freebsd-skq/sys/kern/kern_racct.c
avg 25c75ccb77 try to fix RACCT_RSS accounting
There could be a race between the vm daemon setting RACCT_RSS based on
the vm space and vmspace_exit (called from exit1) resetting RACCT_RSS to
zero.  In that case we can get a zombie process with non-zero RACCT_RSS.
If the process is jailed, that may break accounting for the jail.
There could be other consequences.

Fix this race in the vm daemon by updating RACCT_RSS only when a process
is in the normal state.  Also, make accounting a little bit more
accurate by refreshing the page resident count after calling
vm_pageout_map_deactivate_pages().
Finally, add an assert that the RSS is zero when a process is reaped.

PR:		210315
Reviewed by:	trasz
Differential Revision: https://reviews.freebsd.org/D9464
2017-02-14 13:54:05 +00:00

1343 lines
34 KiB
C

/*-
* Copyright (c) 2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Edward Tomasz Napierala under sponsorship
* from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/loginclass.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/resourcevar.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/umtx.h>
#include <machine/smp.h>
#ifdef RCTL
#include <sys/rctl.h>
#endif
#ifdef RACCT
FEATURE(racct, "Resource Accounting");
/*
* Do not block processes that have their %cpu usage <= pcpu_threshold.
*/
static int pcpu_threshold = 1;
#ifdef RACCT_DEFAULT_TO_DISABLED
int racct_enable = 0;
#else
int racct_enable = 1;
#endif
SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting");
SYSCTL_UINT(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable,
0, "Enable RACCT/RCTL");
SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold,
0, "Processes with higher %cpu usage than this value can be throttled.");
/*
* How many seconds it takes to use the scheduler %cpu calculations. When a
* process starts, we compute its %cpu usage by dividing its runtime by the
* process wall clock time. After RACCT_PCPU_SECS pass, we use the value
* provided by the scheduler.
*/
#define RACCT_PCPU_SECS 3
struct mtx racct_lock;
MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF);
static uma_zone_t racct_zone;
static void racct_sub_racct(struct racct *dest, const struct racct *src);
static void racct_sub_cred_locked(struct ucred *cred, int resource,
uint64_t amount);
static void racct_add_cred_locked(struct ucred *cred, int resource,
uint64_t amount);
SDT_PROVIDER_DEFINE(racct);
SDT_PROBE_DEFINE3(racct, , rusage, add,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, add__failure,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, add__buf,
"struct proc *", "const struct buf *", "int");
SDT_PROBE_DEFINE3(racct, , rusage, add__cred,
"struct ucred *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, add__force,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, set,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, set__failure,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, set__force,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, sub,
"struct proc *", "int", "uint64_t");
SDT_PROBE_DEFINE3(racct, , rusage, sub__cred,
"struct ucred *", "int", "uint64_t");
SDT_PROBE_DEFINE1(racct, , racct, create,
"struct racct *");
SDT_PROBE_DEFINE1(racct, , racct, destroy,
"struct racct *");
SDT_PROBE_DEFINE2(racct, , racct, join,
"struct racct *", "struct racct *");
SDT_PROBE_DEFINE2(racct, , racct, join__failure,
"struct racct *", "struct racct *");
SDT_PROBE_DEFINE2(racct, , racct, leave,
"struct racct *", "struct racct *");
int racct_types[] = {
[RACCT_CPU] =
RACCT_IN_MILLIONS,
[RACCT_DATA] =
RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
[RACCT_STACK] =
RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
[RACCT_CORE] =
RACCT_DENIABLE,
[RACCT_RSS] =
RACCT_RECLAIMABLE,
[RACCT_MEMLOCK] =
RACCT_RECLAIMABLE | RACCT_DENIABLE,
[RACCT_NPROC] =
RACCT_RECLAIMABLE | RACCT_DENIABLE,
[RACCT_NOFILE] =
RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
[RACCT_VMEM] =
RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
[RACCT_NPTS] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_SWAP] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_NTHR] =
RACCT_RECLAIMABLE | RACCT_DENIABLE,
[RACCT_MSGQQUEUED] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_MSGQSIZE] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_NMSGQ] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_NSEM] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_NSEMOP] =
RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
[RACCT_NSHM] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_SHMSIZE] =
RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
[RACCT_WALLCLOCK] =
RACCT_IN_MILLIONS,
[RACCT_PCTCPU] =
RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS,
[RACCT_READBPS] =
RACCT_DECAYING,
[RACCT_WRITEBPS] =
RACCT_DECAYING,
[RACCT_READIOPS] =
RACCT_DECAYING,
[RACCT_WRITEIOPS] =
RACCT_DECAYING };
static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE;
#ifdef SCHED_4BSD
/*
* Contains intermediate values for %cpu calculations to avoid using floating
* point in the kernel.
* ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20)
* It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to
* zero so the calculations are more straightforward.
*/
fixpt_t ccpu_exp[] = {
[0] = FSCALE * 1,
[1] = FSCALE * 0.95122942450071400909,
[2] = FSCALE * 0.90483741803595957316,
[3] = FSCALE * 0.86070797642505780722,
[4] = FSCALE * 0.81873075307798185866,
[5] = FSCALE * 0.77880078307140486824,
[6] = FSCALE * 0.74081822068171786606,
[7] = FSCALE * 0.70468808971871343435,
[8] = FSCALE * 0.67032004603563930074,
[9] = FSCALE * 0.63762815162177329314,
[10] = FSCALE * 0.60653065971263342360,
[11] = FSCALE * 0.57694981038048669531,
[12] = FSCALE * 0.54881163609402643262,
[13] = FSCALE * 0.52204577676101604789,
[14] = FSCALE * 0.49658530379140951470,
[15] = FSCALE * 0.47236655274101470713,
[16] = FSCALE * 0.44932896411722159143,
[17] = FSCALE * 0.42741493194872666992,
[18] = FSCALE * 0.40656965974059911188,
[19] = FSCALE * 0.38674102345450120691,
[20] = FSCALE * 0.36787944117144232159,
[21] = FSCALE * 0.34993774911115535467,
[22] = FSCALE * 0.33287108369807955328,
[23] = FSCALE * 0.31663676937905321821,
[24] = FSCALE * 0.30119421191220209664,
[25] = FSCALE * 0.28650479686019010032,
[26] = FSCALE * 0.27253179303401260312,
[27] = FSCALE * 0.25924026064589150757,
[28] = FSCALE * 0.24659696394160647693,
[29] = FSCALE * 0.23457028809379765313,
[30] = FSCALE * 0.22313016014842982893,
[31] = FSCALE * 0.21224797382674305771,
[32] = FSCALE * 0.20189651799465540848,
[33] = FSCALE * 0.19204990862075411423,
[34] = FSCALE * 0.18268352405273465022,
[35] = FSCALE * 0.17377394345044512668,
[36] = FSCALE * 0.16529888822158653829,
[37] = FSCALE * 0.15723716631362761621,
[38] = FSCALE * 0.14956861922263505264,
[39] = FSCALE * 0.14227407158651357185,
[40] = FSCALE * 0.13533528323661269189,
[41] = FSCALE * 0.12873490358780421886,
[42] = FSCALE * 0.12245642825298191021,
[43] = FSCALE * 0.11648415777349695786,
[44] = FSCALE * 0.11080315836233388333,
[45] = FSCALE * 0.10539922456186433678,
[46] = FSCALE * 0.10025884372280373372,
[47] = FSCALE * 0.09536916221554961888,
[48] = FSCALE * 0.09071795328941250337,
[49] = FSCALE * 0.08629358649937051097,
[50] = FSCALE * 0.08208499862389879516,
[51] = FSCALE * 0.07808166600115315231,
[52] = FSCALE * 0.07427357821433388042,
[53] = FSCALE * 0.07065121306042958674,
[54] = FSCALE * 0.06720551273974976512,
[55] = FSCALE * 0.06392786120670757270,
[56] = FSCALE * 0.06081006262521796499,
[57] = FSCALE * 0.05784432087483846296,
[58] = FSCALE * 0.05502322005640722902,
[59] = FSCALE * 0.05233970594843239308,
[60] = FSCALE * 0.04978706836786394297,
[61] = FSCALE * 0.04735892439114092119,
[62] = FSCALE * 0.04504920239355780606,
[63] = FSCALE * 0.04285212686704017991,
[64] = FSCALE * 0.04076220397836621516,
[65] = FSCALE * 0.03877420783172200988,
[66] = FSCALE * 0.03688316740124000544,
[67] = FSCALE * 0.03508435410084502588,
[68] = FSCALE * 0.03337326996032607948,
[69] = FSCALE * 0.03174563637806794323,
[70] = FSCALE * 0.03019738342231850073,
[71] = FSCALE * 0.02872463965423942912,
[72] = FSCALE * 0.02732372244729256080,
[73] = FSCALE * 0.02599112877875534358,
[74] = FSCALE * 0.02472352647033939120,
[75] = FSCALE * 0.02351774585600910823,
[76] = FSCALE * 0.02237077185616559577,
[77] = FSCALE * 0.02127973643837716938,
[78] = FSCALE * 0.02024191144580438847,
[79] = FSCALE * 0.01925470177538692429,
[80] = FSCALE * 0.01831563888873418029,
[81] = FSCALE * 0.01742237463949351138,
[82] = FSCALE * 0.01657267540176124754,
[83] = FSCALE * 0.01576441648485449082,
[84] = FSCALE * 0.01499557682047770621,
[85] = FSCALE * 0.01426423390899925527,
