freebsd-skq/sys/dev/netmap/netmap.c
2013-05-02 16:01:04 +00:00

2555 lines
70 KiB
C

/*
* Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define NM_BRIDGE
/*
* This module supports memory mapped access to network devices,
* see netmap(4).
*
* The module uses a large, memory pool allocated by the kernel
* and accessible as mmapped memory by multiple userspace threads/processes.
* The memory pool contains packet buffers and "netmap rings",
* i.e. user-accessible copies of the interface's queues.
*
* Access to the network card works like this:
* 1. a process/thread issues one or more open() on /dev/netmap, to create
* select()able file descriptor on which events are reported.
* 2. on each descriptor, the process issues an ioctl() to identify
* the interface that should report events to the file descriptor.
* 3. on each descriptor, the process issues an mmap() request to
* map the shared memory region within the process' address space.
* The list of interesting queues is indicated by a location in
* the shared memory region.
* 4. using the functions in the netmap(4) userspace API, a process
* can look up the occupation state of a queue, access memory buffers,
* and retrieve received packets or enqueue packets to transmit.
* 5. using some ioctl()s the process can synchronize the userspace view
* of the queue with the actual status in the kernel. This includes both
* receiving the notification of new packets, and transmitting new
* packets on the output interface.
* 6. select() or poll() can be used to wait for events on individual
* transmit or receive queues (or all queues for a given interface).
*/
#ifdef linux
#include "bsd_glue.h"
static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev);
#endif /* linux */
#ifdef __APPLE__
#include "osx_glue.h"
#endif /* __APPLE__ */
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/param.h> /* defines used in kernel.h */
#include <sys/jail.h>
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* cdevsw struct */
#include <sys/uio.h> /* uio struct */
#include <sys/sockio.h>
#include <sys/socketvar.h> /* struct socket */
#include <sys/malloc.h>
#include <sys/mman.h> /* PROT_EXEC */
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <sys/socket.h> /* sockaddrs */
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/bpf.h> /* BIOCIMMEDIATE */
#include <net/vnet.h>
#include <machine/bus.h> /* bus_dmamap_* */
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
#endif /* __FreeBSD__ */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
/* XXX the following variables must be deprecated and included in nm_mem */
u_int netmap_total_buffers;
u_int netmap_buf_size;
char *netmap_buffer_base; /* address of an invalid buffer */
/* user-controlled variables */
int netmap_verbose;
static int netmap_no_timestamp; /* don't timestamp on rxsync */
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
int netmap_mitigate = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
int netmap_no_pendintr = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
int netmap_drop = 0; /* debugging */
int netmap_flags = 0; /* debug flags */
int netmap_fwd = 0; /* force transparent mode */
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
#ifdef NM_BRIDGE /* support for netmap bridge */
/*
* system parameters.
*
* All switched ports have prefix NM_NAME.
* The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap,
* so a practical upper bound is 64).
* Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet).
* The virtual interfaces use per-queue lock instead of core lock.
* In the tx loop, we aggregate traffic in batches to make all operations
* faster. The batch size is NM_BDG_BATCH
*/
#define NM_NAME "vale" /* prefix for the interface */
#define NM_BDG_MAXPORTS 16 /* up to 64 ? */
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
#define NM_BDG_HASH 1024 /* forwarding table entries */
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
#define NM_BRIDGES 4 /* number of bridges */
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
#ifdef linux
#define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a)
#define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a)
#else /* !linux */
#ifdef __FreeBSD__
#include <sys/endian.h>
#include <sys/refcount.h>
#endif /* __FreeBSD__ */
#define prefetch(x) __builtin_prefetch(x)
#endif /* !linux */
/*
* These are used to handle reference counters for bridge ports.
*/
#define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount)
#define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount)
static void bdg_netmap_attach(struct ifnet *ifp);
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
/* per-tx-queue entry */
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *buf;
uint64_t dst; /* dst mask */
uint32_t src; /* src index ? */
uint16_t len; /* src len */
};
struct nm_hash_ent {
uint64_t mac; /* the top 2 bytes are the epoch */
uint64_t ports;
};
/*
* Interfaces for a bridge are all in bdg_ports[].
* The array has fixed size, an empty entry does not terminate
* the search. But lookups only occur on attach/detach so we
* don't mind if they are slow.
*
* The bridge is non blocking on the transmit ports.
*
* bdg_lock protects accesses to the bdg_ports array.
*/
struct nm_bridge {
struct ifnet *bdg_ports[NM_BDG_MAXPORTS];
int n_ports;
uint64_t act_ports;
int freelist; /* first buffer index */
NM_SELINFO_T si; /* poll/select wait queue */
NM_LOCK_T bdg_lock; /* protect the selinfo ? */
/* the forwarding table, MAC+ports */
struct nm_hash_ent ht[NM_BDG_HASH];
int namelen; /* 0 means free */
char basename[IFNAMSIZ];
};
struct nm_bridge nm_bridges[NM_BRIDGES];
#define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock)
#define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock)
/*
* NA(ifp)->bdg_port port index
*/
// XXX only for multiples of 64 bytes, non overlapped.
static inline void
pkt_copy(void *_src, void *_dst, int l)
{
uint64_t *src = _src;
uint64_t *dst = _dst;
if (unlikely(l >= 1024)) {
bcopy(src, dst, l);
return;
}
for (; likely(l > 0); l-=64) {
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
}
}
/*
* locate a bridge among the existing ones.
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
* We assume that this is called with a name of at least NM_NAME chars.
*/
static struct nm_bridge *
nm_find_bridge(const char *name)
{
int i, l, namelen, e;
struct nm_bridge *b = NULL;
namelen = strlen(NM_NAME); /* base length */
l = strlen(name); /* actual length */
for (i = namelen + 1; i < l; i++) {
if (name[i] == ':') {
namelen = i;
break;
}
}
if (namelen >= IFNAMSIZ)
namelen = IFNAMSIZ;
ND("--- prefix is '%.*s' ---", namelen, name);
/* use the first entry for locking */
BDG_LOCK(nm_bridges); // XXX do better
for (e = -1, i = 1; i < NM_BRIDGES; i++) {
b = nm_bridges + i;
if (b->namelen == 0)
e = i; /* record empty slot */
else if (strncmp(name, b->basename, namelen) == 0) {
ND("found '%.*s' at %d", namelen, name, i);
break;
}
}
if (i == NM_BRIDGES) { /* all full */
if (e == -1) { /* no empty slot */
b = NULL;
} else {
b = nm_bridges + e;
strncpy(b->basename, name, namelen);
b->namelen = namelen;
}
}
BDG_UNLOCK(nm_bridges);
return b;
}
#endif /* NM_BRIDGE */
/*
* Fetch configuration from the device, to cope with dynamic
* reconfigurations after loading the module.
*/
static int
netmap_update_config(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
u_int txr, txd, rxr, rxd;
txr = txd = rxr = rxd = 0;
if (na->nm_config) {
na->nm_config(ifp, &txr, &txd, &rxr, &rxd);
} else {
/* take whatever we had at init time */
txr = na->num_tx_rings;
txd = na->num_tx_desc;
rxr = na->num_rx_rings;
rxd = na->num_rx_desc;
}
if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
na->num_rx_rings == rxr && na->num_rx_desc == rxd)
return 0; /* nothing changed */
if (netmap_verbose || na->refcount > 0) {
D("stored config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname,
na->num_tx_rings, na->num_tx_desc,
na->num_rx_rings, na->num_rx_desc);
D("new config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname, txr, txd, rxr, rxd);
}
if (na->refcount == 0) {
D("configuration changed (but fine)");
na->num_tx_rings = txr;
na->num_tx_desc = txd;
na->num_rx_rings = rxr;
na->num_rx_desc = rxd;
return 0;
}
D("configuration changed while active, this is bad...");
return 1;
}
/*------------- memory allocator -----------------*/
#include "netmap_mem2.c"
/*------------ end of memory allocator ----------*/
/* Structure associated to each thread which registered an interface.
