fb400a0af9
address list. Generally follow the style and convention of similar parts in netinet. MFC after: 6 weeks
887 lines
23 KiB
C
887 lines
23 KiB
C
/*-
|
|
* Copyright (c) 1990,1991 Regents of The University of Michigan.
|
|
* Copyright (c) 2009 Robert N. M. Watson
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby granted,
|
|
* provided that the above copyright notice appears in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation, and that the name of The University
|
|
* of Michigan not be used in advertising or publicity pertaining to
|
|
* distribution of the software without specific, written prior
|
|
* permission. This software is supplied as is without expressed or
|
|
* implied warranties of any kind.
|
|
*
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
*
|
|
* Research Systems Unix Group
|
|
* The University of Michigan
|
|
* c/o Wesley Craig
|
|
* 535 W. William Street
|
|
* Ann Arbor, Michigan
|
|
* +1-313-764-2278
|
|
* netatalk@umich.edu
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <netinet/in.h>
|
|
#undef s_net
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
struct rwlock at_ifaddr_rw;
|
|
struct at_ifaddrhead at_ifaddrhead;
|
|
|
|
RW_SYSINIT(at_ifaddr_rw, &at_ifaddr_rw, "at_ifaddr_rw");
|
|
|
|
static int aa_dorangeroute(struct ifaddr *ifa, u_int first, u_int last,
|
|
int cmd);
|
|
static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
|
|
struct at_addr *mask);
|
|
static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
|
|
struct at_addr *mask);
|
|
static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr,
|
|
struct at_addr *mask, int cmd, int flags);
|
|
static int at_scrub(struct ifnet *ifp, struct at_ifaddr *aa);
|
|
static int at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa,
|
|
struct sockaddr_at *sat);
|
|
static int aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw);
|
|
|
|
#define sateqaddr(a,b) \
|
|
((a)->sat_len == (b)->sat_len && \
|
|
(a)->sat_family == (b)->sat_family && \
|
|
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
|
|
(a)->sat_addr.s_node == (b)->sat_addr.s_node)
|
|
|
|
int
|
|
at_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
|
|
struct thread *td)
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct sockaddr_at *sat;
|
|
struct netrange *nr;
|
|
struct at_aliasreq *ifra = (struct at_aliasreq *)data;
|
|
struct at_ifaddr *aa;
|
|
struct ifaddr *ifa;
|
|
int error;
|
|
|
|
/*
|
|
* If we have an ifp, then find the matching at_ifaddr if it exists
|
|
*/
|
|
aa = NULL;
|
|
AT_IFADDR_RLOCK();
|
|
if (ifp != NULL) {
|
|
TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
|
|
if (aa->aa_ifp == ifp)
|
|
break;
|
|
}
|
|
}
|
|
if (aa != NULL)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RUNLOCK();
|
|
|
|
/*
|
|
* In this first switch table we are basically getting ready for
|
|
* the second one, by getting the atalk-specific things set up
|
|
* so that they start to look more similar to other protocols etc.
|
|
*/
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCAIFADDR:
|
|
case SIOCDIFADDR:
|
|
/*
|
|
* If we have an appletalk sockaddr, scan forward of where we
|
|
* are now on the at_ifaddr list to find one with a matching
|
|
* address on this interface. This may leave aa pointing to
|
|
* the first address on the NEXT interface!
|
|
*/
|
|
if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
|
|
struct at_ifaddr *oaa;
|
|
|
|
AT_IFADDR_RLOCK();
|
|
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
|
|
if (aa->aa_ifp == ifp &&
|
|
sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
|
|
break;
|
|
}
|
|
if (oaa != NULL && oaa != aa)
|
|
ifa_free(&oaa->aa_ifa);
|
|
if (aa != NULL && oaa != aa)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RUNLOCK();
|
|
}
|
|
/*
|
|
* If we a retrying to delete an addres but didn't find such,
|
|
* then rewurn with an error
|
|
*/
|
|
if (cmd == SIOCDIFADDR && aa == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out;
|
|
}
|
|
/*FALLTHROUGH*/
|
|
|
|
case SIOCSIFADDR:
|
|
/*
|
|
* If we are not superuser, then we don't get to do these ops.
