freebsd-skq/sys/dev/bfe/if_bfe.c
2004-08-07 20:55:53 +00:00

1608 lines
37 KiB
C

/*
* Copyright (c) 2003 Stuart Walsh<stu@ipng.org.uk>
* and Duncan Barclay<dmlb@dmlb.org>
*/
/*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/bfe/if_bfereg.h>
MODULE_DEPEND(bfe, pci, 1, 1, 1);
MODULE_DEPEND(bfe, ether, 1, 1, 1);
MODULE_DEPEND(bfe, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define BFE_DEVDESC_MAX 64 /* Maximum device description length */
static struct bfe_type bfe_devs[] = {
{ BCOM_VENDORID, BCOM_DEVICEID_BCM4401,
"Broadcom BCM4401 Fast Ethernet" },
{ 0, 0, NULL }
};
static int bfe_probe (device_t);
static int bfe_attach (device_t);
static int bfe_detach (device_t);
static void bfe_release_resources (struct bfe_softc *);
static void bfe_intr (void *);
static void bfe_start (struct ifnet *);
static int bfe_ioctl (struct ifnet *, u_long, caddr_t);
static void bfe_init (void *);
static void bfe_stop (struct bfe_softc *);
static void bfe_watchdog (struct ifnet *);
static void bfe_shutdown (device_t);
static void bfe_tick (void *);
static void bfe_txeof (struct bfe_softc *);
static void bfe_rxeof (struct bfe_softc *);
static void bfe_set_rx_mode (struct bfe_softc *);
static int bfe_list_rx_init (struct bfe_softc *);
static int bfe_list_newbuf (struct bfe_softc *, int, struct mbuf*);
static void bfe_rx_ring_free (struct bfe_softc *);
static void bfe_pci_setup (struct bfe_softc *, u_int32_t);
static int bfe_ifmedia_upd (struct ifnet *);
static void bfe_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static int bfe_miibus_readreg (device_t, int, int);
static int bfe_miibus_writereg (device_t, int, int, int);
static void bfe_miibus_statchg (device_t);
static int bfe_wait_bit (struct bfe_softc *, u_int32_t, u_int32_t,
u_long, const int);
static void bfe_get_config (struct bfe_softc *sc);
static void bfe_read_eeprom (struct bfe_softc *, u_int8_t *);
static void bfe_stats_update (struct bfe_softc *);
static void bfe_clear_stats (struct bfe_softc *);
static int bfe_readphy (struct bfe_softc *, u_int32_t, u_int32_t*);
static int bfe_writephy (struct bfe_softc *, u_int32_t, u_int32_t);
static int bfe_resetphy (struct bfe_softc *);
static int bfe_setupphy (struct bfe_softc *);
static void bfe_chip_reset (struct bfe_softc *);
static void bfe_chip_halt (struct bfe_softc *);
static void bfe_core_reset (struct bfe_softc *);
static void bfe_core_disable (struct bfe_softc *);
static int bfe_dma_alloc (device_t);
static void bfe_dma_map_desc (void *, bus_dma_segment_t *, int, int);
static void bfe_dma_map (void *, bus_dma_segment_t *, int, int);
static void bfe_cam_write (struct bfe_softc *, u_char *, int);
static device_method_t bfe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bfe_probe),
DEVMETHOD(device_attach, bfe_attach),
DEVMETHOD(device_detach, bfe_detach),
DEVMETHOD(device_shutdown, bfe_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, bfe_miibus_readreg),
DEVMETHOD(miibus_writereg, bfe_miibus_writereg),
DEVMETHOD(miibus_statchg, bfe_miibus_statchg),
{ 0, 0 }
};
static driver_t bfe_driver = {
"bfe",
bfe_methods,
sizeof(struct bfe_softc)
};
static devclass_t bfe_devclass;
DRIVER_MODULE(bfe, pci, bfe_driver, bfe_devclass, 0, 0);
DRIVER_MODULE(miibus, bfe, miibus_driver, miibus_devclass, 0, 0);
/*
* Probe for a Broadcom 4401 chip.