*
* The first 4 fields of this structure are written by NIOCREGIF and
* read by poll() and NIOC?XSYNC.
* There is low contention among writers (actually, a correct user program
* should have no contention among writers) and among writers and readers,
* so we use a single global lock to protect the structure initialization.
* Since initialization involves the allocation of memory, we reuse the memory
* allocator lock.
* Read access to the structure is lock free. Readers must check that
* np_nifp is not NULL before using the other fields.
* If np_nifp is NULL initialization has not been performed, so they should
* return an error to userlevel.
*
* The ref_done field is used to regulate access to the refcount in the
* memory allocator. The refcount must be incremented at most once for
* each open("/dev/netmap"). The increment is performed by the first
* function that calls netmap_get_memory() (currently called by
* mmap(), NIOCGINFO and NIOCREGIF).
* If the refcount is incremented, it is then decremented when the
* private structure is destroyed.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */
struct ifnet *np_ifp; /* device for which we hold a reference */
int np_ringid; /* from the ioctl */
u_int np_qfirst, np_qlast; /* range of rings to scan */
uint16_t np_txpoll;
unsigned long ref_done; /* use with NMA_LOCK held */
};
static int
netmap_get_memory(struct netmap_priv_d* p)
{
int error = 0;
NMA_LOCK();
if (!p->ref_done) {
error = netmap_memory_finalize();
if (!error)
p->ref_done = 1;
}
NMA_UNLOCK();
return error;
}
/*
* File descriptor's private data destructor.
*
* Call nm_register(ifp,0) to stop netmap mode on the interface and
* revert to normal operation. We expect that np_ifp has not gone.
*/
/* call with NMA_LOCK held */
static void
netmap_dtor_locked(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
struct netmap_if *nifp = priv->np_nifp;
na->refcount--;
if (na->refcount <= 0) { /* last instance */
u_int i, j, lim;
if (netmap_verbose)
D("deleting last instance for %s", ifp->if_xname);
/*
* there is a race here with *_netmap_task() and
* netmap_poll(), which don't run under NETMAP_REG_LOCK.
* na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP
* (aka NETMAP_DELETING(na)) are a unique marker that the
* device is dying.
* Before destroying stuff we sleep a bit, and then complete
* the job. NIOCREG should realize the condition and
* loop until they can continue; the other routines
* should check the condition at entry and quit if
* they cannot run.
*/
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
tsleep(na, 0, "NIOCUNREG", 4);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
/* Wake up any sleeping threads. netmap_poll will
* then return POLLERR
*/
for (i = 0; i < na->num_tx_rings + 1; i++)
selwakeuppri(&na->tx_rings[i].si, PI_NET);
for (i = 0; i < na->num_rx_rings + 1; i++)
selwakeuppri(&na->rx_rings[i].si, PI_NET);
selwakeuppri(&na->tx_si, PI_NET);
selwakeuppri(&na->rx_si, PI_NET);
/* release all buffers */
for (i = 0; i < na->num_tx_rings + 1; i++) {
struct netmap_ring *ring = na->tx_rings[i].ring;
lim = na->tx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->tx_rings[i].si.si_note); */
mtx_destroy(&na->tx_rings[i].q_lock);
}
for (i = 0; i < na->num_rx_rings + 1; i++) {
struct netmap_ring *ring = na->rx_rings[i].ring;
lim = na->rx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->rx_rings[i].si.si_note); */
mtx_destroy(&na->rx_rings[i].q_lock);
}
/* XXX kqueue(9) needed; these will mirror knlist_init. */
/* knlist_destroy(&na->tx_si.si_note); */
/* knlist_destroy(&na->rx_si.si_note); */
netmap_free_rings(na);
wakeup(na);
}
netmap_if_free(nifp);
}
static void
nm_if_rele(struct ifnet *ifp)
{
#ifndef NM_BRIDGE
if_rele(ifp);
#else /* NM_BRIDGE */
int i, full;
struct nm_bridge *b;
if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) {
if_rele(ifp);
return;
}
if (!DROP_BDG_REF(ifp))
return;
b = ifp->if_bridge;
BDG_LOCK(nm_bridges);
BDG_LOCK(b);
ND("want to disconnect %s from the bridge", ifp->if_xname);
full = 0;
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
if (b->bdg_ports[i] == ifp) {
b->bdg_ports[i] = NULL;
bzero(ifp, sizeof(*ifp));
free(ifp, M_DEVBUF);
break;
}
else if (b->bdg_ports[i] != NULL)
full = 1;
}
BDG_UNLOCK(b);
if (full == 0) {
ND("freeing bridge %d", b - nm_bridges);
b->namelen = 0;
}
BDG_UNLOCK(nm_bridges);
if (i == NM_BDG_MAXPORTS)
D("ouch, cannot find ifp to remove");
#endif /* NM_BRIDGE */
}
static void
netmap_dtor(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
NMA_LOCK();
if (ifp) {
struct netmap_adapter *na = NA(ifp);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
netmap_dtor_locked(data);
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
nm_if_rele(ifp); /* might also destroy *na */
}
if (priv->ref_done) {
netmap_memory_deref();
}
NMA_UNLOCK();
bzero(priv, sizeof(*priv)); /* XXX for safety */
free(priv, M_DEVBUF);
}
#ifdef __FreeBSD__
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
static struct cdev_pager_ops saved_cdev_pager_ops;
static int
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
if (netmap_verbose)
D("first mmap for %p", handle);
return saved_cdev_pager_ops.cdev_pg_ctor(handle,
size, prot, foff, cred, color);
}
static void
netmap_dev_pager_dtor(void *handle)
{
saved_cdev_pager_ops.cdev_pg_dtor(handle);
ND("ready to release memory for %p", handle);
}
static struct cdev_pager_ops netmap_cdev_pager_ops = {
.cdev_pg_ctor = netmap_dev_pager_ctor,
.cdev_pg_dtor = netmap_dev_pager_dtor,
.cdev_pg_fault = NULL,
};
static int
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
vm_size_t objsize, vm_object_t *objp, int prot)
{
vm_object_t obj;
ND("cdev %p foff %jd size %jd objp %p prot %d", cdev,
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff,
curthread->td_ucred);
ND("returns obj %p", obj);
if (obj == NULL)
return EINVAL;
if (saved_cdev_pager_ops.cdev_pg_fault == NULL) {
ND("initialize cdev_pager_ops");
saved_cdev_pager_ops = *(obj->un_pager.devp.ops);
netmap_cdev_pager_ops.cdev_pg_fault =
saved_cdev_pager_ops.cdev_pg_fault;
};
obj->un_pager.devp.ops = &netmap_cdev_pager_ops;
*objp = obj;
return 0;
}
#endif /* __FreeBSD__ */
/*
* mmap(2) support for the "netmap" device.
*
* Expose all the memory previously allocated by our custom memory
* allocator: this way the user has only to issue a single mmap(2), and
* can work on all the data structures flawlessly.
*
* Return 0 on success, -1 otherwise.