|
|
*
|
|
* XXXRW: Layering?
|
|
*/
|
|
if (priv_check(td, PRIV_NET_ADDIFADDR)) {
|
|
error = EPERM;
|
|
goto out;
|
|
}
|
|
|
|
sat = satosat(&ifr->ifr_addr);
|
|
nr = (struct netrange *)sat->sat_zero;
|
|
if (nr->nr_phase == 1) {
|
|
struct at_ifaddr *oaa;
|
|
|
|
/*
|
|
* Look for a phase 1 address on this interface.
|
|
* This may leave aa pointing to the first address on
|
|
* the NEXT interface!
|
|
*/
|
|
AT_IFADDR_RLOCK();
|
|
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2) == 0)
|
|
break;
|
|
}
|
|
if (oaa != NULL && oaa != aa)
|
|
ifa_free(&oaa->aa_ifa);
|
|
if (aa != NULL && oaa != aa)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RUNLOCK();
|
|
} else { /* default to phase 2 */
|
|
struct at_ifaddr *oaa;
|
|
|
|
/*
|
|
* Look for a phase 2 address on this interface.
|
|
* This may leave aa pointing to the first address on
|
|
* the NEXT interface!
|
|
*/
|
|
AT_IFADDR_RLOCK();
|
|
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
|
|
if (aa->aa_ifp == ifp && (aa->aa_flags &
|
|
AFA_PHASE2))
|
|
break;
|
|
}
|
|
if (oaa != NULL && oaa != aa)
|
|
ifa_free(&oaa->aa_ifa);
|
|
if (aa != NULL && oaa != aa)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RUNLOCK();
|
|
}
|
|
|
|
if (ifp == NULL)
|
|
panic("at_control");
|
|
|
|
/*
|
|
* If we failed to find an existing at_ifaddr entry, then we
|
|
* allocate a fresh one.
|
|
*/
|
|
if (aa == NULL) {
|
|
aa = malloc(sizeof(struct at_ifaddr), M_IFADDR,
|
|
M_NOWAIT | M_ZERO);
|
|
if (aa == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
callout_init(&aa->aa_callout, CALLOUT_MPSAFE);
|
|
|
|
ifa = (struct ifaddr *)aa;
|
|
ifa_init(ifa);
|
|
|
|
/*
|
|
* As the at_ifaddr contains the actual sockaddrs,
|
|
* and the ifaddr itself, link them all together
|
|
* correctly.
|
|
*/
|
|
ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr;
|
|
ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
|
|
ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask;
|
|
|
|
/*
|
|
* Set/clear the phase 2 bit.
|
|
*/
|
|
if (nr->nr_phase == 1)
|
|
aa->aa_flags &= ~AFA_PHASE2;
|
|
else
|
|
aa->aa_flags |= AFA_PHASE2;
|
|
|
|
ifa_ref(&aa->aa_ifa); /* at_ifaddrhead */
|
|
AT_IFADDR_WLOCK();
|
|
if (!TAILQ_EMPTY(&at_ifaddrhead)) {
|
|
/*
|
|
* Don't let the loopback be first, since the
|
|
* first address is the machine's default
|
|
* address for binding. If it is, stick
|
|
* ourself in front, otherwise go to the back
|
|
* of the list.
|
|
*/
|
|
if (TAILQ_FIRST(&at_ifaddrhead)->aa_ifp->
|
|
if_flags & IFF_LOOPBACK)
|
|
TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
|
|
aa_link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&at_ifaddrhead, aa,
|
|
aa_link);
|
|
} else
|
|
TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
|
|
aa_link);
|
|
AT_IFADDR_WUNLOCK();
|
|
|
|
/*
|
|
* and link it all together
|
|
*/
|
|
aa->aa_ifp = ifp;
|
|
ifa_ref(&aa->aa_ifa); /* if_addrhead */
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
|
|
IF_ADDR_UNLOCK(ifp);
|
|
} else {
|
|
/*
|
|
* If we DID find one then we clobber any routes
|
|
* dependent on it..