[86] = FSCALE * 0.01356855901220093175,
[87] = FSCALE * 0.01290681258047986886,
[88] = FSCALE * 0.01227733990306844117,
[89] = FSCALE * 0.01167856697039544521,
[90] = FSCALE * 0.01110899653824230649,
[91] = FSCALE * 0.01056720438385265337,
[92] = FSCALE * 0.01005183574463358164,
[93] = FSCALE * 0.00956160193054350793,
[94] = FSCALE * 0.00909527710169581709,
[95] = FSCALE * 0.00865169520312063417,
[96] = FSCALE * 0.00822974704902002884,
[97] = FSCALE * 0.00782837754922577143,
[98] = FSCALE * 0.00744658307092434051,
[99] = FSCALE * 0.00708340892905212004,
[100] = FSCALE * 0.00673794699908546709,
[101] = FSCALE * 0.00640933344625638184,
[102] = FSCALE * 0.00609674656551563610,
[103] = FSCALE * 0.00579940472684214321,
[104] = FSCALE * 0.00551656442076077241,
[105] = FSCALE * 0.00524751839918138427,
[106] = FSCALE * 0.00499159390691021621,
[107] = FSCALE * 0.00474815099941147558,
[108] = FSCALE * 0.00451658094261266798,
[109] = FSCALE * 0.00429630469075234057,
[110] = FSCALE * 0.00408677143846406699,
};
#endif
#define CCPU_EXP_MAX 110
/*
* This function is analogical to the getpcpu() function in the ps(1) command.
* They should both calculate in the same way so that the racct %cpu
* calculations are consistent with the values showed by the ps(1) tool.
* The calculations are more complex in the 4BSD scheduler because of the value
* of the ccpu variable. In ULE it is defined to be zero which saves us some
* work.
*/
static uint64_t
racct_getpcpu(struct proc *p, u_int pcpu)
{
u_int swtime;
#ifdef SCHED_4BSD
fixpt_t pctcpu, pctcpu_next;
#endif
#ifdef SMP
struct pcpu *pc;
int found;
#endif
fixpt_t p_pctcpu;
struct thread *td;
ASSERT_RACCT_ENABLED();
/*
* If the process is swapped out, we count its %cpu usage as zero.
* This behaviour is consistent with the userland ps(1) tool.
*/
if ((p->p_flag & P_INMEM) == 0)
return (0);
swtime = (ticks - p->p_swtick) / hz;
/*
* For short-lived processes, the sched_pctcpu() returns small
* values even for cpu intensive processes. Therefore we use
* our own estimate in this case.
*/
if (swtime < RACCT_PCPU_SECS)
return (pcpu);
p_pctcpu = 0;
FOREACH_THREAD_IN_PROC(p, td) {
if (td == PCPU_GET(idlethread))
continue;
#ifdef SMP
found = 0;
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
if (td == pc->pc_idlethread) {
found = 1;
break;
}
}
if (found)
continue;
#endif
thread_lock(td);
#ifdef SCHED_4BSD
pctcpu = sched_pctcpu(td);
/* Count also the yet unfinished second. */
pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT;
pctcpu_next += sched_pctcpu_delta(td);
p_pctcpu += max(pctcpu, pctcpu_next);
#else
/*
* In ULE the %cpu statistics are updated on every
* sched_pctcpu() call. So special calculations to
* account for the latest (unfinished) second are
* not needed.
*/
p_pctcpu += sched_pctcpu(td);
#endif
thread_unlock(td);
}
#ifdef SCHED_4BSD
if (swtime <= CCPU_EXP_MAX)
return ((100 * (uint64_t)p_pctcpu * 1000000) /
(FSCALE - ccpu_exp[swtime]));
#endif
return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE);
}
static void
racct_add_racct(struct racct *dest, const struct racct *src)
{
int i;
ASSERT_RACCT_ENABLED();
RACCT_LOCK_ASSERT();
/*
* Update resource usage in dest.
*/
for (i = 0; i <= RACCT_MAX; i++) {
KASSERT(dest->r_resources[i] >= 0,
("%s: resource %d propagation meltdown: dest < 0",
__func__, i));
KASSERT(src->r_resources[i] >= 0,
("%s: resource %d propagation meltdown: src < 0",
__func__, i));
dest->r_resources[i] += src->r_resources[i];
}
}
static void
racct_sub_racct(struct racct *dest, const struct racct *src)
{
int i;
ASSERT_RACCT_ENABLED();
RACCT_LOCK_ASSERT();
/*
* Update resource usage in dest.
