freebsd-skq/sys/dev/ice/ice_nvm.c
erj e2031efd89 ice(4): Update to 0.26.16
Summary of changes:

- Assorted bug fixes
- Support for newer versions of the device firmware
- Suspend/resume support
- Support for Lenient Link Mode for E82X devices (e.g. can try to link with
  SFP/QSFP modules with bad EEPROMs)
- Adds port-level rx_discards sysctl, similar to ixl(4)'s

This version of the driver is intended to be used with DDP package 1.3.16.0,
which has already been updated in a previous commit.

Tested by:	Jeffrey Pieper <jeffrey.e.pieper@intel.com>
MFC after:	3 days
MFC with:	r365332, r365550
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D26322
2020-09-10 23:46:13 +00:00

1348 lines
39 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2020, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include "ice_common.h"
/**
* ice_aq_read_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @read_shadow_ram: tell if this is a shadow RAM read
* @cd: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands (0x0701)
*/
enum ice_status
ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
void *data, bool last_command, bool read_shadow_ram,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm;
if (offset > ICE_AQC_NVM_MAX_OFFSET)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = CPU_TO_LE16(module_typeid);
cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = CPU_TO_LE16(length);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_read_flat_nvm - Read portion of NVM by flat offset
* @hw: pointer to the HW struct
* @offset: offset from beginning of NVM
* @length: (in) number of bytes to read; (out) number of bytes actually read
* @data: buffer to return data in (sized to fit the specified length)
* @read_shadow_ram: if true, read from shadow RAM instead of NVM
*
* Reads a portion of the NVM, as a flat memory space. This function correctly
* breaks read requests across Shadow RAM sectors and ensures that no single
* read request exceeds the maximum 4KB read for a single AdminQ command.
*
* Returns a status code on failure. Note that the data pointer may be
* partially updated if some reads succeed before a failure.
*/
enum ice_status
ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
bool read_shadow_ram)
{
enum ice_status status;
u32 inlen = *length;
u32 bytes_read = 0;
bool last_cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
*length = 0;
/* Verify the length of the read if this is for the Shadow RAM */
if (read_shadow_ram && ((offset + inlen) > (hw->nvm.sr_words * 2u))) {
ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n");
return ICE_ERR_PARAM;
}
do {
u32 read_size, sector_offset;
/* ice_aq_read_nvm cannot read more than 4KB at a time.
* Additionally, a read from the Shadow RAM may not cross over
* a sector boundary. Conveniently, the sector size is also
* 4KB.
*/
sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
inlen - bytes_read);
last_cmd = !(bytes_read + read_size < inlen);
/* ice_aq_read_nvm takes the length as a u16. Our read_size is
* calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum
* size guarantees that it will fit within the 2 bytes.
*/
status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
offset, (u16)read_size,
data + bytes_read, last_cmd,
read_shadow_ram, NULL);
if (status)
break;
bytes_read += read_size;
offset += read_size;
} while (!last_cmd);
*length = bytes_read;
return status;
}
/**
* ice_aq_update_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be written (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @command_flags: command parameters
* @cd: pointer to command details structure or NULL
*
* Update the NVM using the admin queue commands (0x0703)
*/
enum ice_status
ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
u16 length, void *data, bool last_command, u8 command_flags,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
cmd->cmd_flags |= command_flags;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = CPU_TO_LE16(module_typeid);
cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = CPU_TO_LE16(length);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_aq_erase_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @cd: pointer to command details structure or NULL
*
* Erase the NVM sector using the admin queue commands (0x0702)
*/
enum ice_status
ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
cmd->module_typeid = CPU_TO_LE16(module_typeid);
cmd->length = CPU_TO_LE16(ICE_AQC_NVM_ERASE_LEN);
cmd->offset_low = 0;
cmd->offset_high = 0;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_read_nvm_cfg - read an NVM config block
* @hw: pointer to the HW struct
* @cmd_flags: NVM access admin command bits
* @field_id: field or feature ID
* @data: buffer for result