|
|
*/
|
|
at_scrub(ifp, aa);
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR :
|
|
sat = satosat(&ifr->ifr_addr);
|
|
nr = (struct netrange *)sat->sat_zero;
|
|
if (nr->nr_phase == 1) {
|
|
struct at_ifaddr *oaa;
|
|
|
|
/*
|
|
* If the request is specifying phase 1, then
|
|
* only look at a phase one address
|
|
*/
|
|
AT_IFADDR_RUNLOCK();
|
|
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2) == 0)
|
|
break;
|
|
}
|
|
if (oaa != NULL && oaa != aa)
|
|
ifa_free(&oaa->aa_ifa);
|
|
if (aa != NULL && oaa != aa)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RLOCK();
|
|
} else {
|
|
struct at_ifaddr *oaa;
|
|
|
|
/*
|
|
* default to phase 2
|
|
*/
|
|
AT_IFADDR_RLOCK();
|
|
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
|
|
if (aa->aa_ifp == ifp && (aa->aa_flags &
|
|
AFA_PHASE2))
|
|
break;
|
|
}
|
|
if (oaa != NULL && oaa != aa)
|
|
ifa_free(&oaa->aa_ifa);
|
|
if (aa != NULL && oaa != aa)
|
|
ifa_ref(&aa->aa_ifa);
|
|
AT_IFADDR_RUNLOCK();
|
|
}
|
|
|
|
if (aa == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* By the time this switch is run we should be able to assume that
|
|
* the "aa" pointer is valid when needed.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCGIFADDR:
|
|
|
|
/*
|
|
* copy the contents of the sockaddr blindly.
|
|
*/
|
|
sat = (struct sockaddr_at *)&ifr->ifr_addr;
|
|
*sat = aa->aa_addr;
|
|
|
|
/*
|
|
* and do some cleanups
|
|
*/
|
|
((struct netrange *)&sat->sat_zero)->nr_phase
|
|
= (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
|
|
((struct netrange *)&sat->sat_zero)->nr_firstnet =
|
|
aa->aa_firstnet;
|
|
((struct netrange *)&sat->sat_zero)->nr_lastnet =
|
|
aa->aa_lastnet;
|
|
break;
|
|
|
|
case SIOCSIFADDR:
|
|
error = at_ifinit(ifp, aa,
|
|
(struct sockaddr_at *)&ifr->ifr_addr);
|
|
goto out;
|
|
|
|
case SIOCAIFADDR:
|
|
if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
error = at_ifinit(ifp, aa,
|
|
(struct sockaddr_at *)&ifr->ifr_addr);
|
|
goto out;
|
|
|
|
case SIOCDIFADDR:
|
|
|
|
/*
|
|
* remove the ifaddr from the interface
|
|
*/
|
|
ifa = (struct ifaddr *)aa;
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
|
|
IF_ADDR_UNLOCK(ifp);
|
|
ifa_free(ifa); /* if_addrhead */
|
|
|
|
/*
|
|
* Now remove the at_ifaddr from the parallel structure
|
|
* as well, or we'd be in deep trouble
|
|
*/
|
|
|
|
AT_IFADDR_WLOCK();
|
|
TAILQ_REMOVE(&at_ifaddrhead, aa, aa_link);
|
|
AT_IFADDR_WUNLOCK();
|
|
ifa_free(ifa); /* at_ifaddrhead */
|
|
break;
|
|
|
|
default:
|
|
if (ifp == NULL || ifp->if_ioctl == NULL) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
error = ((*ifp->if_ioctl)(ifp, cmd, data));
|
|
}
|
|
|
|
out:
|
|
if (aa != NULL)
|
|
ifa_free(&aa->aa_ifa);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Given an interface and an at_ifaddr (supposedly on that interface)
|
|
* remove any routes that depend on this.
|
|
* Why ifp is needed I'm not sure,
|
|
* as aa->at_ifaddr.ifa_ifp should be the same.