*/
for (i = 0; i <= RACCT_MAX; i++) {
if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) {
KASSERT(dest->r_resources[i] >= 0,
("%s: resource %d propagation meltdown: dest < 0",
__func__, i));
KASSERT(src->r_resources[i] >= 0,
("%s: resource %d propagation meltdown: src < 0",
__func__, i));
KASSERT(src->r_resources[i] <= dest->r_resources[i],
("%s: resource %d propagation meltdown: src > dest",
__func__, i));
}
if (RACCT_CAN_DROP(i)) {
dest->r_resources[i] -= src->r_resources[i];
if (dest->r_resources[i] < 0)
dest->r_resources[i] = 0;
}
}
}
void
racct_create(struct racct **racctp)
{
if (!racct_enable)
return;
SDT_PROBE1(racct, , racct, create, racctp);
KASSERT(*racctp == NULL, ("racct already allocated"));
*racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO);
}
static void
racct_destroy_locked(struct racct **racctp)
{
struct racct *racct;
int i;
ASSERT_RACCT_ENABLED();
SDT_PROBE1(racct, , racct, destroy, racctp);
RACCT_LOCK_ASSERT();
KASSERT(racctp != NULL, ("NULL racctp"));
KASSERT(*racctp != NULL, ("NULL racct"));
racct = *racctp;
for (i = 0; i <= RACCT_MAX; i++) {
if (RACCT_IS_SLOPPY(i))
continue;
if (!RACCT_IS_RECLAIMABLE(i))
continue;
KASSERT(racct->r_resources[i] == 0,
("destroying non-empty racct: "
"%ju allocated for resource %d\n",
racct->r_resources[i], i));
}
uma_zfree(racct_zone, racct);
*racctp = NULL;
}
void
racct_destroy(struct racct **racct)
{
if (!racct_enable)
return;
RACCT_LOCK();
racct_destroy_locked(racct);
RACCT_UNLOCK();
}
/*
* Increase consumption of 'resource' by 'amount' for 'racct',
* but not its parents. Differently from other cases, 'amount' here
* may be less than zero.
*/
static void
racct_adjust_resource(struct racct *racct, int resource,
int64_t amount)
{
ASSERT_RACCT_ENABLED();
RACCT_LOCK_ASSERT();
KASSERT(racct != NULL, ("NULL racct"));
racct->r_resources[resource] += amount;
if (racct->r_resources[resource] < 0) {
KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource),
("%s: resource %d usage < 0", __func__, resource));
racct->r_resources[resource] = 0;
}
/*
* There are some cases where the racct %cpu resource would grow
* beyond 100% per core. For example in racct_proc_exit() we add
* the process %cpu usage to the ucred racct containers. If too
* many processes terminated in a short time span, the ucred %cpu
* resource could grow too much. Also, the 4BSD scheduler sometimes
* returns for a thread more than 100% cpu usage. So we set a sane
* boundary here to 100% * the maxumum number of CPUs.
*/
if ((resource == RACCT_PCTCPU) &&
(racct->r_resources[RACCT_PCTCPU] > 100 * 1000000 * (int64_t)MAXCPU))
racct->r_resources[RACCT_PCTCPU] = 100 * 1000000 * (int64_t)MAXCPU;
}
static int
racct_add_locked(struct proc *p, int resource, uint64_t amount, int force)
{
#ifdef RCTL
int error;
#endif
ASSERT_RACCT_ENABLED();
/*
* We need proc lock to dereference p->p_ucred.
*/
PROC_LOCK_ASSERT(p, MA_OWNED);
#ifdef RCTL
error = rctl_enforce(p, resource, amount);
if (error && !force && RACCT_IS_DENIABLE(resource)) {
SDT_PROBE3(racct, , rusage, add__failure, p, resource, amount);
return (error);
}
#endif
racct_adjust_resource(p->p_racct, resource, amount);
racct_add_cred_locked(p->p_ucred, resource, amount);
return (0);
}
/*
* Increase allocation of 'resource' by 'amount' for process 'p'.
* Return 0 if it's below limits, or errno, if it's not.
*/
int
racct_add(struct proc *p, int resource, uint64_t amount)
{
int error;
if (!racct_enable)
return (0);
SDT_PROBE3(racct, , rusage, add, p, resource, amount);
RACCT_LOCK();
error = racct_add_locked(p, resource, amount, 0);
RACCT_UNLOCK();
return (error);
}
/*
* Increase allocation of 'resource' by 'amount' for process 'p'.