*/
static int
bfe_probe(device_t dev)
{
struct bfe_type *t;
struct bfe_softc *sc;
t = bfe_devs;
sc = device_get_softc(dev);
bzero(sc, sizeof(struct bfe_softc));
sc->bfe_unit = device_get_unit(dev);
sc->bfe_dev = dev;
while(t->bfe_name != NULL) {
if ((pci_get_vendor(dev) == t->bfe_vid) &&
(pci_get_device(dev) == t->bfe_did)) {
device_set_desc_copy(dev, t->bfe_name);
return (0);
}
t++;
}
return (ENXIO);
}
static int
bfe_dma_alloc(device_t dev)
{
struct bfe_softc *sc;
int error, i;
sc = device_get_softc(dev);
/* parent tag */
error = bus_dma_tag_create(NULL, /* parent */
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR_32BIT, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* num of segments */
BUS_SPACE_MAXSIZE_32BIT, /* max segment size */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_parent_tag);
/* tag for TX ring */
error = bus_dma_tag_create(sc->bfe_parent_tag,
BFE_TX_LIST_SIZE, BFE_TX_LIST_SIZE,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
BFE_TX_LIST_SIZE,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&sc->bfe_tx_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* tag for RX ring */
error = bus_dma_tag_create(sc->bfe_parent_tag,
BFE_RX_LIST_SIZE, BFE_RX_LIST_SIZE,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
BFE_RX_LIST_SIZE,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&sc->bfe_rx_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* tag for mbufs */
error = bus_dma_tag_create(sc->bfe_parent_tag,
ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
MCLBYTES,
1,
BUS_SPACE_MAXSIZE_32BIT,
0,
NULL, NULL,
&sc->bfe_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* pre allocate dmamaps for RX list */
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
error = bus_dmamap_create(sc->bfe_tag, 0,
&sc->bfe_rx_ring[i].bfe_map);
if (error) {
device_printf(dev, "cannot create DMA map for RX\n");
return (ENOMEM);
}
}
/* pre allocate dmamaps for TX list */
for (i = 0; i < BFE_TX_LIST_CNT; i++) {
error = bus_dmamap_create(sc->bfe_tag, 0,
&sc->bfe_tx_ring[i].bfe_map);
if (error) {
device_printf(dev, "cannot create DMA map for TX\n");
return (ENOMEM);
}
}
/* Alloc dma for rx ring */
error = bus_dmamem_alloc(sc->bfe_rx_tag, (void *)&sc->bfe_rx_list,
BUS_DMA_NOWAIT, &sc->bfe_rx_map);
if(error)
return (ENOMEM);
bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE);
error = bus_dmamap_load(sc->bfe_rx_tag, sc->bfe_rx_map,
sc->bfe_rx_list, sizeof(struct bfe_desc),
bfe_dma_map, &sc->bfe_rx_dma, 0);
if(error)
return (ENOMEM);
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD);
error = bus_dmamem_alloc(sc->bfe_tx_tag, (void *)&sc->bfe_tx_list,
BUS_DMA_NOWAIT, &sc->bfe_tx_map);
if (error)
return (ENOMEM);
error = bus_dmamap_load(sc->bfe_tx_tag, sc->bfe_tx_map,
sc->bfe_tx_list, sizeof(struct bfe_desc),
bfe_dma_map, &sc->bfe_tx_dma, 0);
if(error)
return (ENOMEM);
bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE);
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD);
return (0);
}
static int
bfe_attach(device_t dev)
{
struct ifnet *ifp;
struct bfe_softc *sc;
int unit, error = 0, rid;
sc = device_get_softc(dev);
mtx_init(&sc->bfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
unit = device_get_unit(dev);
sc->bfe_dev = dev;
sc->bfe_unit = unit;
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t membase, irq;
/* Save important PCI config data. */