* @buf_size: buffer size
* @elem_count: pointer to count of elements read by FW
* @cd: pointer to command details structure or NULL
*
* Reads single or multiple feature/field ID and data (0x0704)
*/
enum ice_status
ice_aq_read_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, u16 field_id, void *data,
u16 buf_size, u16 *elem_count, struct ice_sq_cd *cd)
{
struct ice_aqc_nvm_cfg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm_cfg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_read);
cmd->cmd_flags = cmd_flags;
cmd->id = CPU_TO_LE16(field_id);
status = ice_aq_send_cmd(hw, &desc, data, buf_size, cd);
if (!status && elem_count)
*elem_count = LE16_TO_CPU(cmd->count);
return status;
}
/**
* ice_aq_write_nvm_cfg - write an NVM config block
* @hw: pointer to the HW struct
* @cmd_flags: NVM access admin command bits
* @data: buffer for result
* @buf_size: buffer size
* @elem_count: count of elements to be written
* @cd: pointer to command details structure or NULL
*
* Writes single or multiple feature/field ID and data (0x0705)
*/
enum ice_status
ice_aq_write_nvm_cfg(struct ice_hw *hw, u8 cmd_flags, void *data, u16 buf_size,
u16 elem_count, struct ice_sq_cd *cd)
{
struct ice_aqc_nvm_cfg *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm_cfg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_cfg_write);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->count = CPU_TO_LE16(elem_count);
cmd->cmd_flags = cmd_flags;
return ice_aq_send_cmd(hw, &desc, data, buf_size, cd);
}
/**
* ice_check_sr_access_params - verify params for Shadow RAM R/W operations.
* @hw: pointer to the HW structure
* @offset: offset in words from module start
* @words: number of words to access
*/
static enum ice_status
ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words)
{
if ((offset + words) > hw->nvm.sr_words) {
ice_debug(hw, ICE_DBG_NVM, "NVM error: offset beyond SR lmt.\n");
return ICE_ERR_PARAM;
}
if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) {
/* We can access only up to 4KB (one sector), in one AQ write */
ice_debug(hw, ICE_DBG_NVM, "NVM error: tried to access %d words, limit is %d.\n",
words, ICE_SR_SECTOR_SIZE_IN_WORDS);
return ICE_ERR_PARAM;
}
if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) !=
(offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) {
/* A single access cannot spread over two sectors */
ice_debug(hw, ICE_DBG_NVM, "NVM error: cannot spread over two sectors.\n");
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/**
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
*/
enum ice_status ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
{
u32 bytes = sizeof(u16);
enum ice_status status;
__le16 data_local;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Note that ice_read_flat_nvm checks if the read is past the Shadow
* RAM size, and ensures we don't read across a Shadow RAM sector
* boundary
*/
status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
(_FORCE_ u8 *)&data_local, true);
if (status)
return status;
*data = LE16_TO_CPU(data_local);
return ICE_SUCCESS;
}
/**
* ice_write_sr_aq - Writes Shadow RAM.
* @hw: pointer to the HW structure
* @offset: offset in words from module start
* @words: number of words to write
* @data: buffer with words to write to the Shadow RAM
* @last_command: tells the AdminQ that this is the last command
*
* Writes a 16 bit words buffer to the Shadow RAM using the admin command.
*/
static enum ice_status
ice_write_sr_aq(struct ice_hw *hw, u32 offset, u16 words, __le16 *data,
bool last_command)
{
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_check_sr_access_params(hw, offset, words);
if (!status)
status = ice_aq_update_nvm(hw, 0, 2 * offset, 2 * words, data,
last_command, 0, NULL);
return status;
}
/**
* ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @words: (in) number of words to read; (out) number of words actually read
* @data: words read from the Shadow RAM
*
* Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is
* taken before reading the buffer and later released.
*/
static enum ice_status
ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
{
u32 bytes = *words * 2, i;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM
* sector restrictions necessary when reading from the NVM.
*/
status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
/* Report the number of words successfully read */
*words = bytes / 2;
/* Byte swap the words up to the amount we actually read */
for (i = 0; i < *words; i++)
data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]);
return status;
}
/**
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
* @hw: pointer to the HW structure
* @access: NVM access type (read or write)
*
* This function will request NVM ownership.