* Doesn't check for limits and never fails.
*/
void
racct_add_force(struct proc *p, int resource, uint64_t amount)
{
if (!racct_enable)
return;
SDT_PROBE3(racct, , rusage, add__force, p, resource, amount);
RACCT_LOCK();
racct_add_locked(p, resource, amount, 1);
RACCT_UNLOCK();
}
static void
racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount)
{
struct prison *pr;
ASSERT_RACCT_ENABLED();
racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, amount);
for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource,
amount);
racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, amount);
}
/*
* Increase allocation of 'resource' by 'amount' for credential 'cred'.
* Doesn't check for limits and never fails.
*/
void
racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
{
if (!racct_enable)
return;
SDT_PROBE3(racct, , rusage, add__cred, cred, resource, amount);
RACCT_LOCK();
racct_add_cred_locked(cred, resource, amount);
RACCT_UNLOCK();
}
/*
* Account for disk IO resource consumption. Checks for limits,
* but never fails, due to disk limits being undeniable.
*/
void
racct_add_buf(struct proc *p, const struct buf *bp, int is_write)
{
ASSERT_RACCT_ENABLED();
PROC_LOCK_ASSERT(p, MA_OWNED);
SDT_PROBE3(racct, , rusage, add__buf, p, bp, is_write);
RACCT_LOCK();
if (is_write) {
racct_add_locked(curproc, RACCT_WRITEBPS, bp->b_bcount, 1);
racct_add_locked(curproc, RACCT_WRITEIOPS, 1, 1);
} else {
racct_add_locked(curproc, RACCT_READBPS, bp->b_bcount, 1);
racct_add_locked(curproc, RACCT_READIOPS, 1, 1);
}
RACCT_UNLOCK();
}
static int
racct_set_locked(struct proc *p, int resource, uint64_t amount, int force)
{
int64_t old_amount, decayed_amount, diff_proc, diff_cred;
#ifdef RCTL
int error;
#endif
ASSERT_RACCT_ENABLED();
/*
* We need proc lock to dereference p->p_ucred.
*/
PROC_LOCK_ASSERT(p, MA_OWNED);
old_amount = p->p_racct->r_resources[resource];
/*
* The diffs may be negative.
*/
diff_proc = amount - old_amount;
if (resource == RACCT_PCTCPU) {
/*
* Resources in per-credential racct containers may decay.
* If this is the case, we need to calculate the difference
* between the new amount and the proportional value of the
* old amount that has decayed in the ucred racct containers.
*/
decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
diff_cred = amount - decayed_amount;
} else
diff_cred = diff_proc;
#ifdef notyet
KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource),
("%s: usage of non-droppable resource %d dropping", __func__,
resource));
#endif
#ifdef RCTL
if (diff_proc > 0) {
error = rctl_enforce(p, resource, diff_proc);
if (error && !force && RACCT_IS_DENIABLE(resource)) {
SDT_PROBE3(racct, , rusage, set__failure, p, resource,
amount);
return (error);
}
}
#endif
racct_adjust_resource(p->p_racct, resource, diff_proc);
if (diff_cred > 0)
racct_add_cred_locked(p->p_ucred, resource, diff_cred);
else if (diff_cred < 0)
racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
return (0);
}
/*
* Set allocation of 'resource' to 'amount' for process 'p'.
* Return 0 if it's below limits, or errno, if it's not.
*
* Note that decreasing the allocation always returns 0,
* even if it's above the limit.
*/
int
racct_set(struct proc *p, int resource, uint64_t amount)
{
int error;
if (!racct_enable)
return (0);
SDT_PROBE3(racct, , rusage, set__force, p, resource, amount);
RACCT_LOCK();
error = racct_set_locked(p, resource, amount, 0);
RACCT_UNLOCK();
return (error);
}
void
racct_set_force(struct proc *p, int resource, uint64_t amount)
{
if (!racct_enable)
return;
SDT_PROBE3(racct, , rusage, set, p, resource, amount);
RACCT_LOCK();
racct_set_locked(p, resource, amount, 1);
RACCT_UNLOCK();
}
/*
* Returns amount of 'resource' the process 'p' can keep allocated.
* Allocating more than that would be denied, unless the resource
* is marked undeniable. Amount of already allocated resource does
* not matter.
*/
uint64_t
racct_get_limit(struct proc *p, int resource)
{
#ifdef RCTL
uint64_t available;
if (!racct_enable)
return (UINT64_MAX);
RACCT_LOCK();
available = rctl_get_limit(p, resource);
RACCT_UNLOCK();
return (available);
#else
return (UINT64_MAX);
#endif
}
/*
* Returns amount of 'resource' the process 'p' can keep allocated.
