dst--, ia64_ld4(src--));
} else {
while (count-- > 0)
ia64_st4(dst++, ia64_ld4(src++));
}
}
static __inline void
bus_space_copy_region_8(bus_space_tag_t bst, bus_space_handle_t sbsh,
bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count)
{
uint64_t *dst, *src;
if (__predict_false(bst == IA64_BUS_SPACE_IO)) {
bus_space_copy_region_io_8(sbsh + sofs, dbsh + dofs, count);
return;
}
src = (void *)(sbsh + sofs);
dst = (void *)(dbsh + dofs);
if (src < dst) {
src += count - 1;
dst += count - 1;
while (count-- > 0)
ia64_st8(dst--, ia64_ld8(src--));
} else {
while (count-- > 0)
ia64_st8(dst++, ia64_ld8(src++));
}
}
/*
* Stream accesses are the same as normal accesses on ia64; there are no
* supported bus systems with an endianess different from the host one.
*/
#define bus_space_read_stream_1 bus_space_read_1
#define bus_space_read_stream_2 bus_space_read_2
#define bus_space_read_stream_4 bus_space_read_4
#define bus_space_read_stream_8 bus_space_read_8
#define bus_space_write_stream_1 bus_space_write_1
#define bus_space_write_stream_2 bus_space_write_2
#define bus_space_write_stream_4 bus_space_write_4
#define bus_space_write_stream_8 bus_space_write_8
#define bus_space_read_multi_stream_1 bus_space_read_multi_1
#define bus_space_read_multi_stream_2 bus_space_read_multi_2
#define bus_space_read_multi_stream_4 bus_space_read_multi_4
#define bus_space_read_multi_stream_8 bus_space_read_multi_8
#define bus_space_write_multi_stream_1 bus_space_write_multi_1
#define bus_space_write_multi_stream_2 bus_space_write_multi_2
#define bus_space_write_multi_stream_4 bus_space_write_multi_4
#define bus_space_write_multi_stream_8 bus_space_write_multi_8
#define bus_space_read_region_stream_1 bus_space_read_region_1
#define bus_space_read_region_stream_2 bus_space_read_region_2
#define bus_space_read_region_stream_4 bus_space_read_region_4
#define bus_space_read_region_stream_8 bus_space_read_region_8
#define bus_space_write_region_stream_1 bus_space_write_region_1
#define bus_space_write_region_stream_2 bus_space_write_region_2
#define bus_space_write_region_stream_4 bus_space_write_region_4
#define bus_space_write_region_stream_8 bus_space_write_region_8
#define bus_space_set_multi_stream_1 bus_space_set_multi_1
#define bus_space_set_multi_stream_2 bus_space_set_multi_2
#define bus_space_set_multi_stream_4 bus_space_set_multi_4
#define bus_space_set_multi_stream_8 bus_space_set_multi_8
#define bus_space_set_region_stream_1 bus_space_set_region_1
#define bus_space_set_region_stream_2 bus_space_set_region_2
#define bus_space_set_region_stream_4 bus_space_set_region_4
#define bus_space_set_region_stream_8 bus_space_set_region_8
#define bus_space_copy_region_stream_1 bus_space_copy_region_1
#define bus_space_copy_region_stream_2 bus_space_copy_region_2
#define bus_space_copy_region_stream_4 bus_space_copy_region_4
#define bus_space_copy_region_stream_8 bus_space_copy_region_8
#include <machine/bus_dma.h>
#endif /* _MACHINE_BUS_H_ */