*/
enum ice_status
ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->nvm.blank_nvm_mode)
return ICE_SUCCESS;
return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
}
/**
* ice_release_nvm - Generic request for releasing the NVM ownership
* @hw: pointer to the HW structure
*
* This function will release NVM ownership.
*/
void ice_release_nvm(struct ice_hw *hw)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->nvm.blank_nvm_mode)
return;
ice_release_res(hw, ICE_NVM_RES_ID);
}
/**
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_word_aq(hw, offset, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
* @hw: pointer to hardware structure
* @module_tlv: pointer to module TLV to return
* @module_tlv_len: pointer to module TLV length to return
* @module_type: module type requested
*
* Finds the requested sub module TLV type from the Preserved Field
* Area (PFA) and returns the TLV pointer and length. The caller can
* use these to read the variable length TLV value.
*/
enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
u16 module_type)
{
enum ice_status status;
u16 pfa_len, pfa_ptr;
u16 next_tlv;
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
return status;
}
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
return status;
}
/* Starting with first TLV after PFA length, iterate through the list
* of TLVs to find the requested one.
*/
next_tlv = pfa_ptr + 1;
while (next_tlv < pfa_ptr + pfa_len) {
u16 tlv_sub_module_type;
u16 tlv_len;
/* Read TLV type */
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
break;
}
/* Read TLV length */
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
break;
}
if (tlv_sub_module_type == module_type) {
if (tlv_len) {
*module_tlv = next_tlv;
*module_tlv_len = tlv_len;
return ICE_SUCCESS;
}
return ICE_ERR_INVAL_SIZE;
}
/* Check next TLV, i.e. current TLV pointer + length + 2 words
* (for current TLV's type and length)
*/
next_tlv = next_tlv + tlv_len + 2;
}
/* Module does not exist */
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_read_pba_string - Reads part number string from NVM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the NVM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the NVM.
*/
enum ice_status
ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
{
u16 pba_tlv, pba_tlv_len;
enum ice_status status;
u16 pba_word, pba_size;
u16 i;
status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
ICE_SR_PBA_BLOCK_PTR);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
return status;
}
/* pba_size is the next word */
status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
return status;
}
if (pba_tlv_len < pba_size) {
ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
return ICE_ERR_INVAL_SIZE;
}
/* Subtract one to get PBA word count (PBA Size word is included in
* total size)
*/
pba_size--;
if (pba_num_size < (((u32)pba_size * 2) + 1)) {
ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
return ICE_ERR_PARAM;
}
for (i = 0; i < pba_size; i++) {
status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
return status;
}
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
pba_num[(i * 2) + 1] = pba_word & 0xFF;
}
pba_num[(pba_size * 2)] = '\0';
return status;
}
/**
* ice_get_orom_ver_info - Read Option ROM version information
* @hw: pointer to the HW struct
*
* Read the Combo Image version data from the Boot Configuration TLV and fill
* in the option ROM version data.