|
|
*/
|
|
static int
|
|
at_scrub(struct ifnet *ifp, struct at_ifaddr *aa)
|
|
{
|
|
int error;
|
|
|
|
if (aa->aa_flags & AFA_ROUTE) {
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
if ((error = aa_delsingleroute(&aa->aa_ifa,
|
|
&aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr))
|
|
!= 0)
|
|
return (error);
|
|
} else if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
if ((error = rtinit(&aa->aa_ifa, RTM_DELETE,
|
|
RTF_HOST)) != 0)
|
|
return (error);
|
|
} else if (ifp->if_flags & IFF_BROADCAST) {
|
|
error = aa_dorangeroute(&aa->aa_ifa,
|
|
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
|
|
RTM_DELETE);
|
|
}
|
|
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
|
|
aa->aa_flags &= ~AFA_ROUTE;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* given an at_ifaddr,a sockaddr_at and an ifp,
|
|
* bang them all together at high speed and see what happens
|
|
*/
|
|
static int
|
|
at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat)
|
|
{
|
|
struct netrange nr, onr;
|
|
struct sockaddr_at oldaddr;
|
|
int error = 0, i, j;
|
|
int netinc, nodeinc, nnets;
|
|
u_short net;
|
|
|
|
/*
|
|
* save the old addresses in the at_ifaddr just in case we need them.
|
|
*/
|
|
oldaddr = aa->aa_addr;
|
|
onr.nr_firstnet = aa->aa_firstnet;
|
|
onr.nr_lastnet = aa->aa_lastnet;
|
|
|
|
/*
|
|
* take the address supplied as an argument, and add it to the
|
|
* at_ifnet (also given). Remember ing to update
|
|
* those parts of the at_ifaddr that need special processing
|
|
*/
|
|
bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
|
|
bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
|
|
bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
|
|
nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
|
|
aa->aa_firstnet = nr.nr_firstnet;
|
|
aa->aa_lastnet = nr.nr_lastnet;
|
|
|
|
/* XXX ALC */
|
|
#if 0
|
|
printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
|
|
ifp->if_name,
|
|
ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
|
|
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
|
|
(aa->aa_flags & AFA_PHASE2) ? 2 : 1);
|
|
#endif
|
|
|
|
/*
|
|
* We could eliminate the need for a second phase 1 probe (post
|
|
* autoconf) if we check whether we're resetting the node. Note
|
|
* that phase 1 probes use only nodes, not net.node pairs. Under
|
|
* phase 2, both the net and node must be the same.
|
|
*/
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
AA_SAT(aa)->sat_len = sat->sat_len;
|
|
AA_SAT(aa)->sat_family = AF_APPLETALK;
|
|
AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
|
|
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
|
|
#if 0
|
|
} else if (fp->if_flags & IFF_POINTOPOINT) {
|
|
/* unimplemented */
|
|
/*
|
|
* we'd have to copy the dstaddr field over from the sat
|
|
* but it's not clear that it would contain the right info..
|
|
*/
|
|
#endif
|
|
} else {
|
|
/*
|
|
* We are a normal (probably ethernet) interface.
|
|
* apply the new address to the interface structures etc.
|
|
* We will probe this address on the net first, before
|
|
* applying it to ensure that it is free.. If it is not, then
|
|
* we will try a number of other randomly generated addresses
|
|
* in this net and then increment the net. etc.etc. until
|
|
* we find an unused address.
|
|
*/
|
|
aa->aa_flags |= AFA_PROBING; /* not loopback we Must probe? */
|
|
AA_SAT(aa)->sat_len = sizeof(struct sockaddr_at);
|
|
AA_SAT(aa)->sat_family = AF_APPLETALK;
|
|
if (aa->aa_flags & AFA_PHASE2) {
|
|
if (sat->sat_addr.s_net == ATADDR_ANYNET) {
|
|
/*
|
|
* If we are phase 2, and the net was not
|
|
* specified then we select a random net
|
|
* within the supplied netrange.
|
|
* XXX use /dev/random?