membase = pci_read_config(dev, BFE_PCI_MEMLO, 4);
irq = pci_read_config(dev, BFE_PCI_INTLINE, 4);
/* Reset the power state. */
printf("bfe%d: chip is is in D%d power mode -- setting to D0\n",
sc->bfe_unit, pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, BFE_PCI_MEMLO, membase, 4);
pci_write_config(dev, BFE_PCI_INTLINE, irq, 4);
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = BFE_PCI_MEMLO;
sc->bfe_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->bfe_res == NULL) {
printf ("bfe%d: couldn't map memory\n", unit);
error = ENXIO;
goto fail;
}
sc->bfe_btag = rman_get_bustag(sc->bfe_res);
sc->bfe_bhandle = rman_get_bushandle(sc->bfe_res);
sc->bfe_vhandle = (vm_offset_t)rman_get_virtual(sc->bfe_res);
/* Allocate interrupt */
rid = 0;
sc->bfe_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->bfe_irq == NULL) {
printf("bfe%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
if (bfe_dma_alloc(dev)) {
printf("bfe%d: failed to allocate DMA resources\n",
sc->bfe_unit);
bfe_release_resources(sc);
error = ENXIO;
goto fail;
}
/* Set up ifnet structure */
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bfe_ioctl;
ifp->if_start = bfe_start;
ifp->if_watchdog = bfe_watchdog;
ifp->if_init = bfe_init;
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = 100000000;
IFQ_SET_MAXLEN(&ifp->if_snd, BFE_TX_QLEN);
ifp->if_snd.ifq_drv_maxlen = BFE_TX_QLEN;
IFQ_SET_READY(&ifp->if_snd);
bfe_get_config(sc);
/* Reset the chip and turn on the PHY */
bfe_chip_reset(sc);
if (mii_phy_probe(dev, &sc->bfe_miibus,
bfe_ifmedia_upd, bfe_ifmedia_sts)) {
printf("bfe%d: MII without any PHY!\n", sc->bfe_unit);
error = ENXIO;
goto fail;
}
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
callout_handle_init(&sc->bfe_stat_ch);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/*
* Hook interrupt last to avoid having to lock softc
*/
error = bus_setup_intr(dev, sc->bfe_irq, INTR_TYPE_NET,
bfe_intr, sc, &sc->bfe_intrhand);
if (error) {
bfe_release_resources(sc);
printf("bfe%d: couldn't set up irq\n", unit);
goto fail;
}
fail:
if(error)
bfe_release_resources(sc);
return (error);
}
static int
bfe_detach(device_t dev)
{
struct bfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->bfe_mtx), ("bfe mutex not initialized"));
BFE_LOCK(scp);
ifp = &sc->arpcom.ac_if;
if (device_is_attached(dev)) {
bfe_stop(sc);
ether_ifdetach(ifp);
}
bfe_chip_reset(sc);
bus_generic_detach(dev);
if(sc->bfe_miibus != NULL)
device_delete_child(dev, sc->bfe_miibus);
bfe_release_resources(sc);
BFE_UNLOCK(sc);
mtx_destroy(&sc->bfe_mtx);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
bfe_shutdown(device_t dev)
{
struct bfe_softc *sc;
sc = device_get_softc(dev);
BFE_LOCK(sc);
bfe_stop(sc);
BFE_UNLOCK(sc);
return;
}
static int
bfe_miibus_readreg(device_t dev, int phy, int reg)
{
struct bfe_softc *sc;
u_int32_t ret;
sc = device_get_softc(dev);
if(phy != sc->bfe_phyaddr)
return (0);
bfe_readphy(sc, reg, &ret);
return (ret);
}
static int
bfe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct bfe_softc *sc;
sc = device_get_softc(dev);
if(phy != sc->bfe_phyaddr)
return (0);
bfe_writephy(sc, reg, val);
return (0);
}
static void
bfe_miibus_statchg(device_t dev)
{
return;
}
static void
bfe_tx_ring_free(struct bfe_softc *sc)
{
int i;
for(i = 0; i < BFE_TX_LIST_CNT; i++) {
if(sc->bfe_tx_ring[i].bfe_mbuf != NULL) {
m_freem(sc->bfe_tx_ring[i].bfe_mbuf);