*/
static enum ice_status ice_get_orom_ver_info(struct ice_hw *hw)
{
u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len;
struct ice_orom_info *orom = &hw->nvm.orom;
enum ice_status status;
u32 combo_ver;
status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len,
ICE_SR_BOOT_CFG_PTR);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read Boot Configuration Block TLV.\n");
return status;
}
/* Boot Configuration Block must have length at least 2 words
* (Combo Image Version High and Combo Image Version Low)
*/
if (boot_cfg_tlv_len < 2) {
ice_debug(hw, ICE_DBG_INIT, "Invalid Boot Configuration Block TLV size.\n");
return ICE_ERR_INVAL_SIZE;
}
status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF),
&combo_hi);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n");
return status;
}
status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1),
&combo_lo);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n");
return status;
}
combo_ver = ((u32)combo_hi << 16) | combo_lo;
orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >>
ICE_OROM_VER_SHIFT);
orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
ICE_OROM_VER_BUILD_SHIFT);
return ICE_SUCCESS;
}
/**
* ice_get_netlist_ver_info
* @hw: pointer to the HW struct
*
* Get the netlist version information
*/
enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw)
{
struct ice_netlist_ver_info *ver = &hw->netlist_ver;
enum ice_status ret;
u32 id_blk_start;
__le16 raw_data;
u16 data, i;
u16 *buff;
ret = ice_acquire_nvm(hw, ICE_RES_READ);
if (ret)
return ret;
buff = (u16 *)ice_calloc(hw, ICE_AQC_NVM_NETLIST_ID_BLK_LEN,
sizeof(*buff));
if (!buff) {
ret = ICE_ERR_NO_MEMORY;
goto exit_no_mem;
}
/* read module length */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
false, false, NULL);
if (ret)
goto exit_error;
data = LE16_TO_CPU(raw_data);
/* exit if length is = 0 */
if (!data)
goto exit_error;
/* read node count */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
false, false, NULL);
if (ret)
goto exit_error;
data = LE16_TO_CPU(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M;
/* netlist ID block starts from offset 4 + node count * 2 */
id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
/* read the entire netlist ID block */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
id_blk_start * 2,
ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
false, NULL);
if (ret)
goto exit_error;
for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
buff[i] = LE16_TO_CPU(((_FORCE_ __le16 *)buff)[i]);
ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
/* Read the left most 4 bytes of SHA */
ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
exit_error:
ice_free(hw, buff);
exit_no_mem:
ice_release_nvm(hw);
return ret;
}
/**
* ice_discover_flash_size - Discover the available flash size.
* @hw: pointer to the HW struct
*
* The device flash could be up to 16MB in size. However, it is possible that
* the actual size is smaller. Use bisection to determine the accessible size
* of flash memory.
*/
static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
{
u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
while ((max_size - min_size) > 1) {
u32 offset = (max_size + min_size) / 2;
u32 len = 1;
u8 data;
status = ice_read_flat_nvm(hw, offset, &len, &data, false);
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
__func__, offset);
status = ICE_SUCCESS;
max_size = offset;
} else if (!status) {
ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
__func__, offset);
min_size = offset;
} else {
/* an unexpected error occurred */
goto err_read_flat_nvm;
}
}
ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
hw->nvm.flash_size = max_size;
err_read_flat_nvm:
ice_release_nvm(hw);
return status;
}
/**
* ice_init_nvm - initializes NVM setting
* @hw: pointer to the HW struct
*
* This function reads and populates NVM settings such as Shadow RAM size,
* max_timeout, and blank_nvm_mode
*/
enum ice_status ice_init_nvm(struct ice_hw *hw)
{
struct ice_nvm_info *nvm = &hw->nvm;
u16 eetrack_lo, eetrack_hi, ver;
enum ice_status status;
u32 fla, gens_stat;
u8 sr_size;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* The SR size is stored regardless of the NVM programming mode
* as the blank mode may be used in the factory line.
*/
gens_stat = rd32(hw, GLNVM_GENS);
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
/* Switching to words (sr_size contains power of 2) */
nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
/* Check if we are in the normal or blank NVM programming mode */
fla = rd32(hw, GLNVM_FLA);
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
nvm->blank_nvm_mode = false;
} else {
/* Blank programming mode */
nvm->blank_nvm_mode = true;
ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
return ICE_ERR_NVM_BLANK_MODE;
}
status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &ver);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read DEV starter version.\n");
return status;
}
nvm->major_ver = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
nvm->minor_ver = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
return status;
}
status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
return status;
}
nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
status = ice_discover_flash_size(hw);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
return status;
}
status = ice_get_orom_ver_info(hw);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
return status;
}
/* read the netlist version information */
status = ice_get_netlist_ver_info(hw);
if (status)
ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
return ICE_SUCCESS;
}
/**
* ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @words: (in) number of words to read; (out) number of words actually read
* @data: words read from the Shadow RAM
*
* Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq
* method. The buf read is preceded by the NVM ownership take
* and followed by the release.
*/
enum ice_status
ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_buf_aq(hw, offset, words, data);
ice_release_nvm(hw);
}
return status;
}
/**
* __ice_write_sr_word - Writes Shadow RAM word
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to write
* @data: word to write to the Shadow RAM
*
* Writes a 16 bit word to the SR using the ice_write_sr_aq method.
