freebsd-skq/sys/dev/aic7xxx/aic7770.c
gibbs 27ca4db257 Major update to the aic7xxx driver:
ahc_eisa.c:
ahc_pci.c:
	Conform to new aic7xxx IRQ API.

	Adapt to aic7xxx_freebsd -> aic7xxx_osm changes.

aic7770.c:
	Disable card generated interrupt early in our probe for
	"extra safety"

	Commonize some seeprom code with the PCI side of the driver.

aic7xxx.c:
	Correctly initialize a few scratch ram locations during
	a sequencer restart.  This avoids spurious sequencer ram
	parity errors in some configurations.

	Include the softc in ahc_update_residual calls.  We need it
	for some diagnostics in this code path.

	Flag a data overrun on an auto-request sense failure as a
	CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR.

	Force a renegotiation after noticing a parity error.  This
	covers targets that lose our negotiation settings but don't
	bother to give us a unit attention condition.  This can happen
	if a target fails during a reselection of us during a cable
	pull.

	Convert some code to using constants.

	Fix some typos.

	Correct target mode message loop handling.  ahc_clear_msg_state
	was not clearing the "need to go to message out phase" bit once
	our loop was over.

	Simplify some abort handling code.

	Include tag information in target mode immediate notify events.

	When shutting down EISA controllers, don't EISA BIOS settings in
	the high portions of scratch ram.  This fixes warm boot issues on
	some systems.

	Save a bit of space by only allocating the SCBs that we can use.

	Avoid some code paths in ahc_abort_scbs() if we are currently
	acting as a target.

	Correctly cleanup stranded SCBs in the card's SCB array.  These
	are SCBs who's mapping has already been torn down by code that
	aborted the SCB by seeing it in another list first.

	Add a comment about some potential bus reset issues for target
	mode on Twin (EISA only) controllers.

aic7xxx.h:
	Cleanup the hardware scb definitions a bit.

	Allocate a ful 256 byte scb mapping index.  This simplifies
	the lookup code since the table covers all possible (and potentially
	bogus) values.

	Make AHC_DEBUG work again.

aic7xxx.reg:
	Updates to hardware SCB definition.

	New definitions for target mode fixes.

aic7xxx.seq:
	In target mode, initialize SAVED_LUN just after we receive
	the identify message.  It may be required in the error recovery
	path when a normal cdb packet (includes lun) is not sent up to
	the host for processing.

	Respond to irregular messages during a selection in target mode.

	Defer looking for space for a cdb packet until we are about to
	enter command phase.  We want to be able to handle irregular messages
	even if we would otherwise return QUEUE_FULL or BUSY.

	Add support for sending Ignore Wide Residue messages as a target.

	In the disable disconnect case in target mode, set our transfer
	rate correctly once data are availble.

aic7xxx_93cx6.c:
aic7xxx_93cx6.h:
	Add the ability to write and erase the seeprom.

aic7xxx_inline.h:
	Correct Big Endian handling of large cdb sizes (> 12 bytes).

	Adaptec to changes in the calc_residual API.

	Correct a target mode bug where we always attempted to service
	the input queue even if no progress could be made due to lack
	of ATIOs.

aic7xxx_osm.c:
	Adaptec to new IRQ mapping API.  The new API allows the core
	to only enable our IRQ mapping once it is safe (sufficient
	initialization) to do so.

	Slap bootverbose protection around some diagnostics.

	Only attempt DT phases if we are wide.

aic7xxx_osm.h:
	Enable big endian support.

	Adjust for IRQ API change.

aic7xxx_pci.c:
	Be more careful about relying on subvendor 9005 information.
	We now only trust it for HBAs.  This should allow the driver
	to attach to some MBs where the subvendor/device information
	does not follow the Adaptec spec.

	Only enable interrupts on the card once we are fully setup.

	Disable external SCB ram usage on the aic7895.  I have not
	been able to make it 100% reliable.

	Adjust to seeprom routines being properly prefixed with "ahc".

	Fix a few bugs in the external SCB ram probing routine.  We
	need to clear any parity errors we've triggered during the
	probe to avoid future, fatal, interrupts.

	If we detect an invalid cable combination, pretent there are
	no cable at all.  This will enable all of the terminators
	which is probably the safest configuration we can "guess".