|
|
*/
|
|
if (nnets != 1)
|
|
net = ntohs(nr.nr_firstnet) +
|
|
time_second % (nnets - 1);
|
|
else
|
|
net = ntohs(nr.nr_firstnet);
|
|
} else {
|
|
/*
|
|
* if a net was supplied, then check that it
|
|
* is within the netrange. If it is not then
|
|
* replace the old values and return an error
|
|
*/
|
|
if (ntohs(sat->sat_addr.s_net) <
|
|
ntohs(nr.nr_firstnet) ||
|
|
ntohs(sat->sat_addr.s_net) >
|
|
ntohs(nr.nr_lastnet)) {
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* otherwise just use the new net number..
|
|
*/
|
|
net = ntohs(sat->sat_addr.s_net);
|
|
}
|
|
} else {
|
|
/*
|
|
* we must be phase one, so just use whatever we were
|
|
* given. I guess it really isn't going to be
|
|
* used... RIGHT?
|
|
*/
|
|
net = ntohs(sat->sat_addr.s_net);
|
|
}
|
|
|
|
/*
|
|
* set the node part of the address into the ifaddr.
|
|
* If it's not specified, be random about it...
|
|
* XXX use /dev/random?
|
|
*/
|
|
if (sat->sat_addr.s_node == ATADDR_ANYNODE)
|
|
AA_SAT(aa)->sat_addr.s_node = time_second;
|
|
else
|
|
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
|
|
|
|
/*
|
|
* Copy the phase.
|
|
*/
|
|
AA_SAT(aa)->sat_range.r_netrange.nr_phase =
|
|
((aa->aa_flags & AFA_PHASE2) ? 2:1);
|
|
|
|
/*
|
|
* step through the nets in the range
|
|
* starting at the (possibly random) start point.
|
|
*/
|
|
for (i = nnets, netinc = 1; i > 0; net =
|
|
ntohs(nr.nr_firstnet) + ((net - ntohs(nr.nr_firstnet) +
|
|
netinc) % nnets), i--) {
|
|
AA_SAT(aa)->sat_addr.s_net = htons(net);
|
|
|
|
/*
|
|
* using a rather strange stepping method,
|
|
* stagger through the possible node addresses
|
|
* Once again, starting at the (possibly random)
|
|
* initial node address.
|
|
*/
|
|
for (j = 0, nodeinc = time_second | 1; j < 256;
|
|
j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
|
|
if (AA_SAT(aa)->sat_addr.s_node > 253 ||
|
|
AA_SAT(aa)->sat_addr.s_node < 1)
|
|
continue;
|
|
aa->aa_probcnt = 10;
|
|
|
|
/*
|
|
* start off the probes as an asynchronous
|
|
* activity. though why wait 200mSec?
|
|
*/
|
|
AARPTAB_LOCK();
|
|
callout_reset(&aa->aa_callout, hz / 5,
|
|
aarpprobe, ifp);
|
|
if (msleep(aa, &aarptab_mtx, PPAUSE|PCATCH,
|
|
"at_ifinit", 0)) {
|
|
AARPTAB_UNLOCK();
|
|
/*
|
|
* theoretically we shouldn't time
|
|
* out here so if we returned with an
|
|
* error..
|
|
*/
|
|
printf("at_ifinit: why did this "
|
|
"happen?!\n");
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
return (EINTR);
|
|
}
|
|
AARPTAB_UNLOCK();
|
|
|
|
/*
|
|
* The async activity should have woken us
|
|
* up. We need to see if it was successful
|
|
* in finding a free spot, or if we need to
|
|
* iterate to the next address to try.
|
|
*/
|
|
if ((aa->aa_flags & AFA_PROBING) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* of course we need to break out through two loops...
|
|
*/
|
|
if ((aa->aa_flags & AFA_PROBING) == 0)
|
|
break;
|
|
/* reset node for next network */
|
|
AA_SAT(aa)->sat_addr.s_node = time_second;
|
|
}
|
|
|
|
/*
|
|
* if we are still trying to probe, then we have finished all
|
|
* the possible addresses, so we need to give up
|
|
*/
|
|
if (aa->aa_flags & AFA_PROBING) {
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now that we have selected an address, we need to tell the interface
|
|
* about it, just in case it needs to adjust something.
|
|
*/
|
|
if (ifp->if_ioctl != NULL &&
|
|
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)aa))) {
|
|
/*
|
|
* of course this could mean that it objects violently
|
|
* so if it does, we back out again..
