freebsd-skq/sys/boot/sparc64/loader/main.c
2001-10-15 14:35:39 +00:00

321 lines
7.3 KiB
C

/*
* Initial implementation:
* Copyright (c) 2001 Robert Drehmel
* All rights reserved.
*
* As long as the above copyright statement and this notice remain
* unchanged, you can do what ever you want with this file.
*
* $FreeBSD$
*/
/*
* FreeBSD/sparc64 kernel loader - machine dependent part
*
* - implements copyin and readin functions that map kernel
* pages on demand. The machine independent code does not
* know the size of the kernel early enough to pre-enter
* TTEs and install just one 4MB mapping seemed to limiting
* to me.
*/
#include <stand.h>
#include <sys/exec.h>
#include <sys/param.h>
#include <sys/linker.h>
#include <machine/asi.h>
#include <machine/bootinfo.h>
#include <machine/elf.h>
#include <machine/tte.h>
#include "bootstrap.h"
#include "libofw.h"
enum {
HEAPVA = 0x800000,
HEAPSZ = 0x1000000,
LOADSZ = 0x1000000 /* for kernel and modules */
};
struct memory_slice {
vm_offset_t pstart;
vm_offset_t size;
};
extern int ofw_gate(void *);
extern void itlb_enter(int, vm_offset_t, vm_offset_t, unsigned long);
extern void dtlb_enter(int, vm_offset_t, vm_offset_t, unsigned long);
extern vm_offset_t itlb_va_to_pa(vm_offset_t);
extern vm_offset_t dtlb_va_to_pa(vm_offset_t);
extern void jmpkern(vm_offset_t, struct bootinfo *);
static int elf_exec(struct preloaded_file *);
static int sparc64_autoload(void);
static int mmu_mapin(vm_offset_t, vm_size_t);
char __progname[] = "FreeBSD/sparc64 loader";
vm_offset_t kernelpa; /* Begin of kernel and mod memory. */
vm_offset_t curkpg; /* (PA) used for on-demand map-in. */
vm_offset_t curkva = 0;
vm_offset_t heapva;
int tlbslot = 60; /* Insert first entry at this TLB slot. */
phandle_t pmemh; /* OFW memory handle */
struct memory_slice memslices[18];
struct ofw_devdesc bootdev;
/*
* Machine dependent structures that the machine independent
* loader part uses.
*/
struct devsw *devsw[] = {
&ofwdisk,
0
};
struct arch_switch archsw;
struct file_format sparc64_elf = {
elf_loadfile,
elf_exec
};
struct file_format *file_formats[] = {
&sparc64_elf,
0
};
struct fs_ops *file_system[] = {
&ufs_fsops,
0
};
extern struct console ofwconsole;
struct console *consoles[] = {
&ofwconsole,
0
};
/*
* archsw functions
*/
static int
sparc64_autoload(void)
{
printf("nothing to autoload yet.\n");
return 0;
}
static ssize_t
sparc64_readin(const int fd, vm_offset_t va, const size_t len)
{
mmu_mapin(va, len);
return read(fd, (void *)va, len);
}
static ssize_t
sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
{
mmu_mapin(dest, len);
memcpy((void *)dest, src, len);
return len;
}
/*
* other MD functions
*/
static int
elf_exec(struct preloaded_file *fp)
{
struct file_metadata *fmp;
struct bootinfo bi, *bip;
Elf_Ehdr *Ehdr;
vm_offset_t entry;
if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0) {
return EFTYPE;
}
Ehdr = (Elf_Ehdr *)&fmp->md_data;
entry = Ehdr->e_entry;
/* align the bootinfo structure on an eight byte boundary */
bip = (struct bootinfo *)(curkva + 8 & 0x7);
bi.bi_version = BOOTINFO_VERSION;
bi.bi_kpa = kernelpa;
bi.bi_end = (vm_offset_t)(bip + 1);
bi.bi_metadata = 0;
sparc64_copyin(&bi, bip, sizeof(struct bootinfo));
printf("jumping to kernel entry at 0x%lx.\n", entry);
#if 0
pmap_print_tlb('i');
pmap_print_tlb('d');
#endif
jmpkern(entry, bip);
return 1;
}
static int
mmu_mapin(vm_offset_t va, vm_size_t len)
{
printf("mmu_mapin(): access to 0x%lx-0x%lx requested\n", va, va + len);
if (va + len > curkva)
curkva = va + len;
len += va & 0x3fffff;
va &= ~0x3fffff;
while (len) {
if (dtlb_va_to_pa(va) == (vm_offset_t)-1 ||
itlb_va_to_pa(va) == (vm_offset_t)-1) {
printf("mmu_mapin(): map pa 0x%lx as va 0x%lx.\n",
curkpg, va);
dtlb_enter(tlbslot, curkpg, va,
TD_V | TD_4M | TD_L | TD_CP | TD_CV | TD_P | TD_W);
itlb_enter(tlbslot, curkpg, va,
TD_V | TD_4M | TD_L | TD_CP | TD_CV | TD_P | TD_W);
tlbslot--;
curkpg += 0x400000;
}
len -= len > 0x400000 ? 0x400000 : len;
va += 0x400000;
}
return 0;
}
static vm_offset_t
init_heap(void)
{
if ((pmemh = OF_finddevice("/memory")) == (phandle_t)-1)
OF_exit();
if (OF_getprop(pmemh, "reg", memslices, sizeof(memslices)) <= 0)
OF_exit();
/* Reserve 16 MB continuous for kernel and modules. */
kernelpa = (vm_offset_t)OF_alloc_phys(LOADSZ, 0x400000);
curkpg = kernelpa;
/* There is no need for continuous physical heap memory. */
heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
return heapva;
}
int main(int (*openfirm)(void *))
{
char bootpath[64];
struct devsw **dp;
phandle_t chosenh;
/*
* Tell the OpenFirmware functions where they find the ofw gate.