sc->bfe_tx_ring[i].bfe_mbuf = NULL;
bus_dmamap_unload(sc->bfe_tag,
sc->bfe_tx_ring[i].bfe_map);
bus_dmamap_destroy(sc->bfe_tag,
sc->bfe_tx_ring[i].bfe_map);
}
}
bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE);
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD);
}
static void
bfe_rx_ring_free(struct bfe_softc *sc)
{
int i;
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
if (sc->bfe_rx_ring[i].bfe_mbuf != NULL) {
m_freem(sc->bfe_rx_ring[i].bfe_mbuf);
sc->bfe_rx_ring[i].bfe_mbuf = NULL;
bus_dmamap_unload(sc->bfe_tag,
sc->bfe_rx_ring[i].bfe_map);
bus_dmamap_destroy(sc->bfe_tag,
sc->bfe_rx_ring[i].bfe_map);
}
}
bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE);
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD);
}
static int
bfe_list_rx_init(struct bfe_softc *sc)
{
int i;
for(i = 0; i < BFE_RX_LIST_CNT; i++) {
if(bfe_list_newbuf(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
}
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD);
CSR_WRITE_4(sc, BFE_DMARX_PTR, (i * sizeof(struct bfe_desc)));
sc->bfe_rx_cons = 0;
return (0);
}
static int
bfe_list_newbuf(struct bfe_softc *sc, int c, struct mbuf *m)
{
struct bfe_rxheader *rx_header;
struct bfe_desc *d;
struct bfe_data *r;
u_int32_t ctrl;
if ((c < 0) || (c >= BFE_RX_LIST_CNT))
return (EINVAL);
if(m == NULL) {
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if(m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
}
else
m->m_data = m->m_ext.ext_buf;
rx_header = mtod(m, struct bfe_rxheader *);
rx_header->len = 0;
rx_header->flags = 0;
/* Map the mbuf into DMA */
sc->bfe_rx_cnt = c;
d = &sc->bfe_rx_list[c];
r = &sc->bfe_rx_ring[c];
bus_dmamap_load(sc->bfe_tag, r->bfe_map, mtod(m, void *),
MCLBYTES, bfe_dma_map_desc, d, 0);
bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_PREWRITE);
ctrl = ETHER_MAX_LEN + 32;
if(c == BFE_RX_LIST_CNT - 1)
ctrl |= BFE_DESC_EOT;
d->bfe_ctrl = ctrl;
r->bfe_mbuf = m;
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD);
return (0);
}
static void
bfe_get_config(struct bfe_softc *sc)
{
u_int8_t eeprom[128];
bfe_read_eeprom(sc, eeprom);
sc->arpcom.ac_enaddr[0] = eeprom[79];
sc->arpcom.ac_enaddr[1] = eeprom[78];
sc->arpcom.ac_enaddr[2] = eeprom[81];
sc->arpcom.ac_enaddr[3] = eeprom[80];
sc->arpcom.ac_enaddr[4] = eeprom[83];
sc->arpcom.ac_enaddr[5] = eeprom[82];
sc->bfe_phyaddr = eeprom[90] & 0x1f;
sc->bfe_mdc_port = (eeprom[90] >> 14) & 0x1;
sc->bfe_core_unit = 0;
sc->bfe_dma_offset = BFE_PCI_DMA;
}
static void
bfe_pci_setup(struct bfe_softc *sc, u_int32_t cores)
{
u_int32_t bar_orig, pci_rev, val;
bar_orig = pci_read_config(sc->bfe_dev, BFE_BAR0_WIN, 4);
pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, BFE_REG_PCI, 4);
pci_rev = CSR_READ_4(sc, BFE_SBIDHIGH) & BFE_RC_MASK;
val = CSR_READ_4(sc, BFE_SBINTVEC);
val |= cores;
CSR_WRITE_4(sc, BFE_SBINTVEC, val);
val = CSR_READ_4(sc, BFE_SSB_PCI_TRANS_2);
val |= BFE_SSB_PCI_PREF | BFE_SSB_PCI_BURST;
CSR_WRITE_4(sc, BFE_SSB_PCI_TRANS_2, val);
pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, bar_orig, 4);
}
static void
bfe_clear_stats(struct bfe_softc *sc)
{
u_long reg;
BFE_LOCK(sc);
CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ);
for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4)
CSR_READ_4(sc, reg);
for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4)
CSR_READ_4(sc, reg);
BFE_UNLOCK(sc);
}
static int