*/
#ifdef __FreeBSD__
static int
netmap_mmap(__unused struct cdev *dev,
#if __FreeBSD_version < 900000
vm_offset_t offset, vm_paddr_t *paddr, int nprot
#else
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
__unused vm_memattr_t *memattr
#endif
)
{
int error = 0;
struct netmap_priv_d *priv;
if (nprot & PROT_EXEC)
return (-1); // XXX -1 or EINVAL ?
error = devfs_get_cdevpriv((void **)&priv);
if (error == EBADF) { /* called on fault, memory is initialized */
ND(5, "handling fault at ofs 0x%x", offset);
error = 0;
} else if (error == 0) /* make sure memory is set */
error = netmap_get_memory(priv);
if (error)
return (error);
ND("request for offset 0x%x", (uint32_t)offset);
*paddr = netmap_ofstophys(offset);
return (*paddr ? 0 : ENOMEM);
}
static int
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
if (netmap_verbose)
D("dev %p fflag 0x%x devtype %d td %p",
dev, fflag, devtype, td);
return 0;
}
static int
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct netmap_priv_d *priv;
int error;
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return ENOMEM;
error = devfs_set_cdevpriv(priv, netmap_dtor);
if (error)
return error;
return 0;
}
#endif /* __FreeBSD__ */
/*
* Handlers for synchronization of the queues from/to the host.
* Netmap has two operating modes:
* - in the default mode, the rings connected to the host stack are
* just another ring pair managed by userspace;
* - in transparent mode (XXX to be defined) incoming packets
* (from the host or the NIC) are marked as NS_FORWARD upon
* arrival, and the user application has a chance to reset the
* flag for packets that should be dropped.
* On the RXSYNC or poll(), packets in RX rings between
* kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
* to the other side.
* The transfer NIC --> host is relatively easy, just encapsulate
* into mbufs and we are done. The host --> NIC side is slightly
* harder because there might not be room in the tx ring so it
* might take a while before releasing the buffer.
*/
/*
* pass a chain of buffers to the host stack as coming from 'dst'
*/
static void
netmap_send_up(struct ifnet *dst, struct mbuf *head)
{
struct mbuf *m;
/* send packets up, outside the lock */
while ((m = head) != NULL) {
head = head->m_nextpkt;
m->m_nextpkt = NULL;
if (netmap_verbose & NM_VERB_HOST)
D("sending up pkt %p size %d", m, MBUF_LEN(m));
NM_SEND_UP(dst, m);
}
}
struct mbq {
struct mbuf *head;
struct mbuf *tail;
int count;
};
/*
* put a copy of the buffers marked NS_FORWARD into an mbuf chain.
* Run from hwcur to cur - reserved
*/
static void
netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
{
/* Take packets from hwcur to cur-reserved and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
* XXX handle reserved
*/
int k = kring->ring->cur - kring->ring->reserved;
u_int n, lim = kring->nkr_num_slots - 1;
struct mbuf *m, *tail = q->tail;
if (k < 0)
k = k + kring->nkr_num_slots;
for (n = kring->nr_hwcur; n != k;) {
struct netmap_slot *slot = &kring->ring->slot[n];
n = (n == lim) ? 0 : n + 1;
if ((slot->flags & NS_FORWARD) == 0 && !force)
continue;
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
D("bad pkt at %d len %d", n, slot->len);
continue;
}
slot->flags &= ~NS_FORWARD; // XXX needed ?
m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL);
if (m == NULL)
break;
if (tail)
tail->m_nextpkt = m;
else
q->head = m;
tail = m;
q->count++;
m->m_nextpkt = NULL;
}
q->tail = tail;
}
/*
* called under main lock to send packets from the host to the NIC
* The host ring has packets from nr_hwcur to (cur - reserved)
* to be sent down. We scan the tx rings, which have just been
* flushed so nr_hwcur == cur. Pushing packets down means
* increment cur and decrement avail.
* XXX to be verified
*/
static void
netmap_sw_to_nic(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_kring *k1 = &na->tx_rings[0];
int i, howmany, src_lim, dst_lim;
howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */
src_lim = kring->nkr_num_slots;
for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
dst_lim = k1->nkr_num_slots;
while (howmany > 0 && k1->ring->avail > 0) {
struct netmap_slot *src, *dst, tmp;
src = &kring->ring->slot[kring->nr_hwcur];
dst = &k1->ring->slot[k1->ring->cur];
tmp = *src;
src->buf_idx = dst->buf_idx;
src->flags = NS_BUF_CHANGED;
dst->buf_idx = tmp.buf_idx;
dst->len = tmp.len;
dst->flags = NS_BUF_CHANGED;
ND("out len %d buf %d from %d to %d",
dst->len, dst->buf_idx,
kring->nr_hwcur, k1->ring->cur);
if (++kring->nr_hwcur >= src_lim)
kring->nr_hwcur = 0;
howmany--;
kring->nr_hwavail--;
if (++k1->ring->cur >= dst_lim)
k1->ring->cur = 0;
k1->ring->avail--;
}
kring->ring->cur = kring->nr_hwcur; // XXX
k1++;
}
}
/*
* netmap_sync_to_host() passes packets up. We are called from a
* system call in user process context, and the only contention
* can be among multiple user threads erroneously calling
* this routine concurrently.
*/
static void
netmap_sync_to_host(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
struct netmap_ring *ring = kring->ring;
u_int k, lim = kring->nkr_num_slots - 1;
struct mbq q = { NULL, NULL };
k = ring->cur;
if (k > lim) {
netmap_ring_reinit(kring);
return;
}
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
/* Take packets from hwcur to cur and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
*/
netmap_grab_packets(kring, &q, 1);
kring->nr_hwcur = k;
kring->nr_hwavail = ring->avail = lim;
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
netmap_send_up(na->ifp, q.head);
}
/*
* rxsync backend for packets coming from the host stack.
* They have been put in the queue by netmap_start() so we
* need to protect access to the kring using a lock.
*
* This routine also does the selrecord if called from the poll handler
* (we know because td != NULL).
*
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
* as an additional hidden argument.
*/
static void
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_ring *ring = kring->ring;
u_int j, n, lim = kring->nkr_num_slots;
u_int k = ring->cur, resvd = ring->reserved;
(void)pwait; /* disable unused warnings */
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
if (k >= lim) {
netmap_ring_reinit(kring);
return;
}
/* new packets are already set in nr_hwavail */
/* skip past packets that userspace has released */
j = kring->nr_hwcur;
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim - resvd;
}
if (j != k) {
n = k >= j ? k - j : k + lim - j;
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
k = ring->avail = kring->nr_hwavail - resvd;
if (k == 0 && td)
selrecord(td, &kring->si);
if (k && (netmap_verbose & NM_VERB_HOST))
D("%d pkts from stack", k);
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
}
/*
* get a refcounted reference to an interface.
* Return ENXIO if the interface does not exist, EINVAL if netmap
* is not supported by the interface.
* If successful, hold a reference.
*/
static int
get_ifp(const char *name, struct ifnet **ifp)
{
#ifdef NM_BRIDGE
struct ifnet *iter = NULL;
do {
struct nm_bridge *b;
int i, l, cand = -1;
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1))
break;
b = nm_find_bridge(name);
if (b == NULL) {
D("no bridges available for '%s'", name);
return (ENXIO);
}
/* XXX locking */
BDG_LOCK(b);
/* lookup in the local list of ports */
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
iter = b->bdg_ports[i];
if (iter == NULL) {
if (cand == -1)
cand = i; /* potential insert point */
continue;
}
if (!strcmp(iter->if_xname, name)) {
ADD_BDG_REF(iter);
ND("found existing interface");
BDG_UNLOCK(b);
break;
}
}
if (i < NM_BDG_MAXPORTS) /* already unlocked */
break;
if (cand == -1) {
D("bridge full, cannot create new port");
no_port:
BDG_UNLOCK(b);
*ifp = NULL;
return EINVAL;
}
ND("create new bridge port %s", name);
/* space for forwarding list after the ifnet */
l = sizeof(*iter) +
sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ;
iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
if (!iter)
goto no_port;
strcpy(iter->if_xname, name);
bdg_netmap_attach(iter);
b->bdg_ports[cand] = iter;
iter->if_bridge = b;
ADD_BDG_REF(iter);
BDG_UNLOCK(b);
ND("attaching virtual bridge %p", b);
} while (0);
*ifp = iter;
if (! *ifp)
#endif /* NM_BRIDGE */
*ifp = ifunit_ref(name);
if (*ifp == NULL)
return (ENXIO);
/* can do this if the capability exists and if_pspare[0]
* points to the netmap descriptor.