* NVM ownership have to be acquired and released (on ARQ completion event
* reception) by caller. To commit SR to NVM update checksum function
* should be called.
*/
enum ice_status
__ice_write_sr_word(struct ice_hw *hw, u32 offset, const u16 *data)
{
__le16 data_local = CPU_TO_LE16(*data);
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Value 0x00 below means that we treat SR as a flat mem */
return ice_write_sr_aq(hw, offset, 1, &data_local, false);
}
/**
* __ice_write_sr_buf - Writes Shadow RAM buf
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM buffer to write
* @words: number of words to write
* @data: words to write to the Shadow RAM
*
* Writes a 16 bit words buffer to the Shadow RAM using the admin command.
* NVM ownership must be acquired before calling this function and released
* on ARQ completion event reception by caller. To commit SR to NVM update
* checksum function should be called.
*/
enum ice_status
__ice_write_sr_buf(struct ice_hw *hw, u32 offset, u16 words, const u16 *data)
{
enum ice_status status;
__le16 *data_local;
void *vmem;
u32 i;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
vmem = ice_calloc(hw, words, sizeof(u16));
if (!vmem)
return ICE_ERR_NO_MEMORY;
data_local = (_FORCE_ __le16 *)vmem;
for (i = 0; i < words; i++)
data_local[i] = CPU_TO_LE16(data[i]);
/* Here we will only write one buffer as the size of the modules
* mirrored in the Shadow RAM is always less than 4K.
*/
status = ice_write_sr_aq(hw, offset, words, data_local, false);
ice_free(hw, vmem);
return status;
}
/**
* ice_calc_sr_checksum - Calculates and returns Shadow RAM SW checksum
* @hw: pointer to hardware structure
* @checksum: pointer to the checksum
*
* This function calculates SW Checksum that covers the whole 64kB shadow RAM
* except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
* is customer specific and unknown. Therefore, this function skips all maximum
* possible size of VPD (1kB).
*/
static enum ice_status ice_calc_sr_checksum(struct ice_hw *hw, u16 *checksum)
{
enum ice_status status = ICE_SUCCESS;
u16 pcie_alt_module = 0;
u16 checksum_local = 0;
u16 vpd_module;
void *vmem;
u16 *data;
u16 i;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
vmem = ice_calloc(hw, ICE_SR_SECTOR_SIZE_IN_WORDS, sizeof(u16));
if (!vmem)
return ICE_ERR_NO_MEMORY;
data = (u16 *)vmem;
/* read pointer to VPD area */
status = ice_read_sr_word_aq(hw, ICE_SR_VPD_PTR, &vpd_module);
if (status)
goto ice_calc_sr_checksum_exit;
/* read pointer to PCIe Alt Auto-load module */
status = ice_read_sr_word_aq(hw, ICE_SR_PCIE_ALT_AUTO_LOAD_PTR,
&pcie_alt_module);
if (status)
goto ice_calc_sr_checksum_exit;
/* Calculate SW checksum that covers the whole 64kB shadow RAM
* except the VPD and PCIe ALT Auto-load modules
*/
for (i = 0; i < hw->nvm.sr_words; i++) {
/* Read SR page */
if ((i % ICE_SR_SECTOR_SIZE_IN_WORDS) == 0) {
u16 words = ICE_SR_SECTOR_SIZE_IN_WORDS;
status = ice_read_sr_buf_aq(hw, i, &words, data);
if (status != ICE_SUCCESS)
goto ice_calc_sr_checksum_exit;
}
/* Skip Checksum word */
if (i == ICE_SR_SW_CHECKSUM_WORD)
continue;
/* Skip VPD module (convert byte size to word count) */
if (i >= (u32)vpd_module &&
i < ((u32)vpd_module + ICE_SR_VPD_SIZE_WORDS))
continue;
/* Skip PCIe ALT module (convert byte size to word count) */
if (i >= (u32)pcie_alt_module &&
i < ((u32)pcie_alt_module + ICE_SR_PCIE_ALT_SIZE_WORDS))
continue;
checksum_local += data[i % ICE_SR_SECTOR_SIZE_IN_WORDS];
}
*checksum = (u16)ICE_SR_SW_CHECKSUM_BASE - checksum_local;
ice_calc_sr_checksum_exit:
ice_free(hw, vmem);
return status;
}
/**
* ice_update_sr_checksum - Updates the Shadow RAM SW checksum
* @hw: pointer to hardware structure
*
* NVM ownership must be acquired before calling this function and released
* on ARQ completion event reception by caller.