* Allocating more than that would be denied, unless the resource
* is marked undeniable. Amount of already allocated resource does
* matter.
*/
uint64_t
racct_get_available(struct proc *p, int resource)
{
#ifdef RCTL
uint64_t available;
if (!racct_enable)
return (UINT64_MAX);
RACCT_LOCK();
available = rctl_get_available(p, resource);
RACCT_UNLOCK();
return (available);
#else
return (UINT64_MAX);
#endif
}
/*
* Returns amount of the %cpu resource that process 'p' can add to its %cpu
* utilization. Adding more than that would lead to the process being
* throttled.
*/
static int64_t
racct_pcpu_available(struct proc *p)
{
#ifdef RCTL
uint64_t available;
ASSERT_RACCT_ENABLED();
RACCT_LOCK();
available = rctl_pcpu_available(p);
RACCT_UNLOCK();
return (available);
#else
return (INT64_MAX);
#endif
}
/*
* Decrease allocation of 'resource' by 'amount' for process 'p'.
*/
void
racct_sub(struct proc *p, int resource, uint64_t amount)
{
if (!racct_enable)
return;
SDT_PROBE3(racct, , rusage, sub, p, resource, amount);
/*
* We need proc lock to dereference p->p_ucred.
*/
PROC_LOCK_ASSERT(p, MA_OWNED);
KASSERT(RACCT_CAN_DROP(resource),
("%s: called for non-droppable resource %d", __func__, resource));
RACCT_LOCK();
KASSERT(amount <= p->p_racct->r_resources[resource],
("%s: freeing %ju of resource %d, which is more "
"than allocated %jd for %s (pid %d)", __func__, amount, resource,
(intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid));
racct_adjust_resource(p->p_racct, resource, -amount);
racct_sub_cred_locked(p->p_ucred, resource, amount);
RACCT_UNLOCK();
}
static void
racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount)
{
struct prison *pr;
ASSERT_RACCT_ENABLED();
racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, -amount);
for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource,
-amount);
racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, -amount);
}
/*
* Decrease allocation of 'resource' by 'amount' for credential 'cred'.
*/
void
racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
{
if (!racct_enable)
return;
SDT_PROBE3(racct, , rusage, sub__cred, cred, resource, amount);
#ifdef notyet
KASSERT(RACCT_CAN_DROP(resource),
("%s: called for resource %d which can not drop", __func__,
resource));
#endif
RACCT_LOCK();
racct_sub_cred_locked(cred, resource, amount);
RACCT_UNLOCK();
}
/*
* Inherit resource usage information from the parent process.
*/
int
racct_proc_fork(struct proc *parent, struct proc *child)
{
int i, error = 0;
if (!racct_enable)
return (0);
/*
* Create racct for the child process.
*/
racct_create(&child->p_racct);
PROC_LOCK(parent);
PROC_LOCK(child);
RACCT_LOCK();
#ifdef RCTL
error = rctl_proc_fork(parent, child);
if (error != 0)
goto out;
#endif
/* Init process cpu time. */
child->p_prev_runtime = 0;
child->p_throttled = 0;
/*
* Inherit resource usage.
*/
for (i = 0; i <= RACCT_MAX; i++) {
if (parent->p_racct->r_resources[i] == 0 ||
!RACCT_IS_INHERITABLE(i))
continue;
error = racct_set_locked(child, i,
parent->p_racct->r_resources[i], 0);
if (error != 0)
goto out;
}
error = racct_add_locked(child, RACCT_NPROC, 1, 0);
error += racct_add_locked(child, RACCT_NTHR, 1, 0);
out:
RACCT_UNLOCK();
PROC_UNLOCK(child);
PROC_UNLOCK(parent);
if (error != 0)
racct_proc_exit(child);
return (error);
}
/*
* Called at the end of fork1(), to handle rules that require the process
* to be fully initialized.
*/
void
racct_proc_fork_done(struct proc *child)
{
if (!racct_enable)
return;
PROC_LOCK_ASSERT(child, MA_OWNED);
#ifdef RCTL
RACCT_LOCK();
rctl_enforce(child, RACCT_NPROC, 0);
rctl_enforce(child, RACCT_NTHR, 0);
RACCT_UNLOCK();
#endif
}
void
racct_proc_exit(struct proc *p)
{
struct timeval wallclock;
uint64_t pct_estimate, pct, runtime;
int i;
if (!racct_enable)
return;
PROC_LOCK(p);
/*
* We don't need to calculate rux, proc_reap() has already done this.