*/
OF_init(&ofw_gate);
archsw.arch_getdev = ofw_getdev;
archsw.arch_copyin = sparc64_copyin;
archsw.arch_copyout = ofw_copyout;
archsw.arch_readin = sparc64_readin;
archsw.arch_autoload = sparc64_autoload;
init_heap();
setheap((void *)heapva, (void *)(heapva + HEAPSZ));
/*
* Probe for a console.
*/
cons_probe();
bcache_init(32, 512);
/*
* Initialize devices.
*/
for (dp = devsw; *dp != 0; dp++) {
if ((*dp)->dv_init != 0)
(*dp)->dv_init();
}
/*
* Set up the current device.
*/
chosenh = OF_finddevice("/chosen");
OF_getprop(chosenh, "bootpath", bootpath, sizeof(bootpath));
bootdev.d_type = ofw_devicetype(bootpath);
switch (bootdev.d_type) {
case DEVT_DISK:
bootdev.d_dev = &ofwdisk;
strncpy(bootdev.d_kind.ofwdisk.path, bootpath, 64);
ofw_parseofwdev(&bootdev, bootpath);
break;
case DEVT_NET:
//bootdev.d_dev = &netdev;
strncpy(bootdev.d_kind.netif.path, bootpath, 64);
bootdev.d_kind.netif.unit = 0;
break;
}
env_setenv("currdev", EV_VOLATILE, ofw_fmtdev(&bootdev),
ofw_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, ofw_fmtdev(&bootdev),
env_noset, env_nounset);
printf("%s\n", __progname);
printf("bootpath=\"%s\"\n", bootpath);
printf("loaddev=%s\n", getenv("loaddev"));
printf("kernelpa=0x%x\n", curkpg);
/* Give control to the machine independent loader code. */
interact();
return 1;
}
typedef u_int64_t tte_t;
const char *page_sizes[] = {
" 8k", " 64k", "512k", " 4m"
};
static void
pmap_print_tte(tte_t tag, tte_t tte)
{
printf("%s %s ",
page_sizes[(tte & TD_SIZE_MASK) >> TD_SIZE_SHIFT],
tag & TD_G ? "G" : " ");
printf(tte & TD_W ? "W " : " ");
printf(tte & TD_P ? "\e[33mP\e[0m " : " ");
printf(tte & TD_E ? "E " : " ");
printf(tte & TD_CV ? "CV " : " ");
printf(tte & TD_CP ? "CP " : " ");
printf(tte & TD_L ? "\e[32mL\e[0m " : " ");
printf(tte & TD_IE ? "IE " : " ");
printf(tte & TD_NFO ? "NFO " : " ");
printf("tag=0x%lx pa=0x%lx va=0x%lx ctx=%d\n", tag, TD_PA(tte),
TT_VA(tag), TT_CTX(tag));
}
void
pmap_print_tlb(char which)
{
int i;
tte_t tte, tag;
for (i = 0; i < 64*8; i += 8) {
if (which == 'i') {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_ITLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_ITLB_DATA_ACCESS_REG));
}
else {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_DTLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_DTLB_DATA_ACCESS_REG));
}
if (!(tte & TD_V))
continue;
printf("%cTLB-%2u: ", which, i>>3);
pmap_print_tte(tag, tte);
}
}