* This function will commit SR to NVM.
*/
enum ice_status ice_update_sr_checksum(struct ice_hw *hw)
{
enum ice_status status;
__le16 le_sum;
u16 checksum;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_calc_sr_checksum(hw, &checksum);
if (!status) {
le_sum = CPU_TO_LE16(checksum);
status = ice_write_sr_aq(hw, ICE_SR_SW_CHECKSUM_WORD, 1,
&le_sum, true);
}
return status;
}
/**
* ice_validate_sr_checksum - Validate Shadow RAM SW checksum
* @hw: pointer to hardware structure
* @checksum: calculated checksum
*
* Performs checksum calculation and validates the Shadow RAM SW checksum.
* If the caller does not need checksum, the value can be NULL.
*/
enum ice_status ice_validate_sr_checksum(struct ice_hw *hw, u16 *checksum)
{
enum ice_status status;
u16 checksum_local;
u16 checksum_sr;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_calc_sr_checksum(hw, &checksum_local);
ice_release_nvm(hw);
if (status)
return status;
} else {
return status;
}
ice_read_sr_word(hw, ICE_SR_SW_CHECKSUM_WORD, &checksum_sr);
/* Verify read checksum from EEPROM is the same as
* calculated checksum
*/
if (checksum_local != checksum_sr)
status = ICE_ERR_NVM_CHECKSUM;
/* If the user cares, return the calculated checksum */
if (checksum)
*checksum = checksum_local;
return status;
}
/**
* ice_nvm_validate_checksum
* @hw: pointer to the HW struct
*
* Verify NVM PFA checksum validity (0x0706)
*/
enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
{
struct ice_aqc_nvm_checksum *cmd;
struct ice_aq_desc desc;
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
cmd = &desc.params.nvm_checksum;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
ice_release_nvm(hw);
if (!status)
if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
status = ICE_ERR_NVM_CHECKSUM;
return status;
}
/**
* ice_nvm_access_get_features - Return the NVM access features structure
* @cmd: NVM access command to process
* @data: storage for the driver NVM features
*
* Fill in the data section of the NVM access request with a copy of the NVM
* features structure.
*/
enum ice_status
ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
/* The provided data_size must be at least as large as our NVM
* features structure. A larger size should not be treated as an
* error, to allow future extensions to the features structure to
* work on older drivers.
*/
if (cmd->data_size < sizeof(struct ice_nvm_features))
return ICE_ERR_NO_MEMORY;
/* Initialize the data buffer to zeros */
ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
/* Fill in the features data */
data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER;
data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER;
data->drv_features.size = sizeof(struct ice_nvm_features);
data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS;
return ICE_SUCCESS;
}
/**
* ice_nvm_access_get_module - Helper function to read module value
* @cmd: NVM access command structure
*
* Reads the module value out of the NVM access config field.
*/
u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S);
}
/**
* ice_nvm_access_get_flags - Helper function to read flags value
* @cmd: NVM access command structure
*
* Reads the flags value out of the NVM access config field.
*/
u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S);
}
/**
* ice_nvm_access_get_adapter - Helper function to read adapter info
* @cmd: NVM access command structure
*
* Read the adapter info value out of the NVM access config field.
*/
u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >>
ICE_NVM_CFG_ADAPTER_INFO_S);
}
/**
* ice_validate_nvm_rw_reg - Check than an NVM access request is valid
* @cmd: NVM access command structure
*
* Validates that an NVM access structure is request to read or write a valid
* register offset. First validates that the module and flags are correct, and
* then ensures that the register offset is one of the accepted registers.