bfe_resetphy(struct bfe_softc *sc)
{
u_int32_t val;
BFE_LOCK(sc);
bfe_writephy(sc, 0, BMCR_RESET);
DELAY(100);
bfe_readphy(sc, 0, &val);
if (val & BMCR_RESET) {
printf("bfe%d: PHY Reset would not complete.\n", sc->bfe_unit);
BFE_UNLOCK(sc);
return (ENXIO);
}
BFE_UNLOCK(sc);
return (0);
}
static void
bfe_chip_halt(struct bfe_softc *sc)
{
BFE_LOCK(sc);
/* disable interrupts - not that it actually does..*/
CSR_WRITE_4(sc, BFE_IMASK, 0);
CSR_READ_4(sc, BFE_IMASK);
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE);
bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 200, 1);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0);
CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0);
DELAY(10);
BFE_UNLOCK(sc);
}
static void
bfe_chip_reset(struct bfe_softc *sc)
{
u_int32_t val;
BFE_LOCK(sc);
/* Set the interrupt vector for the enet core */
bfe_pci_setup(sc, BFE_INTVEC_ENET0);
/* is core up? */
val = CSR_READ_4(sc, BFE_SBTMSLOW) &
(BFE_RESET | BFE_REJECT | BFE_CLOCK);
if (val == BFE_CLOCK) {
/* It is, so shut it down */
CSR_WRITE_4(sc, BFE_RCV_LAZY, 0);
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE);
bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 100, 1);
CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0);
sc->bfe_tx_cnt = sc->bfe_tx_prod = sc->bfe_tx_cons = 0;
if (CSR_READ_4(sc, BFE_DMARX_STAT) & BFE_STAT_EMASK)
bfe_wait_bit(sc, BFE_DMARX_STAT, BFE_STAT_SIDLE,
100, 0);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0);
sc->bfe_rx_prod = sc->bfe_rx_cons = 0;
}
bfe_core_reset(sc);
bfe_clear_stats(sc);
/*
* We want the phy registers to be accessible even when
* the driver is "downed" so initialize MDC preamble, frequency,
* and whether internal or external phy here.
*/
/* 4402 has 62.5Mhz SB clock and internal phy */
CSR_WRITE_4(sc, BFE_MDIO_CTRL, 0x8d);
/* Internal or external PHY? */
val = CSR_READ_4(sc, BFE_DEVCTRL);
if(!(val & BFE_IPP))
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_EPSEL);
else if(CSR_READ_4(sc, BFE_DEVCTRL) & BFE_EPR) {
BFE_AND(sc, BFE_DEVCTRL, ~BFE_EPR);
DELAY(100);
}
/* Enable CRC32 generation and set proper LED modes */
BFE_OR(sc, BFE_MAC_CTRL, BFE_CTRL_CRC32_ENAB | BFE_CTRL_LED);
/* Reset or clear powerdown control bit */
BFE_AND(sc, BFE_MAC_CTRL, ~BFE_CTRL_PDOWN);
CSR_WRITE_4(sc, BFE_RCV_LAZY, ((1 << BFE_LAZY_FC_SHIFT) &
BFE_LAZY_FC_MASK));
/*
* We don't want lazy interrupts, so just send them at
* the end of a frame, please
*/
BFE_OR(sc, BFE_RCV_LAZY, 0);
/* Set max lengths, accounting for VLAN tags */
CSR_WRITE_4(sc, BFE_RXMAXLEN, ETHER_MAX_LEN+32);
CSR_WRITE_4(sc, BFE_TXMAXLEN, ETHER_MAX_LEN+32);
/* Set watermark XXX - magic */
CSR_WRITE_4(sc, BFE_TX_WMARK, 56);
/*
* Initialise DMA channels
* - not forgetting dma addresses need to be added to BFE_PCI_DMA
*/
CSR_WRITE_4(sc, BFE_DMATX_CTRL, BFE_TX_CTRL_ENABLE);
CSR_WRITE_4(sc, BFE_DMATX_ADDR, sc->bfe_tx_dma + BFE_PCI_DMA);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, (BFE_RX_OFFSET << BFE_RX_CTRL_ROSHIFT) |
BFE_RX_CTRL_ENABLE);
CSR_WRITE_4(sc, BFE_DMARX_ADDR, sc->bfe_rx_dma + BFE_PCI_DMA);
bfe_resetphy(sc);
bfe_setupphy(sc);
BFE_UNLOCK(sc);
}
static void
bfe_core_disable(struct bfe_softc *sc)
{
if((CSR_READ_4(sc, BFE_SBTMSLOW)) & BFE_RESET)
return;
/*
* Set reject, wait for it set, then wait for the core to stop
* being busy, then set reset and reject and enable the clocks.