*/
if (NETMAP_CAPABLE(*ifp))
return 0; /* valid pointer, we hold the refcount */
nm_if_rele(*ifp);
return EINVAL; // not NETMAP capable
}
/*
* Error routine called when txsync/rxsync detects an error.
* Can't do much more than resetting cur = hwcur, avail = hwavail.
* Return 1 on reinit.
*
* This routine is only called by the upper half of the kernel.
* It only reads hwcur (which is changed only by the upper half, too)
* and hwavail (which may be changed by the lower half, but only on
* a tx ring and only to increase it, so any error will be recovered
* on the next call). For the above, we don't strictly need to call
* it under lock.
*/
int
netmap_ring_reinit(struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
u_int i, lim = kring->nkr_num_slots - 1;
int errors = 0;
RD(10, "called for %s", kring->na->ifp->if_xname);
if (ring->cur > lim)
errors++;
for (i = 0; i <= lim; i++) {
u_int idx = ring->slot[i].buf_idx;
u_int len = ring->slot[i].len;
if (idx < 2 || idx >= netmap_total_buffers) {
if (!errors++)
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
ring->slot[i].buf_idx = 0;
ring->slot[i].len = 0;
} else if (len > NETMAP_BUF_SIZE) {
ring->slot[i].len = 0;
if (!errors++)
D("bad len %d at slot %d idx %d",
len, i, idx);
}
}
if (errors) {
int pos = kring - kring->na->tx_rings;
int n = kring->na->num_tx_rings + 1;
RD(10, "total %d errors", errors);
errors++;
RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
kring->na->ifp->if_xname,
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
ring->cur, kring->nr_hwcur,
ring->avail, kring->nr_hwavail);
ring->cur = kring->nr_hwcur;
ring->avail = kring->nr_hwavail;
}
return (errors ? 1 : 0);
}
/*
* Set the ring ID. For devices with a single queue, a request
* for all rings is the same as a single ring.
*/
static int
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
{
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
u_int i = ringid & NETMAP_RING_MASK;
/* initially (np_qfirst == np_qlast) we don't want to lock */
int need_lock = (priv->np_qfirst != priv->np_qlast);
int lim = na->num_rx_rings;
if (na->num_tx_rings > lim)
lim = na->num_tx_rings;
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
D("invalid ring id %d", i);
return (EINVAL);
}
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
priv->np_ringid = ringid;
if (ringid & NETMAP_SW_RING) {
priv->np_qfirst = NETMAP_SW_RING;
priv->np_qlast = 0;
} else if (ringid & NETMAP_HW_RING) {
priv->np_qfirst = i;
priv->np_qlast = i + 1;
} else {
priv->np_qfirst = 0;
priv->np_qlast = NETMAP_HW_RING ;
}
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (netmap_verbose) {
if (ringid & NETMAP_SW_RING)
D("ringid %s set to SW RING", ifp->if_xname);
else if (ringid & NETMAP_HW_RING)
D("ringid %s set to HW RING %d", ifp->if_xname,
priv->np_qfirst);
else
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
}
return 0;
}
/*
* ioctl(2) support for the "netmap" device.
*
* Following a list of accepted commands:
* - NIOCGINFO
* - SIOCGIFADDR just for convenience
* - NIOCREGIF
* - NIOCUNREGIF
* - NIOCTXSYNC
* - NIOCRXSYNC
*
* Return 0 on success, errno otherwise.
*/
static int
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
int fflag, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct ifnet *ifp;
struct nmreq *nmr = (struct nmreq *) data;
struct netmap_adapter *na;
int error;
u_int i, lim;
struct netmap_if *nifp;
(void)dev; /* UNUSED */
(void)fflag; /* UNUSED */
#ifdef linux
#define devfs_get_cdevpriv(pp) \
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
(*pp ? 0 : ENOENT); })
/* devfs_set_cdevpriv cannot fail on linux */
#define devfs_set_cdevpriv(p, fn) \
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
#define devfs_clear_cdevpriv() do { \
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
} while (0)
#endif /* linux */
CURVNET_SET(TD_TO_VNET(td));
error = devfs_get_cdevpriv((void **)&priv);
if (error) {
CURVNET_RESTORE();
/* XXX ENOENT should be impossible, since the priv
* is now created in the open */
return (error == ENOENT ? ENXIO : error);
}
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
switch (cmd) {
case NIOCGINFO: /* return capabilities etc */
if (nmr->nr_version != NETMAP_API) {
D("API mismatch got %d have %d",
nmr->nr_version, NETMAP_API);
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
/* update configuration */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* memsize is always valid */
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = 0;
nmr->nr_rx_rings = nmr->nr_tx_rings = 0;
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
if (nmr->nr_name[0] == '\0') /* just get memory info */
break;
error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */
if (error)
break;
na = NA(ifp); /* retrieve netmap_adapter */
netmap_update_config(na);
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nm_if_rele(ifp); /* return the refcount */
break;
case NIOCREGIF:
if (nmr->nr_version != NETMAP_API) {
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
/* ensure allocators are ready */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* protect access to priv from concurrent NIOCREGIF */
NMA_LOCK();
if (priv->np_ifp != NULL) { /* thread already registered */
error = netmap_set_ringid(priv, nmr->nr_ringid);
NMA_UNLOCK();
break;
}
/* find the interface and a reference */
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
if (error) {
NMA_UNLOCK();
break;
}
na = NA(ifp); /* retrieve netmap adapter */
for (i = 10; i > 0; i--) {
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
if (!NETMAP_DELETING(na))
break;
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
tsleep(na, 0, "NIOCREGIF", hz/10);
}
if (i == 0) {
D("too many NIOCREGIF attempts, give up");
error = EINVAL;
nm_if_rele(ifp); /* return the refcount */
NMA_UNLOCK();
break;
}
/* ring configuration may have changed, fetch from the card */
netmap_update_config(na);
priv->np_ifp = ifp; /* store the reference */
error = netmap_set_ringid(priv, nmr->nr_ringid);
if (error)
goto error;
nifp = netmap_if_new(nmr->nr_name, na);
if (nifp == NULL) { /* allocation failed */
error = ENOMEM;
} else if (ifp->if_capenable & IFCAP_NETMAP) {
/* was already set */
} else {
/* Otherwise set the card in netmap mode
* and make it use the shared buffers.
*/
for (i = 0 ; i < na->num_tx_rings + 1; i++)
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF);
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF);
}
error = na->nm_register(ifp, 1); /* mode on */
if (error) {
netmap_dtor_locked(priv);
netmap_if_free(nifp);
}
}
if (error) { /* reg. failed, release priv and ref */
error:
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
nm_if_rele(ifp); /* return the refcount */
priv->np_ifp = NULL;
priv->np_nifp = NULL;
NMA_UNLOCK();
break;
}
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
/* the following assignment is a commitment.
* Readers (i.e., poll and *SYNC) check for
* np_nifp != NULL without locking
*/
wmb(); /* make sure previous writes are visible to all CPUs */
priv->np_nifp = nifp;
NMA_UNLOCK();
/* return the offset of the netmap_if object */
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = netmap_if_offset(nifp);
break;
case NIOCUNREGIF:
// XXX we have no data here ?