*/
static enum ice_status
ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd)
{
u32 module, flags, offset;
u16 i;
module = ice_nvm_access_get_module(cmd);
flags = ice_nvm_access_get_flags(cmd);
offset = cmd->offset;
/* Make sure the module and flags indicate a read/write request */
if (module != ICE_NVM_REG_RW_MODULE ||
flags != ICE_NVM_REG_RW_FLAGS ||
cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval))
return ICE_ERR_PARAM;
switch (offset) {
case GL_HICR:
case GL_HICR_EN: /* Note, this register is read only */
case GL_FWSTS:
case GL_MNG_FWSM:
case GLGEN_CSR_DEBUG_C:
case GLGEN_RSTAT:
case GLPCI_LBARCTRL:
case GLNVM_GENS:
case GLNVM_FLA:
case PF_FUNC_RID:
return ICE_SUCCESS;
default:
break;
}
for (i = 0; i <= ICE_NVM_ACCESS_GL_HIDA_MAX; i++)
if (offset == (u32)GL_HIDA(i))
return ICE_SUCCESS;
for (i = 0; i <= ICE_NVM_ACCESS_GL_HIBA_MAX; i++)
if (offset == (u32)GL_HIBA(i))
return ICE_SUCCESS;
/* All other register offsets are not valid */
return ICE_ERR_OUT_OF_RANGE;
}
/**
* ice_nvm_access_read - Handle an NVM read request
* @hw: pointer to the HW struct
* @cmd: NVM access command to process
* @data: storage for the register value read
*
* Process an NVM access request to read a register.
*/
enum ice_status
ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Always initialize the output data, even on failure */
ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
/* Make sure this is a valid read/write access request */
status = ice_validate_nvm_rw_reg(cmd);
if (status)
return status;
ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n",
cmd->offset);
/* Read the register and store the contents in the data field */
data->regval = rd32(hw, cmd->offset);
return ICE_SUCCESS;
}
/**
* ice_nvm_access_write - Handle an NVM write request
* @hw: pointer to the HW struct
* @cmd: NVM access command to process
* @data: NVM access data to write
*
* Process an NVM access request to write a register.
*/
enum ice_status
ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Make sure this is a valid read/write access request */
status = ice_validate_nvm_rw_reg(cmd);
if (status)
return status;
/* Reject requests to write to read-only registers */
switch (cmd->offset) {
case GL_HICR_EN:
case GLGEN_RSTAT:
return ICE_ERR_OUT_OF_RANGE;
default:
break;
}
ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n",
cmd->offset, data->regval);
/* Write the data field to the specified register */
wr32(hw, cmd->offset, data->regval);
return ICE_SUCCESS;
}
/**
* ice_handle_nvm_access - Handle an NVM access request
* @hw: pointer to the HW struct
* @cmd: NVM access command info
* @data: pointer to read or return data
*
* Process an NVM access request. Read the command structure information and
* determine if it is valid. If not, report an error indicating the command
* was invalid.
*
* For valid commands, perform the necessary function, copying the data into
* the provided data buffer.
*/
enum ice_status
ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
u32 module, flags, adapter_info;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Extended flags are currently reserved and must be zero */
if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0)
return ICE_ERR_PARAM;
/* Adapter info must match the HW device ID */
adapter_info = ice_nvm_access_get_adapter(cmd);
if (adapter_info != hw->device_id)
return ICE_ERR_PARAM;
switch (cmd->command) {
case ICE_NVM_CMD_READ:
module = ice_nvm_access_get_module(cmd);
flags = ice_nvm_access_get_flags(cmd);
/* Getting the driver's NVM features structure shares the same
* command type as reading a register. Read the config field
* to determine if this is a request to get features.
*/
if (module == ICE_NVM_GET_FEATURES_MODULE &&
flags == ICE_NVM_GET_FEATURES_FLAGS &&
cmd->offset == 0)
return ice_nvm_access_get_features(cmd, data);
else
return ice_nvm_access_read(hw, cmd, data);
case ICE_NVM_CMD_WRITE:
return ice_nvm_access_write(hw, cmd, data);
default:
return ICE_ERR_PARAM;
}
}