*/
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_CLOCK));
bfe_wait_bit(sc, BFE_SBTMSLOW, BFE_REJECT, 1000, 0);
bfe_wait_bit(sc, BFE_SBTMSHIGH, BFE_BUSY, 1000, 1);
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_FGC | BFE_CLOCK | BFE_REJECT |
BFE_RESET));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Leave reset and reject set */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_RESET));
DELAY(10);
}
static void
bfe_core_reset(struct bfe_softc *sc)
{
u_int32_t val;
/* Disable the core */
bfe_core_disable(sc);
/* and bring it back up */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_RESET | BFE_CLOCK | BFE_FGC));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Chip bug, clear SERR, IB and TO if they are set. */
if (CSR_READ_4(sc, BFE_SBTMSHIGH) & BFE_SERR)
CSR_WRITE_4(sc, BFE_SBTMSHIGH, 0);
val = CSR_READ_4(sc, BFE_SBIMSTATE);
if (val & (BFE_IBE | BFE_TO))
CSR_WRITE_4(sc, BFE_SBIMSTATE, val & ~(BFE_IBE | BFE_TO));
/* Clear reset and allow it to move through the core */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_CLOCK | BFE_FGC));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Leave the clock set */
CSR_WRITE_4(sc, BFE_SBTMSLOW, BFE_CLOCK);
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
}
static void
bfe_cam_write(struct bfe_softc *sc, u_char *data, int index)
{
u_int32_t val;
val = ((u_int32_t) data[2]) << 24;
val |= ((u_int32_t) data[3]) << 16;
val |= ((u_int32_t) data[4]) << 8;
val |= ((u_int32_t) data[5]);
CSR_WRITE_4(sc, BFE_CAM_DATA_LO, val);
val = (BFE_CAM_HI_VALID |
(((u_int32_t) data[0]) << 8) |
(((u_int32_t) data[1])));
CSR_WRITE_4(sc, BFE_CAM_DATA_HI, val);
CSR_WRITE_4(sc, BFE_CAM_CTRL, (BFE_CAM_WRITE |
((u_int32_t) index << BFE_CAM_INDEX_SHIFT)));
bfe_wait_bit(sc, BFE_CAM_CTRL, BFE_CAM_BUSY, 10000, 1);
}
static void
bfe_set_rx_mode(struct bfe_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct ifmultiaddr *ifma;
u_int32_t val;
int i = 0;
val = CSR_READ_4(sc, BFE_RXCONF);
if (ifp->if_flags & IFF_PROMISC)
val |= BFE_RXCONF_PROMISC;
else
val &= ~BFE_RXCONF_PROMISC;
if (ifp->if_flags & IFF_BROADCAST)
val &= ~BFE_RXCONF_DBCAST;
else
val |= BFE_RXCONF_DBCAST;
CSR_WRITE_4(sc, BFE_CAM_CTRL, 0);
bfe_cam_write(sc, sc->arpcom.ac_enaddr, i++);
if (ifp->if_flags & IFF_ALLMULTI)
val |= BFE_RXCONF_ALLMULTI;
else {
val &= ~BFE_RXCONF_ALLMULTI;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
bfe_cam_write(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i++);
}
}
CSR_WRITE_4(sc, BFE_RXCONF, val);
BFE_OR(sc, BFE_CAM_CTRL, BFE_CAM_ENABLE);
}
static void
bfe_dma_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *ptr;
ptr = arg;
*ptr = segs->ds_addr;
}
static void
bfe_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bfe_desc *d;
d = arg;
/* The chip needs all addresses to be added to BFE_PCI_DMA */
d->bfe_addr = segs->ds_addr + BFE_PCI_DMA;
}
static void
bfe_release_resources(struct bfe_softc *sc)
{
device_t dev;
int i;
dev = sc->bfe_dev;
if (sc->bfe_vpd_prodname != NULL)
free(sc->bfe_vpd_prodname, M_DEVBUF);
if (sc->bfe_vpd_readonly != NULL)
free(sc->bfe_vpd_readonly, M_DEVBUF);
if (sc->bfe_intrhand != NULL)