D("deprecated, data is %p", nmr);
error = EINVAL;
break;
case NIOCTXSYNC:
case NIOCRXSYNC:
nifp = priv->np_nifp;
if (nifp == NULL) {
error = ENXIO;
break;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp; /* we have a reference */
if (ifp == NULL) {
D("Internal error: nifp != NULL && ifp == NULL");
error = ENXIO;
break;
}
na = NA(ifp); /* retrieve netmap adapter */
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
if (cmd == NIOCTXSYNC)
netmap_sync_to_host(na);
else
netmap_sync_from_host(na, NULL, NULL);
break;
}
/* find the last ring to scan */
lim = priv->np_qlast;
if (lim == NETMAP_HW_RING)
lim = (cmd == NIOCTXSYNC) ?
na->num_tx_rings : na->num_rx_rings;
for (i = priv->np_qfirst; i < lim; i++) {
if (cmd == NIOCTXSYNC) {
struct netmap_kring *kring = &na->tx_rings[i];
if (netmap_verbose & NM_VERB_TXSYNC)
D("pre txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
na->nm_txsync(ifp, i, 1 /* do lock */);
if (netmap_verbose & NM_VERB_TXSYNC)
D("post txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
} else {
na->nm_rxsync(ifp, i, 1 /* do lock */);
microtime(&na->rx_rings[i].ring->ts);
}
}
break;
#ifdef __FreeBSD__
case BIOCIMMEDIATE:
case BIOCGHDRCMPLT:
case BIOCSHDRCMPLT:
case BIOCSSEESENT:
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
break;
default: /* allow device-specific ioctls */
{
struct socket so;
bzero(&so, sizeof(so));
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
if (error)
break;
so.so_vnet = ifp->if_vnet;
// so->so_proto not null.
error = ifioctl(&so, cmd, data, td);
nm_if_rele(ifp);
break;
}
#else /* linux */
default:
error = EOPNOTSUPP;
#endif /* linux */
}
CURVNET_RESTORE();
return (error);
}
/*
* select(2) and poll(2) handlers for the "netmap" device.
*
* Can be called for one or more queues.
* Return true the event mask corresponding to ready events.
* If there are no ready events, do a selrecord on either individual
* selfd or on the global one.
* Device-dependent parts (locking and sync of tx/rx rings)
* are done through callbacks.
*
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
* The first one is remapped to pwait as selrecord() uses the name as an
* hidden argument.
*/
static int
netmap_poll(struct cdev *dev, int events, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct netmap_adapter *na;
struct ifnet *ifp;
struct netmap_kring *kring;
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
u_int lim_tx, lim_rx, host_forwarded = 0;
struct mbq q = { NULL, NULL, 0 };
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
void *pwait = dev; /* linux compatibility */
(void)pwait;
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
return POLLERR;
if (priv->np_nifp == NULL) {
D("No if registered");
return POLLERR;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp;
// XXX check for deleting() ?
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
return POLLERR;
if (netmap_verbose & 0x8000)
D("device %s events 0x%x", ifp->if_xname, events);
want_tx = events & (POLLOUT | POLLWRNORM);
want_rx = events & (POLLIN | POLLRDNORM);
na = NA(ifp); /* retrieve netmap adapter */
lim_tx = na->num_tx_rings;
lim_rx = na->num_rx_rings;
/* how many queues we are scanning */
if (priv->np_qfirst == NETMAP_SW_RING) {
if (priv->np_txpoll || want_tx) {
/* push any packets up, then we are always ready */
kring = &na->tx_rings[lim_tx];
netmap_sync_to_host(na);
revents |= want_tx;
}
if (want_rx) {
kring = &na->rx_rings[lim_rx];
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0) {
revents |= want_rx;
}
}
return (revents);
}
/* if we are in transparent mode, check also the host rx ring */
kring = &na->rx_rings[lim_rx];
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& want_rx
&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0)
revents |= want_rx;
}
/*
* check_all is set if the card has more than one queue and
* the client is polling all of them. If true, we sleep on
* the "global" selfd, otherwise we sleep on individual selfd
* (we can only sleep on one of them per direction).
* The interrupt routine in the driver should always wake on
* the individual selfd, and also on the global one if the card
* has more than one ring.
*
* If the card has only one lock, we just use that.
* If the card has separate ring locks, we just use those
* unless we are doing check_all, in which case the whole
* loop is wrapped by the global lock.
* We acquire locks only when necessary: if poll is called
* when buffers are available, we can just return without locks.
*
* rxsync() is only called if we run out of buffers on a POLLIN.
* txsync() is called if we run out of buffers on POLLOUT, or
* there are pending packets to send. The latter can be disabled
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
*/
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
/*
* core_lock indicates what to do with the core lock.
* The core lock is used when either the card has no individual
* locks, or it has individual locks but we are cheking all
* rings so we need the core lock to avoid missing wakeup events.
*
* It has three possible states:
* NO_CL we don't need to use the core lock, e.g.
* because we are protected by individual locks.
* NEED_CL we need the core lock. In this case, when we
* call the lock routine, move to LOCKED_CL
* to remember to release the lock once done.
* LOCKED_CL core lock is set, so we need to release it.
*/
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
#ifdef NM_BRIDGE
/* the bridge uses separate locks */
if (na->nm_register == bdg_netmap_reg) {
ND("not using core lock for %s", ifp->if_xname);
core_lock = NO_CL;
}
#endif /* NM_BRIDGE */
if (priv->np_qlast != NETMAP_HW_RING) {
lim_tx = lim_rx = priv->np_qlast;
}
/*
* We start with a lock free round which is good if we have
* data available. If this fails, then lock and call the sync
* routines.
*/
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_rx;
want_rx = 0; /* also breaks the loop */
}
}
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
kring = &na->tx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_tx;
want_tx = 0; /* also breaks the loop */
}
}
/*
* If we to push packets out (priv->np_txpoll) or want_tx is
* still set, we do need to run the txsync calls (on all rings,
* to avoid that the tx rings stall).
*/
if (priv->np_txpoll || want_tx) {
flush_tx:
for (i = priv->np_qfirst; i < lim_tx; i++) {
kring = &na->tx_rings[i];
/*
* Skip the current ring if want_tx == 0
* (we have already done a successful sync on
* a previous ring) AND kring->cur == kring->hwcur
* (there are no pending transmissions for this ring).
*/
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
continue;
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
if (netmap_verbose & NM_VERB_TXSYNC)
D("send %d on %s %d",
kring->ring->cur,
ifp->if_xname, i);
if (na->nm_txsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
/* Check avail/call selrecord only if called with POLLOUT */
if (want_tx) {
if (kring->ring->avail > 0) {
/* stop at the first ring. We don't risk
* starvation.
*/
revents |= want_tx;
want_tx = 0;
} else if (!check_all)
selrecord(td, &kring->si);
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
}
}
/*
* now if want_rx is still set we need to lock and rxsync.
* Do it on all rings because otherwise we starve.
*/
if (want_rx) {
for (i = priv->np_qfirst; i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
ND(10, "forwarding some buffers up %d to %d",
kring->nr_hwcur, kring->ring->cur);
netmap_grab_packets(kring, &q, netmap_fwd);
}
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
if (netmap_no_timestamp == 0 ||
kring->ring->flags & NR_TIMESTAMP) {
microtime(&kring->ring->ts);
}
if (kring->ring->avail > 0)
revents |= want_rx;
else if (!check_all)
selrecord(td, &kring->si);
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
}
}
if (check_all && revents == 0) { /* signal on the global queue */
if (want_tx)
selrecord(td, &na->tx_si);
if (want_rx)
selrecord(td, &na->rx_si);
}
/* forward host to the netmap ring */
kring = &na->rx_rings[lim_rx];
if (kring->nr_hwavail > 0)
ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail);
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
&& kring->nr_hwavail > 0 && !host_forwarded) {
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
netmap_sw_to_nic(na);
host_forwarded = 1; /* prevent another pass */
want_rx = 0;
goto flush_tx;
}
if (core_lock == LOCKED_CL)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (q.head)
netmap_send_up(na->ifp, q.head);
return (revents);
}
/*------- driver support routines ------*/
/*
* default lock wrapper.