|
|
*/
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* set up the netmask part of the at_ifaddr
|
|
* and point the appropriate pointer in the ifaddr to it.
|
|
* probably pointless, but what the heck.. XXX
|
|
*/
|
|
bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
|
|
aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
|
|
aa->aa_netmask.sat_family = AF_APPLETALK;
|
|
aa->aa_netmask.sat_addr.s_net = 0xffff;
|
|
aa->aa_netmask.sat_addr.s_node = 0;
|
|
aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */
|
|
|
|
/*
|
|
* Initialize broadcast (or remote p2p) address
|
|
*/
|
|
bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
|
|
aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
|
|
aa->aa_broadaddr.sat_family = AF_APPLETALK;
|
|
|
|
aa->aa_ifa.ifa_metric = ifp->if_metric;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
aa->aa_broadaddr.sat_addr.s_net = htons(0);
|
|
aa->aa_broadaddr.sat_addr.s_node = 0xff;
|
|
aa->aa_ifa.ifa_broadaddr = (struct sockaddr *)
|
|
&aa->aa_broadaddr;
|
|
/* add the range of routes needed */
|
|
error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet),
|
|
ntohs(aa->aa_lastnet), RTM_ADD);
|
|
} else if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
struct at_addr rtaddr, rtmask;
|
|
|
|
bzero(&rtaddr, sizeof(rtaddr));
|
|
bzero(&rtmask, sizeof(rtmask));
|
|
/* fill in the far end if we know it here XXX */
|
|
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr;
|
|
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
|
|
} else if (ifp->if_flags & IFF_LOOPBACK) {
|
|
struct at_addr rtaddr, rtmask;
|
|
|
|
bzero(&rtaddr, sizeof(rtaddr));
|
|
bzero(&rtmask, sizeof(rtmask));
|
|
rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
|
|
rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
|
|
rtmask.s_net = 0xffff;
|
|
/* XXX should not be so.. should be HOST route */
|
|
rtmask.s_node = 0x0;
|
|
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
|
|
}
|
|
|
|
/*
|
|
* set the address of our "check if this addr is ours" routine.
|
|
*/
|
|
aa->aa_ifa.ifa_claim_addr = aa_claim_addr;
|
|
|
|
/*
|
|
* of course if we can't add these routes we back out, but it's
|
|
* getting risky by now XXX
|
|
*/
|
|
if (error) {
|
|
at_scrub(ifp, aa);
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* note that the address has a route associated with it....
|
|
*/
|
|
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
|
|
aa->aa_flags |= AFA_ROUTE;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* check whether a given address is a broadcast address for us..
|
|
*/
|
|
int
|
|
at_broadcast(struct sockaddr_at *sat)
|
|
{
|
|
struct at_ifaddr *aa;
|
|
|
|
AT_IFADDR_LOCK_ASSERT();
|
|
|
|
/*
|
|
* If the node is not right, it can't be a broadcast
|
|
*/
|
|
if (sat->sat_addr.s_node != ATADDR_BCAST)
|
|
return (0);
|
|
|
|
/*
|
|
* If the node was right then if the net is right, it's a broadcast
|
|
*/
|
|
if (sat->sat_addr.s_net == ATADDR_ANYNET)
|
|
return (1);
|
|
|
|
/*
|
|
* failing that, if the net is one we have, it's a broadcast as well.
|
|
*/
|
|
TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
|
|
if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
|
|
&& (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
|
|
&& ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* aa_dorangeroute()
|
|
*
|
|
* Add a route for a range of networks from bot to top - 1.
|
|
* Algorithm:
|
|
*
|
|
* Split the range into two subranges such that the middle
|
|
* of the two ranges is the point where the highest bit of difference
|
|
* between the two addresses makes its transition.
|
|
* Each of the upper and lower ranges might not exist, or might be
|
|
* representable by 1 or more netmasks. In addition, if both
|
|
* ranges can be represented by the same netmask, then they can be merged
|
|
* by using the next higher netmask..