bus_teardown_intr(dev, sc->bfe_irq, sc->bfe_intrhand);
if (sc->bfe_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bfe_irq);
if (sc->bfe_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0x10, sc->bfe_res);
if(sc->bfe_tx_tag != NULL) {
bus_dmamap_unload(sc->bfe_tx_tag, sc->bfe_tx_map);
bus_dmamem_free(sc->bfe_tx_tag, sc->bfe_tx_list,
sc->bfe_tx_map);
bus_dma_tag_destroy(sc->bfe_tx_tag);
sc->bfe_tx_tag = NULL;
}
if(sc->bfe_rx_tag != NULL) {
bus_dmamap_unload(sc->bfe_rx_tag, sc->bfe_rx_map);
bus_dmamem_free(sc->bfe_rx_tag, sc->bfe_rx_list,
sc->bfe_rx_map);
bus_dma_tag_destroy(sc->bfe_rx_tag);
sc->bfe_rx_tag = NULL;
}
if(sc->bfe_tag != NULL) {
for(i = 0; i < BFE_TX_LIST_CNT; i++) {
bus_dmamap_destroy(sc->bfe_tag,
sc->bfe_tx_ring[i].bfe_map);
}
bus_dma_tag_destroy(sc->bfe_tag);
sc->bfe_tag = NULL;
}
if(sc->bfe_parent_tag != NULL)
bus_dma_tag_destroy(sc->bfe_parent_tag);
return;
}
static void
bfe_read_eeprom(struct bfe_softc *sc, u_int8_t *data)
{
long i;
u_int16_t *ptr = (u_int16_t *)data;
for(i = 0; i < 128; i += 2)
ptr[i/2] = CSR_READ_4(sc, 4096 + i);
}
static int
bfe_wait_bit(struct bfe_softc *sc, u_int32_t reg, u_int32_t bit,
u_long timeout, const int clear)
{
u_long i;
for (i = 0; i < timeout; i++) {
u_int32_t val = CSR_READ_4(sc, reg);
if (clear && !(val & bit))
break;
if (!clear && (val & bit))
break;
DELAY(10);
}
if (i == timeout) {
printf("bfe%d: BUG! Timeout waiting for bit %08x of register "
"%x to %s.\n", sc->bfe_unit, bit, reg,
(clear ? "clear" : "set"));
return (-1);
}
return (0);
}
static int
bfe_readphy(struct bfe_softc *sc, u_int32_t reg, u_int32_t *val)
{
int err;
BFE_LOCK(sc);
/* Clear MII ISR */
CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII);
CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START |
(BFE_MDIO_OP_READ << BFE_MDIO_OP_SHIFT) |
(sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) |
(reg << BFE_MDIO_RA_SHIFT) |
(BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT)));
err = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0);
*val = CSR_READ_4(sc, BFE_MDIO_DATA) & BFE_MDIO_DATA_DATA;
BFE_UNLOCK(sc);
return (err);
}
static int
bfe_writephy(struct bfe_softc *sc, u_int32_t reg, u_int32_t val)
{
int status;
BFE_LOCK(sc);
CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII);
CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START |
(BFE_MDIO_OP_WRITE << BFE_MDIO_OP_SHIFT) |
(sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) |
(reg << BFE_MDIO_RA_SHIFT) |
(BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT) |
(val & BFE_MDIO_DATA_DATA)));
status = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0);
BFE_UNLOCK(sc);
return (status);
}
/*
* XXX - I think this is handled by the PHY driver, but it can't hurt to do it
* twice
*/
static int
bfe_setupphy(struct bfe_softc *sc)
{
u_int32_t val;
BFE_LOCK(sc);
/* Enable activity LED */
bfe_readphy(sc, 26, &val);
bfe_writephy(sc, 26, val & 0x7fff);
bfe_readphy(sc, 26, &val);
/* Enable traffic meter LED mode */
bfe_readphy(sc, 27, &val);
bfe_writephy(sc, 27, val | (1 << 6));
BFE_UNLOCK(sc);
return (0);
}
static void
bfe_stats_update(struct bfe_softc *sc)
{
u_long reg;
u_int32_t *val;