*/
static void
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
{
struct netmap_adapter *na = NA(dev);
switch (what) {
#ifdef linux /* some system do not need lock on register */
case NETMAP_REG_LOCK:
case NETMAP_REG_UNLOCK:
break;
#endif /* linux */
case NETMAP_CORE_LOCK:
mtx_lock(&na->core_lock);
break;
case NETMAP_CORE_UNLOCK:
mtx_unlock(&na->core_lock);
break;
case NETMAP_TX_LOCK:
mtx_lock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_TX_UNLOCK:
mtx_unlock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_RX_LOCK:
mtx_lock(&na->rx_rings[queueid].q_lock);
break;
case NETMAP_RX_UNLOCK:
mtx_unlock(&na->rx_rings[queueid].q_lock);
break;
}
}
/*
* Initialize a ``netmap_adapter`` object created by driver on attach.
* We allocate a block of memory with room for a struct netmap_adapter
* plus two sets of N+2 struct netmap_kring (where N is the number
* of hardware rings):
* krings 0..N-1 are for the hardware queues.
* kring N is for the host stack queue
* kring N+1 is only used for the selinfo for all queues.
* Return 0 on success, ENOMEM otherwise.
*
* By default the receive and transmit adapter ring counts are both initialized
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
* setups.
*/
int
netmap_attach(struct netmap_adapter *arg, int num_queues)
{
struct netmap_adapter *na = NULL;
struct ifnet *ifp = arg ? arg->ifp : NULL;
if (arg == NULL || ifp == NULL)
goto fail;
na = malloc(sizeof(*na), M_DEVBUF, M_NOWAIT | M_ZERO);
if (na == NULL)
goto fail;
WNA(ifp) = na;
*na = *arg; /* copy everything, trust the driver to not pass junk */
NETMAP_SET_CAPABLE(ifp);
if (na->num_tx_rings == 0)
na->num_tx_rings = num_queues;
na->num_rx_rings = num_queues;
na->refcount = na->na_single = na->na_multi = 0;
/* Core lock initialized here, others after netmap_if_new. */
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF);
if (na->nm_lock == NULL) {
ND("using default locks for %s", ifp->if_xname);
na->nm_lock = netmap_lock_wrapper;
}
#ifdef linux
if (!ifp->netdev_ops) {
D("ouch, we cannot override netdev_ops");
goto fail;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 28)
/* if needed, prepare a clone of the entire netdev ops */
na->nm_ndo = *ifp->netdev_ops;
#endif /* 2.6.28 and above */
na->nm_ndo.ndo_start_xmit = linux_netmap_start;
#endif /* linux */
D("success for %s", ifp->if_xname);
return 0;
fail:
D("fail, arg %p ifp %p na %p", arg, ifp, na);
netmap_detach(ifp);
return (na ? EINVAL : ENOMEM);
}
/*
* Free the allocated memory linked to the given ``netmap_adapter``
* object.
*/
void
netmap_detach(struct ifnet *ifp)
{
struct netmap_adapter *na = NA(ifp);
if (!na)
return;
mtx_destroy(&na->core_lock);
if (na->tx_rings) { /* XXX should not happen */
D("freeing leftover tx_rings");
free(na->tx_rings, M_DEVBUF);
}
bzero(na, sizeof(*na));
WNA(ifp) = NULL;
free(na, M_DEVBUF);
}
/*
* Intercept packets from the network stack and pass them
* to netmap as incoming packets on the 'software' ring.
* We are not locked when called.
*/
int
netmap_start(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
u_int i, len = MBUF_LEN(m);
u_int error = EBUSY, lim = kring->nkr_num_slots - 1;
struct netmap_slot *slot;
if (netmap_verbose & NM_VERB_HOST)
D("%s packet %d len %d from the stack", ifp->if_xname,
kring->nr_hwcur + kring->nr_hwavail, len);
if (len > NETMAP_BUF_SIZE) { /* too long for us */
D("%s from_host, drop packet size %d > %d", ifp->if_xname,
len, NETMAP_BUF_SIZE);
m_freem(m);
return EINVAL;
}
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
if (kring->nr_hwavail >= lim) {
if (netmap_verbose)
D("stack ring %s full\n", ifp->if_xname);
goto done; /* no space */
}
/* compute the insert position */
i = kring->nr_hwcur + kring->nr_hwavail;
if (i > lim)
i -= lim + 1;
slot = &kring->ring->slot[i];
m_copydata(m, 0, len, NMB(slot));
slot->len = len;
slot->flags = kring->nkr_slot_flags;
kring->nr_hwavail++;
if (netmap_verbose & NM_VERB_HOST)
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
selwakeuppri(&kring->si, PI_NET);
error = 0;
done:
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
/* release the mbuf in either cases of success or failure. As an
* alternative, put the mbuf in a free list and free the list
* only when really necessary.
*/
m_freem(m);
return (error);
}
/*
* netmap_reset() is called by the driver routines when reinitializing
* a ring. The driver is in charge of locking to protect the kring.
* If netmap mode is not set just return NULL.
*/
struct netmap_slot *
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
u_int new_cur)
{
struct netmap_kring *kring;
int new_hwofs, lim;
if (na == NULL)
return NULL; /* no netmap support here */
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
return NULL; /* nothing to reinitialize */
if (tx == NR_TX) {
if (n >= na->num_tx_rings)
return NULL;
kring = na->tx_rings + n;
new_hwofs = kring->nr_hwcur - new_cur;
} else {
if (n >= na->num_rx_rings)
return NULL;
kring = na->rx_rings + n;
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
}
lim = kring->nkr_num_slots - 1;
if (new_hwofs > lim)
new_hwofs -= lim + 1;
/* Alwayws set the new offset value and realign the ring. */
kring->nkr_hwofs = new_hwofs;
if (tx == NR_TX)
kring->nr_hwavail = kring->nkr_num_slots - 1;
ND(10, "new hwofs %d on %s %s[%d]",
kring->nkr_hwofs, na->ifp->if_xname,
tx == NR_TX ? "TX" : "RX", n);
#if 0 // def linux
/* XXX check that the mappings are correct */
/* need ring_nr, adapter->pdev, direction */
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
D("error mapping rx netmap buffer %d", i);
// XXX fix error handling
}
#endif /* linux */
/*
* Wakeup on the individual and global lock
* We do the wakeup here, but the ring is not yet reconfigured.
* However, we are under lock so there are no races.
*/
selwakeuppri(&kring->si, PI_NET);
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
return kring->ring->slot;
}
/*
* Default functions to handle rx/tx interrupts
* we have 4 cases:
* 1 ring, single lock:
* lock(core); wake(i=0); unlock(core)
* N rings, single lock:
* lock(core); wake(i); wake(N+1) unlock(core)
* 1 ring, separate locks: (i=0)
* lock(i); wake(i); unlock(i)
* N rings, separate locks:
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
* work_done is non-null on the RX path.
*
* The 'q' argument also includes flag to tell whether the queue is
* already locked on enter, and whether it should remain locked on exit.
* This helps adapting to different defaults in drivers and OSes.