|
|
*/
|
|
|
|
static int
|
|
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
|
|
{
|
|
u_int mask1;
|
|
struct at_addr addr;
|
|
struct at_addr mask;
|
|
int error;
|
|
|
|
/*
|
|
* slight sanity check
|
|
*/
|
|
if (bot > top) return (EINVAL);
|
|
|
|
addr.s_node = 0;
|
|
mask.s_node = 0;
|
|
/*
|
|
* just start out with the lowest boundary
|
|
* and keep extending the mask till it's too big.
|
|
*/
|
|
|
|
while (bot <= top) {
|
|
mask1 = 1;
|
|
while (((bot & ~mask1) >= bot) && ((bot | mask1) <= top)) {
|
|
mask1 <<= 1;
|
|
mask1 |= 1;
|
|
}
|
|
mask1 >>= 1;
|
|
mask.s_net = htons(~mask1);
|
|
addr.s_net = htons(bot);
|
|
if (cmd == RTM_ADD) {
|
|
error = aa_addsingleroute(ifa,&addr,&mask);
|
|
if (error) {
|
|
/* XXX clean up? */
|
|
return (error);
|
|
}
|
|
} else
|
|
error = aa_delsingleroute(ifa,&addr,&mask);
|
|
bot = (bot | mask1) + 1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
|
|
struct at_addr *mask)
|
|
{
|
|
|
|
#if 0
|
|
printf("aa_addsingleroute: %x.%x mask %x.%x ...\n",
|
|
ntohs(addr->s_net), addr->s_node, ntohs(mask->s_net),
|
|
mask->s_node);
|
|
#endif
|
|
|
|
return (aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP));
|
|
}
|
|
|
|
static int
|
|
aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
|
|
struct at_addr *mask)
|
|
{
|
|
|
|
return (aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0));
|
|
}
|
|
|
|
static int
|
|
aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr,
|
|
struct at_addr *at_mask, int cmd, int flags)
|
|
{
|
|
struct sockaddr_at addr, mask;
|
|
|
|
bzero(&addr, sizeof(addr));
|
|
bzero(&mask, sizeof(mask));
|
|
addr.sat_family = AF_APPLETALK;
|
|
addr.sat_len = sizeof(struct sockaddr_at);
|
|
addr.sat_addr.s_net = at_addr->s_net;
|
|
addr.sat_addr.s_node = at_addr->s_node;
|
|
mask.sat_family = AF_APPLETALK;
|
|
mask.sat_len = sizeof(struct sockaddr_at);
|
|
mask.sat_addr.s_net = at_mask->s_net;
|
|
mask.sat_addr.s_node = at_mask->s_node;
|
|
if (at_mask->s_node)
|
|
flags |= RTF_HOST;
|
|
return (rtrequest(cmd, (struct sockaddr *) &addr,
|
|
(flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr),
|
|
(struct sockaddr *) &mask, flags, NULL));
|
|
}
|
|
|
|
static int
|
|
aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw0)
|
|
{
|
|
struct sockaddr_at *addr = (struct sockaddr_at *)ifa->ifa_addr;
|
|
struct sockaddr_at *gw = (struct sockaddr_at *)gw0;
|
|
|
|
switch (gw->sat_range.r_netrange.nr_phase) {
|
|
case 1:
|
|
if(addr->sat_range.r_netrange.nr_phase == 1)
|
|
return (1);
|
|
|
|
case 0:
|
|
case 2:
|
|
/*
|
|
* if it's our net (including 0),
|
|
* or netranges are valid, and we are in the range,
|
|
* then it's ours.
|
|
*/
|
|
if ((addr->sat_addr.s_net == gw->sat_addr.s_net)
|
|
|| ((addr->sat_range.r_netrange.nr_lastnet)
|
|
&& (ntohs(gw->sat_addr.s_net) >=
|
|
ntohs(addr->sat_range.r_netrange.nr_firstnet))
|
|
&& (ntohs(gw->sat_addr.s_net) <=
|
|
ntohs(addr->sat_range.r_netrange.nr_lastnet))))
|
|
return (1);
|
|
break;
|
|
default:
|
|
printf("atalk: bad phase\n");
|
|
}
|
|
return (0);
|
|
}
|