*/
runtime = cputick2usec(p->p_rux.rux_runtime);
#ifdef notyet
KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime"));
#else
if (runtime < p->p_prev_runtime)
runtime = p->p_prev_runtime;
#endif
microuptime(&wallclock);
timevalsub(&wallclock, &p->p_stats->p_start);
if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
pct_estimate = (1000000 * runtime * 100) /
((uint64_t)wallclock.tv_sec * 1000000 +
wallclock.tv_usec);
} else
pct_estimate = 0;
pct = racct_getpcpu(p, pct_estimate);
RACCT_LOCK();
racct_set_locked(p, RACCT_CPU, runtime, 0);
racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct);
KASSERT(p->p_racct->r_resources[RACCT_RSS] == 0,
("process reaped with %ju allocated for RSS\n",
p->p_racct->r_resources[RACCT_RSS]));
for (i = 0; i <= RACCT_MAX; i++) {
if (p->p_racct->r_resources[i] == 0)
continue;
if (!RACCT_IS_RECLAIMABLE(i))
continue;
racct_set_locked(p, i, 0, 0);
}
#ifdef RCTL
rctl_racct_release(p->p_racct);
#endif
racct_destroy_locked(&p->p_racct);
RACCT_UNLOCK();
PROC_UNLOCK(p);
}
/*
* Called after credentials change, to move resource utilisation
* between raccts.
*/
void
racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred,
struct ucred *newcred)
{
struct uidinfo *olduip, *newuip;
struct loginclass *oldlc, *newlc;
struct prison *oldpr, *newpr, *pr;
if (!racct_enable)
return;
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
newuip = newcred->cr_ruidinfo;
olduip = oldcred->cr_ruidinfo;
newlc = newcred->cr_loginclass;
oldlc = oldcred->cr_loginclass;
newpr = newcred->cr_prison;
oldpr = oldcred->cr_prison;
RACCT_LOCK();
if (newuip != olduip) {
racct_sub_racct(olduip->ui_racct, p->p_racct);
racct_add_racct(newuip->ui_racct, p->p_racct);
}
if (newlc != oldlc) {
racct_sub_racct(oldlc->lc_racct, p->p_racct);
racct_add_racct(newlc->lc_racct, p->p_racct);
}
if (newpr != oldpr) {
for (pr = oldpr; pr != NULL; pr = pr->pr_parent)
racct_sub_racct(pr->pr_prison_racct->prr_racct,
p->p_racct);
for (pr = newpr; pr != NULL; pr = pr->pr_parent)
racct_add_racct(pr->pr_prison_racct->prr_racct,
p->p_racct);
}
RACCT_UNLOCK();
#ifdef RCTL
rctl_proc_ucred_changed(p, newcred);
#endif
}
void
racct_move(struct racct *dest, struct racct *src)
{
ASSERT_RACCT_ENABLED();
RACCT_LOCK();
racct_add_racct(dest, src);
racct_sub_racct(src, src);
RACCT_UNLOCK();
}
/*
* Make the process sleep in userret() for 'timeout' ticks. Setting
* timeout to -1 makes it sleep until woken up by racct_proc_wakeup().
*/
void
racct_proc_throttle(struct proc *p, int timeout)
{
struct thread *td;
#ifdef SMP
int cpuid;
#endif
KASSERT(timeout != 0, ("timeout %d", timeout));
ASSERT_RACCT_ENABLED();
PROC_LOCK_ASSERT(p, MA_OWNED);
/*
* Do not block kernel processes. Also do not block processes with
* low %cpu utilization to improve interactivity.
*/
if ((p->p_flag & (P_SYSTEM | P_KPROC)) != 0)
return;
if (p->p_throttled < 0 || (timeout > 0 && p->p_throttled > timeout))
return;
p->p_throttled = timeout;
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
switch (td->td_state) {
case TDS_RUNQ:
/*
* If the thread is on the scheduler run-queue, we can
* not just remove it from there. So we set the flag
* TDF_NEEDRESCHED for the thread, so that once it is
* running, it is taken off the cpu as soon as possible.
*/
td->td_flags |= TDF_NEEDRESCHED;
break;
case TDS_RUNNING:
/*
* If the thread is running, we request a context
* switch for it by setting the TDF_NEEDRESCHED flag.