*/
int
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
{
struct netmap_adapter *na;
struct netmap_kring *r;
NM_SELINFO_T *main_wq;
int locktype, unlocktype, lock;
if (!(ifp->if_capenable & IFCAP_NETMAP))
return 0;
lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT);
q = q & NETMAP_RING_MASK;
ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
na = NA(ifp);
if (na->na_flags & NAF_SKIP_INTR) {
ND("use regular interrupt");
return 0;
}
if (work_done) { /* RX path */
if (q >= na->num_rx_rings)
return 0; // not a physical queue
r = na->rx_rings + q;
r->nr_kflags |= NKR_PENDINTR;
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
locktype = NETMAP_RX_LOCK;
unlocktype = NETMAP_RX_UNLOCK;
} else { /* TX path */
if (q >= na->num_tx_rings)
return 0; // not a physical queue
r = na->tx_rings + q;
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
work_done = &q; /* dummy */
locktype = NETMAP_TX_LOCK;
unlocktype = NETMAP_TX_UNLOCK;
}
if (na->separate_locks) {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, locktype, q);
selwakeuppri(&r->si, PI_NET);
na->nm_lock(ifp, unlocktype, q);
if (main_wq) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
selwakeuppri(main_wq, PI_NET);
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
/* lock the queue again if requested */
if (lock & NETMAP_LOCKED_EXIT)
na->nm_lock(ifp, locktype, q);
} else {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
selwakeuppri(&r->si, PI_NET);
if (main_wq)
selwakeuppri(main_wq, PI_NET);
if (!(lock & NETMAP_LOCKED_EXIT))
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
*work_done = 1; /* do not fire napi again */
return 1;
}
#ifdef linux /* linux-specific routines */
/*
* Remap linux arguments into the FreeBSD call.
* - pwait is the poll table, passed as 'dev';
* If pwait == NULL someone else already woke up before. We can report
* events but they are filtered upstream.
* If pwait != NULL, then pwait->key contains the list of events.
* - events is computed from pwait as above.
* - file is passed as 'td';
*/
static u_int
linux_netmap_poll(struct file * file, struct poll_table_struct *pwait)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
int events = POLLIN | POLLOUT; /* XXX maybe... */
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)
int events = pwait ? pwait->key : POLLIN | POLLOUT;
#else /* in 3.4.0 field 'key' was renamed to '_key' */
int events = pwait ? pwait->_key : POLLIN | POLLOUT;
#endif
return netmap_poll((void *)pwait, events, (void *)file);
}
static int
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)
{
int lut_skip, i, j;
int user_skip = 0;
struct lut_entry *l_entry;
int error = 0;
unsigned long off, tomap;
/*
* vma->vm_start: start of mapping user address space
* vma->vm_end: end of the mapping user address space
* vma->vm_pfoff: offset of first page in the device
*/
// XXX security checks
error = netmap_get_memory(f->private_data);
ND("get_memory returned %d", error);
if (error)
return -error;
off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */
tomap = vma->vm_end - vma->vm_start;
for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */
const struct netmap_obj_pool *p = &nm_mem.pools[i];
/*
* In each pool memory is allocated in clusters
* of size _clustsize, each containing clustentries
* entries. For each object k we already store the
* vtophys mapping in lut[k] so we use that, scanning
* the lut[] array in steps of clustentries,
* and we map each cluster (not individual pages,
* it would be overkill -- XXX slow ? 20130415).
*/
/*
* We interpret vm_pgoff as an offset into the whole
* netmap memory, as if all clusters where contiguous.
*/
for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) {
unsigned long paddr, mapsize;
if (p->_clustsize <= off) {
off -= p->_clustsize;
continue;
}
l_entry = &p->lut[lut_skip]; /* first obj in the cluster */
paddr = l_entry->paddr + off;
mapsize = p->_clustsize - off;
off = 0;
if (mapsize > tomap)
mapsize = tomap;
ND("remap_pfn_range(%lx, %lx, %lx)",
vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize);
if (remap_pfn_range(vma, vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize,
vma->vm_page_prot))
return -EAGAIN; // XXX check return value
user_skip += mapsize;
tomap -= mapsize;
if (tomap == 0)
goto done;
}
}
done:
return 0;
}
static netdev_tx_t
linux_netmap_start(struct sk_buff *skb, struct net_device *dev)
{
netmap_start(dev, skb);
return (NETDEV_TX_OK);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38
#define LIN_IOCTL_NAME .ioctl
int
linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */)
#else
#define LIN_IOCTL_NAME .unlocked_ioctl
long
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)
#endif
{
int ret;
struct nmreq nmr;
bzero(&nmr, sizeof(nmr));
if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
return -EFAULT;
ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
return -EFAULT;
return -ret;
}
static int
netmap_release(struct inode *inode, struct file *file)
{
(void)inode; /* UNUSED */
if (file->private_data)
netmap_dtor(file->private_data);
return (0);
}
static int
linux_netmap_open(struct inode *inode, struct file *file)
{
struct netmap_priv_d *priv;
(void)inode; /* UNUSED */
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return -ENOMEM;
file->private_data = priv;
return (0);
}
static struct file_operations netmap_fops = {
.open = linux_netmap_open,
.mmap = linux_netmap_mmap,
LIN_IOCTL_NAME = linux_netmap_ioctl,
.poll = linux_netmap_poll,
.release = netmap_release,
};
static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */
MISC_DYNAMIC_MINOR,
"netmap",
&netmap_fops,
};
static int netmap_init(void);
static void netmap_fini(void);
/* Errors have negative values on linux */
static int linux_netmap_init(void)
{
return -netmap_init();
}
module_init(linux_netmap_init);
module_exit(netmap_fini);
/* export certain symbols to other modules */
EXPORT_SYMBOL(netmap_attach); // driver attach routines
EXPORT_SYMBOL(netmap_detach); // driver detach routines
EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error
EXPORT_SYMBOL(netmap_buffer_lut);
EXPORT_SYMBOL(netmap_total_buffers); // index check
EXPORT_SYMBOL(netmap_buffer_base);
EXPORT_SYMBOL(netmap_reset); // ring init routines
EXPORT_SYMBOL(netmap_buf_size);
EXPORT_SYMBOL(netmap_rx_irq); // default irq handler
EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away
MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/");
MODULE_DESCRIPTION("The netmap packet I/O framework");
MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */
#else /* __FreeBSD__ */
static struct cdevsw netmap_cdevsw = {
.d_version = D_VERSION,
.d_name = "netmap",
.d_open = netmap_open,
.d_mmap = netmap_mmap,
.d_mmap_single = netmap_mmap_single,
.d_ioctl = netmap_ioctl,
.d_poll = netmap_poll,
.d_close = netmap_close,
};
#endif /* __FreeBSD__ */
#ifdef NM_BRIDGE
/*
*---- support for virtual bridge -----
*/
/* ----- FreeBSD if_bridge hash function ------- */
/*
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
*
* http://www.burtleburtle.net/bob/hash/spooky.html
*/
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (/*CONSTCOND*/0)
static __inline uint32_t
nm_bridge_rthash(const uint8_t *addr)
{
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
b += addr[5] << 8;
b += addr[4];
a += addr[3] << 24;
a += addr[2] << 16;
a += addr[1] << 8;
a += addr[0];
mix(a, b, c);
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
return (c & BRIDGE_RTHASH_MASK);
}
#undef mix
static int
bdg_netmap_reg(struct ifnet *ifp, int onoff)
{
int i, err = 0;
struct nm_bridge *b = ifp->if_bridge;
BDG_LOCK(b);
if (onoff) {
/* the interface must be already in the list.