MFC after: 4 days
2002-04-24 16:58:51 +00:00

356 lines
8.5 KiB
C

/*
* Product specific probe and attach routines for:
* 27/284X and aic7770 motherboard SCSI controllers
*
* Copyright (c) 1994-1998, 2000, 2001 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic7770.c#16 $
*
* $FreeBSD$
*/
#ifdef __linux__
#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include "aic7xxx_93cx6.h"
#else
#include <dev/aic7xxx/aic7xxx_osm.h>
#include <dev/aic7xxx/aic7xxx_inline.h>
#include <dev/aic7xxx/aic7xxx_93cx6.h>
#endif
#define ID_AIC7770 0x04907770
#define ID_AHA_274x 0x04907771
#define ID_AHA_284xB 0x04907756 /* BIOS enabled */
#define ID_AHA_284x 0x04907757 /* BIOS disabled*/
static void aha2840_load_seeprom(struct ahc_softc *ahc);
static ahc_device_setup_t ahc_aic7770_VL_setup;
static ahc_device_setup_t ahc_aic7770_EISA_setup;;
static ahc_device_setup_t ahc_aic7770_setup;
struct aic7770_identity aic7770_ident_table [] =
{
{
ID_AHA_274x,
0xFFFFFFFF,
"Adaptec 274X SCSI adapter",
ahc_aic7770_EISA_setup
},
{
ID_AHA_284xB,
0xFFFFFFFE,
"Adaptec 284X SCSI adapter",
ahc_aic7770_VL_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7770,
0xFFFFFFFF,
"Adaptec aic7770 SCSI adapter",
ahc_aic7770_EISA_setup
}
};
const int ahc_num_aic7770_devs = NUM_ELEMENTS(aic7770_ident_table);
struct aic7770_identity *
aic7770_find_device(uint32_t id)
{
struct aic7770_identity *entry;
int i;
for (i = 0; i < ahc_num_aic7770_devs; i++) {
entry = &aic7770_ident_table[i];
if (entry->full_id == (id & entry->id_mask))
return (entry);
}
return (NULL);
}
int
aic7770_config(struct ahc_softc *ahc, struct aic7770_identity *entry, u_int io)
{
int error;
u_int hostconf;
u_int irq;
u_int intdef;
error = entry->setup(ahc);
if (error != 0)
return (error);
error = aic7770_map_registers(ahc, io);
if (error != 0)
return (error);
/*
* Before we continue probing the card, ensure that
* its interrupts are *disabled*. We don't want
* a misstep to hang the machine in an interrupt
* storm.
*/
ahc_intr_enable(ahc, FALSE);
ahc->description = entry->name;
error = ahc_softc_init(ahc);
error = ahc_reset(ahc);
if (error != 0)
return (error);
/* Make sure we have a valid interrupt vector */
intdef = ahc_inb(ahc, INTDEF);
irq = intdef & VECTOR;
switch (irq) {
case 9:
case 10:
case 11:
case 12:
case 14:
case 15:
break;
default:
printf("aic7770_config: illegal irq setting %d\n", intdef);
return (ENXIO);
}
if ((intdef & EDGE_TRIG) != 0)
ahc->flags |= AHC_EDGE_INTERRUPT;
switch (ahc->chip & (AHC_EISA|AHC_VL)) {
case AHC_EISA:
{
u_int biosctrl;
u_int scsiconf;
u_int scsiconf1;
biosctrl = ahc_inb(ahc, HA_274_BIOSCTRL);
scsiconf = ahc_inb(ahc, SCSICONF);
scsiconf1 = ahc_inb(ahc, SCSICONF + 1);
/* Get the primary channel information */
if ((biosctrl & CHANNEL_B_PRIMARY) != 0)
ahc->flags |= 1;
if ((biosctrl & BIOSMODE) == BIOSDISABLED) {
ahc->flags |= AHC_USEDEFAULTS;
} else {
if ((ahc->features & AHC_WIDE) != 0) {
ahc->our_id = scsiconf1 & HWSCSIID;
if (scsiconf & TERM_ENB)
ahc->flags |= AHC_TERM_ENB_A;
} else {
ahc->our_id = scsiconf & HSCSIID;
ahc->our_id_b = scsiconf1 & HSCSIID;
if (scsiconf & TERM_ENB)
ahc->flags |= AHC_TERM_ENB_A;
if (scsiconf1 & TERM_ENB)
ahc->flags |= AHC_TERM_ENB_B;
}
}
/*
* We have no way to tell, so assume extended