*/
td->td_flags |= TDF_NEEDRESCHED;
#ifdef SMP
cpuid = td->td_oncpu;
if ((cpuid != NOCPU) && (td != curthread))
ipi_cpu(cpuid, IPI_AST);
#endif
break;
default:
break;
}
thread_unlock(td);
}
}
static void
racct_proc_wakeup(struct proc *p)
{
ASSERT_RACCT_ENABLED();
PROC_LOCK_ASSERT(p, MA_OWNED);
if (p->p_throttled != 0) {
p->p_throttled = 0;
wakeup(p->p_racct);
}
}
static void
racct_decay_callback(struct racct *racct, void *dummy1, void *dummy2)
{
int64_t r_old, r_new;
ASSERT_RACCT_ENABLED();
RACCT_LOCK_ASSERT();
#ifdef RCTL
rctl_throttle_decay(racct, RACCT_READBPS);
rctl_throttle_decay(racct, RACCT_WRITEBPS);
rctl_throttle_decay(racct, RACCT_READIOPS);
rctl_throttle_decay(racct, RACCT_WRITEIOPS);
#endif
r_old = racct->r_resources[RACCT_PCTCPU];
/* If there is nothing to decay, just exit. */
if (r_old <= 0)
return;
r_new = r_old * RACCT_DECAY_FACTOR / FSCALE;
racct->r_resources[RACCT_PCTCPU] = r_new;
}
static void
racct_decay_pre(void)
{
RACCT_LOCK();
}
static void
racct_decay_post(void)
{
RACCT_UNLOCK();
}
static void
racct_decay(void)
{
ASSERT_RACCT_ENABLED();
ui_racct_foreach(racct_decay_callback, racct_decay_pre,
racct_decay_post, NULL, NULL);
loginclass_racct_foreach(racct_decay_callback, racct_decay_pre,
racct_decay_post, NULL, NULL);
prison_racct_foreach(racct_decay_callback, racct_decay_pre,
racct_decay_post, NULL, NULL);
}
static void
racctd(void)
{
struct thread *td;
struct proc *p;
struct timeval wallclock;
uint64_t pct, pct_estimate, runtime;
ASSERT_RACCT_ENABLED();
for (;;) {
racct_decay();
sx_slock(&allproc_lock);
LIST_FOREACH(p, &zombproc, p_list) {
PROC_LOCK(p);
racct_set(p, RACCT_PCTCPU, 0);
PROC_UNLOCK(p);
}
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_state != PRS_NORMAL) {
PROC_UNLOCK(p);
continue;
}
microuptime(&wallclock);
timevalsub(&wallclock, &p->p_stats->p_start);
PROC_STATLOCK(p);
FOREACH_THREAD_IN_PROC(p, td)
ruxagg(p, td);
runtime = cputick2usec(p->p_rux.rux_runtime);
PROC_STATUNLOCK(p);
#ifdef notyet
KASSERT(runtime >= p->p_prev_runtime,
("runtime < p_prev_runtime"));
#else
if (runtime < p->p_prev_runtime)
runtime = p->p_prev_runtime;
#endif
p->p_prev_runtime = runtime;
if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
pct_estimate = (1000000 * runtime * 100) /
((uint64_t)wallclock.tv_sec * 1000000 +
wallclock.tv_usec);
} else
pct_estimate = 0;
pct = racct_getpcpu(p, pct_estimate);
RACCT_LOCK();
#ifdef RCTL
rctl_throttle_decay(p->p_racct, RACCT_READBPS);
rctl_throttle_decay(p->p_racct, RACCT_WRITEBPS);
rctl_throttle_decay(p->p_racct, RACCT_READIOPS);
rctl_throttle_decay(p->p_racct, RACCT_WRITEIOPS);
#endif
racct_set_locked(p, RACCT_PCTCPU, pct, 1);
racct_set_locked(p, RACCT_CPU, runtime, 0);
racct_set_locked(p, RACCT_WALLCLOCK,
(uint64_t)wallclock.tv_sec * 1000000 +
wallclock.tv_usec, 0);
RACCT_UNLOCK();
PROC_UNLOCK(p);
}
/*
* To ensure that processes are throttled in a fair way, we need
* to iterate over all processes again and check the limits
* for %cpu resource only after ucred racct containers have been
* properly filled.
*/
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_state != PRS_NORMAL) {
PROC_UNLOCK(p);
continue;
}
if (racct_pcpu_available(p) <= 0) {
if (p->p_racct->r_resources[RACCT_PCTCPU] >
pcpu_threshold)
racct_proc_throttle(p, -1);
} else if (p->p_throttled == -1) {
racct_proc_wakeup(p);
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
pause("-", hz);
}
}
static struct kproc_desc racctd_kp = {
"racctd",
racctd,
NULL
};
static void
racctd_init(void)
{
if (!racct_enable)
return;
kproc_start(&racctd_kp);
}
SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL);
static void
racct_init(void)
{
if (!racct_enable)
return;
racct_zone = uma_zcreate("racct", sizeof(struct racct),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
/*
* XXX: Move this somewhere.
*/
prison0.pr_prison_racct = prison_racct_find("0");
}
SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL);
#endif /* !RACCT */