* only need to mark the port as active
*/
ND("should attach %s to the bridge", ifp->if_xname);
for (i=0; i < NM_BDG_MAXPORTS; i++)
if (b->bdg_ports[i] == ifp)
break;
if (i == NM_BDG_MAXPORTS) {
D("no more ports available");
err = EINVAL;
goto done;
}
ND("setting %s in netmap mode", ifp->if_xname);
ifp->if_capenable |= IFCAP_NETMAP;
NA(ifp)->bdg_port = i;
b->act_ports |= (1<<i);
b->bdg_ports[i] = ifp;
} else {
/* should be in the list, too -- remove from the mask */
ND("removing %s from netmap mode", ifp->if_xname);
ifp->if_capenable &= ~IFCAP_NETMAP;
i = NA(ifp)->bdg_port;
b->act_ports &= ~(1<<i);
}
done:
BDG_UNLOCK(b);
return err;
}
static int
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp)
{
int i, ifn;
uint64_t all_dst, dst;
uint32_t sh, dh;
uint64_t mysrc = 1 << NA(ifp)->bdg_port;
uint64_t smac, dmac;
struct netmap_slot *slot;
struct nm_bridge *b = ifp->if_bridge;
ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports);
/* only consider valid destinations */
all_dst = (b->act_ports & ~mysrc);
/* first pass: hash and find destinations */
for (i = 0; likely(i < n); i++) {
uint8_t *buf = ft[i].buf;
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
smac = le64toh(*(uint64_t *)(buf + 4));
smac >>= 16;
if (unlikely(netmap_verbose)) {
uint8_t *s = buf+6, *d = buf;
D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x",
i,
ft[i].len,
s[0], s[1], s[2], s[3], s[4], s[5],
d[0], d[1], d[2], d[3], d[4], d[5]);
}
/*
* The hash is somewhat expensive, there might be some
* worthwhile optimizations here.
*/
if ((buf[6] & 1) == 0) { /* valid src */
uint8_t *s = buf+6;
sh = nm_bridge_rthash(buf+6); // XXX hash of source
/* update source port forwarding entry */
b->ht[sh].mac = smac; /* XXX expire ? */
b->ht[sh].ports = mysrc;
if (netmap_verbose)
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port);
}
dst = 0;
if ( (buf[0] & 1) == 0) { /* unicast */
uint8_t *d = buf;
dh = nm_bridge_rthash(buf); // XXX hash of dst
if (b->ht[dh].mac == dmac) { /* found dst */
dst = b->ht[dh].ports;
if (netmap_verbose)
D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x",
d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16));
}
}
if (dst == 0)
dst = all_dst;
dst &= all_dst; /* only consider valid ports */
if (unlikely(netmap_verbose))
D("pkt goes to ports 0x%x", (uint32_t)dst);
ft[i].dst = dst;
}
/* second pass, scan interfaces and forward */
all_dst = (b->act_ports & ~mysrc);
for (ifn = 0; all_dst; ifn++) {
struct ifnet *dst_ifp = b->bdg_ports[ifn];
struct netmap_adapter *na;
struct netmap_kring *kring;
struct netmap_ring *ring;
int j, lim, sent, locked;
if (!dst_ifp)
continue;
ND("scan port %d %s", ifn, dst_ifp->if_xname);
dst = 1 << ifn;
if ((dst & all_dst) == 0) /* skip if not set */
continue;
all_dst &= ~dst; /* clear current node */
na = NA(dst_ifp);
ring = NULL;
kring = NULL;
lim = sent = locked = 0;
/* inside, scan slots */
for (i = 0; likely(i < n); i++) {
if ((ft[i].dst & dst) == 0)
continue; /* not here */
if (!locked) {
kring = &na->rx_rings[0];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0);
locked = 1;
}
if (unlikely(kring->nr_hwavail >= lim)) {
if (netmap_verbose)
D("rx ring full on %s", ifp->if_xname);
break;
}
j = kring->nr_hwcur + kring->nr_hwavail;
if (j > lim)
j -= kring->nkr_num_slots;
slot = &ring->slot[j];
ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j);
pkt_copy(ft[i].buf, NMB(slot), ft[i].len);
slot->len = ft[i].len;
kring->nr_hwavail++;
sent++;
}
if (locked) {
ND("sent %d on %s", sent, dst_ifp->if_xname);
if (sent)
selwakeuppri(&kring->si, PI_NET);
na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0);
}
}
return 0;
}
/*
* main dispatch routine
*/
static int
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->tx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
int i, j, k, lim = kring->nkr_num_slots - 1;
struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1);
int ft_i; /* position in the forwarding table */
k = ring->cur;
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
if (netmap_bridge <= 0) { /* testing only */
j = k; // used all
goto done;
}
if (netmap_bridge > NM_BDG_BATCH)
netmap_bridge = NM_BDG_BATCH;
ft_i = 0; /* start from 0 */
for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) {
struct netmap_slot *slot = &ring->slot[j];
int len = ft[ft_i].len = slot->len;
char *buf = ft[ft_i].buf = NMB(slot);
prefetch(buf);
if (unlikely(len < 14))
continue;
if (unlikely(++ft_i == netmap_bridge))
ft_i = nm_bdg_flush(ft, ft_i, ifp);
}
if (ft_i)
ft_i = nm_bdg_flush(ft, ft_i, ifp);
/* count how many packets we sent */
i = k - j;
if (i < 0)
i += kring->nkr_num_slots;
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
if (j != k)
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
done:
kring->nr_hwcur = j;
ring->avail = kring->nr_hwavail;
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
if (netmap_verbose)
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
return 0;
}
static int
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
u_int j, n, lim = kring->nkr_num_slots - 1;
u_int k = ring->cur, resvd = ring->reserved;
ND("%s ring %d lock %d avail %d",
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
/* skip past packets that userspace has released */
j = kring->nr_hwcur; /* netmap ring index */
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
}
if (j != k) { /* userspace has released some packets. */
n = k - j;
if (n < 0)
n += kring->nkr_num_slots;
ND("userspace releases %d packets", n);
for (n = 0; likely(j != k); n++) {
struct netmap_slot *slot = &ring->slot[j];
void *addr = NMB(slot);
if (addr == netmap_buffer_base) { /* bad buf */
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return netmap_ring_reinit(kring);
}
/* decrease refcount for buffer */
slot->flags &= ~NS_BUF_CHANGED;
j = unlikely(j == lim) ? 0 : j + 1;
}
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
/* tell userspace that there are new packets */
ring->avail = kring->nr_hwavail - resvd;
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return 0;
}
static void
bdg_netmap_attach(struct ifnet *ifp)
{
struct netmap_adapter na;
ND("attaching virtual bridge");
bzero(&na, sizeof(na));
na.ifp = ifp;
na.separate_locks = 1;
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
na.nm_txsync = bdg_netmap_txsync;
na.nm_rxsync = bdg_netmap_rxsync;
na.nm_register = bdg_netmap_reg;
netmap_attach(&na, 1);
}
#endif /* NM_BRIDGE */
static struct cdev *netmap_dev; /* /dev/netmap character device. */
/*
* Module loader.
*
* Create the /dev/netmap device and initialize all global
* variables.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_init(void)
{
int error;
error = netmap_memory_init();
if (error != 0) {
printf("netmap: unable to initialize the memory allocator.\n");
return (error);
}
printf("netmap: loaded module\n");
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
"netmap");
#ifdef NM_BRIDGE
{
int i;
for (i = 0; i < NM_BRIDGES; i++)
mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF);
}
#endif
return (error);
}
/*
* Module unloader.
*
* Free all the memory, and destroy the ``/dev/netmap`` device.
*/
static void
netmap_fini(void)
{
destroy_dev(netmap_dev);
netmap_memory_fini();
printf("netmap: unloaded module.\n");
}
#ifdef __FreeBSD__
/*
* Kernel entry point.
*
* Initialize/finalize the module and return.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_loader(__unused struct module *module, int event, __unused void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = netmap_init();
break;
case MOD_UNLOAD:
netmap_fini();
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(netmap, netmap_loader, NULL);
#endif /* __FreeBSD__ */