* translation is enabled.
*/
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B;
break;
}
case AHC_VL:
{
aha2840_load_seeprom(ahc);
break;
}
default:
break;
}
/*
* Ensure autoflush is enabled
*/
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~AUTOFLUSHDIS);
/* Setup the FIFO threshold and the bus off time */
hostconf = ahc_inb(ahc, HOSTCONF);
ahc_outb(ahc, BUSSPD, hostconf & DFTHRSH);
ahc_outb(ahc, BUSTIME, (hostconf << 2) & BOFF);
/*
* Generic aic7xxx initialization.
*/
error = ahc_init(ahc);
if (error != 0)
return (error);
/*
* Link this softc in with all other ahc instances.
*/
ahc_softc_insert(ahc);
error = aic7770_map_int(ahc, irq);
if (error != 0)
return (error);
/*
* Enable the board's BUS drivers
*/
ahc_outb(ahc, BCTL, ENABLE);
/*
* Allow interrupts.
*/
ahc_intr_enable(ahc, TRUE);
return (0);
}
/*
* Read the 284x SEEPROM.
*/
static void
aha2840_load_seeprom(struct ahc_softc *ahc)
{
struct seeprom_descriptor sd;
struct seeprom_config sc;
uint8_t scsi_conf;
int have_seeprom;
sd.sd_ahc = ahc;
sd.sd_control_offset = SEECTL_2840;
sd.sd_status_offset = STATUS_2840;
sd.sd_dataout_offset = STATUS_2840;
sd.sd_chip = C46;
sd.sd_MS = 0;
sd.sd_RDY = EEPROM_TF;
sd.sd_CS = CS_2840;
sd.sd_CK = CK_2840;
sd.sd_DO = DO_2840;
sd.sd_DI = DI_2840;
if (bootverbose)
printf("%s: Reading SEEPROM...", ahc_name(ahc));
have_seeprom = ahc_read_seeprom(&sd, (uint16_t *)&sc,
/*start_addr*/0, sizeof(sc)/2);
if (have_seeprom) {
if (ahc_verify_cksum(&sc) == 0) {
if(bootverbose)
printf ("checksum error\n");
have_seeprom = 0;
} else if (bootverbose) {
printf("done.\n");
}
}
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available\n", ahc_name(ahc));
ahc->flags |= AHC_USEDEFAULTS;
} else {
/*
* Put the data we've collected down into SRAM
* where ahc_init will find it.
*/
int i;
int max_targ = (ahc->features & AHC_WIDE) != 0 ? 16 : 8;
uint16_t discenable;
discenable = 0;
for (i = 0; i < max_targ; i++){
uint8_t target_settings;
target_settings = (sc.device_flags[i] & CFXFER) << 4;
if (sc.device_flags[i] & CFSYNCH)
target_settings |= SOFS;
if (sc.device_flags[i] & CFWIDEB)
target_settings |= WIDEXFER;
if (sc.device_flags[i] & CFDISC)
discenable |= (0x01 << i);
ahc_outb(ahc, TARG_SCSIRATE + i, target_settings);
}
ahc_outb(ahc, DISC_DSB, ~(discenable & 0xff));
ahc_outb(ahc, DISC_DSB + 1, ~((discenable >> 8) & 0xff));
ahc->our_id = sc.brtime_id & CFSCSIID;
scsi_conf = (ahc->our_id & 0x7);
if (sc.adapter_control & CFSPARITY)
scsi_conf |= ENSPCHK;
if (sc.adapter_control & CFRESETB)
scsi_conf |= RESET_SCSI;
if (sc.bios_control & CF284XEXTEND)
ahc->flags |= AHC_EXTENDED_TRANS_A;
/* Set SCSICONF info */
ahc_outb(ahc, SCSICONF, scsi_conf);
if (sc.adapter_control & CF284XSTERM)
ahc->flags |= AHC_TERM_ENB_A;
}
}
static int
ahc_aic7770_VL_setup(struct ahc_softc *ahc)
{
int error;
error = ahc_aic7770_setup(ahc);
ahc->chip |= AHC_VL;
return (error);
}
static int
ahc_aic7770_EISA_setup(struct ahc_softc *ahc)
{
int error;
error = ahc_aic7770_setup(ahc);
ahc->chip |= AHC_EISA;
return (error);
}
static int
ahc_aic7770_setup(struct ahc_softc *ahc)
{
ahc->channel = 'A';
ahc->channel_b = 'B';
ahc->chip = AHC_AIC7770;
ahc->features = AHC_AIC7770_FE;
ahc->bugs |= AHC_TMODE_WIDEODD_BUG;
ahc->flags |= AHC_PAGESCBS;
return (0);
}