val = &sc->bfe_hwstats.tx_good_octets;
for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) {
*val++ += CSR_READ_4(sc, reg);
}
val = &sc->bfe_hwstats.rx_good_octets;
for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) {
*val++ += CSR_READ_4(sc, reg);
}
}
static void
bfe_txeof(struct bfe_softc *sc)
{
struct ifnet *ifp;
int i, chipidx;
BFE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
chipidx = CSR_READ_4(sc, BFE_DMATX_STAT) & BFE_STAT_CDMASK;
chipidx /= sizeof(struct bfe_desc);
i = sc->bfe_tx_cons;
/* Go through the mbufs and free those that have been transmitted */
while(i != chipidx) {
struct bfe_data *r = &sc->bfe_tx_ring[i];
if(r->bfe_mbuf != NULL) {
ifp->if_opackets++;
m_freem(r->bfe_mbuf);
r->bfe_mbuf = NULL;
bus_dmamap_unload(sc->bfe_tag, r->bfe_map);
}
sc->bfe_tx_cnt--;
BFE_INC(i, BFE_TX_LIST_CNT);
}
if(i != sc->bfe_tx_cons) {
/* we freed up some mbufs */
sc->bfe_tx_cons = i;
ifp->if_flags &= ~IFF_OACTIVE;
}
if(sc->bfe_tx_cnt == 0)
ifp->if_timer = 0;
else
ifp->if_timer = 5;
BFE_UNLOCK(sc);
}
/* Pass a received packet up the stack */
static void
bfe_rxeof(struct bfe_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct bfe_rxheader *rxheader;
struct bfe_data *r;
int cons;
u_int32_t status, current, len, flags;
BFE_LOCK(sc);
cons = sc->bfe_rx_cons;
status = CSR_READ_4(sc, BFE_DMARX_STAT);
current = (status & BFE_STAT_CDMASK) / sizeof(struct bfe_desc);
ifp = &sc->arpcom.ac_if;
while(current != cons) {
r = &sc->bfe_rx_ring[cons];
m = r->bfe_mbuf;
rxheader = mtod(m, struct bfe_rxheader*);
bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_POSTWRITE);
len = rxheader->len;
r->bfe_mbuf = NULL;
bus_dmamap_unload(sc->bfe_tag, r->bfe_map);
flags = rxheader->flags;
len -= ETHER_CRC_LEN;
/* flag an error and try again */
if ((len > ETHER_MAX_LEN+32) || (flags & BFE_RX_FLAG_ERRORS)) {
ifp->if_ierrors++;
if (flags & BFE_RX_FLAG_SERR)
ifp->if_collisions++;
bfe_list_newbuf(sc, cons, m);
BFE_INC(cons, BFE_RX_LIST_CNT);
continue;
}
/* Go past the rx header */
if (bfe_list_newbuf(sc, cons, NULL) == 0) {
m_adj(m, BFE_RX_OFFSET);
m->m_len = m->m_pkthdr.len = len;
} else {
bfe_list_newbuf(sc, cons, m);
ifp->if_ierrors++;
BFE_INC(cons, BFE_RX_LIST_CNT);
continue;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
BFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BFE_LOCK(sc);
BFE_INC(cons, BFE_RX_LIST_CNT);
}
sc->bfe_rx_cons = cons;
BFE_UNLOCK(sc);
}
static void
bfe_intr(void *xsc)
{
struct bfe_softc *sc = xsc;
struct ifnet *ifp;
u_int32_t istat, imask, flag;
ifp = &sc->arpcom.ac_if;
BFE_LOCK(sc);
istat = CSR_READ_4(sc, BFE_ISTAT);
imask = CSR_READ_4(sc, BFE_IMASK);
/*
* Defer unsolicited interrupts - This is necessary because setting the
* chips interrupt mask register to 0 doesn't actually stop the
* interrupts
*/
istat &= imask;
CSR_WRITE_4(sc, BFE_ISTAT, istat);
CSR_READ_4(sc, BFE_ISTAT);
/* not expecting this interrupt, disregard it */
if(istat == 0) {
BFE_UNLOCK(sc);
return;
}
if(istat & BFE_ISTAT_ERRORS) {
flag = CSR_READ_4(sc, BFE_DMATX_STAT);
if(flag & BFE_STAT_EMASK)
ifp->if_oerrors++;
flag = CSR_READ_4(sc, BFE_DMARX_STAT);
if(flag & BFE_RX_FLAG_ERRORS)
ifp->if_ierrors++;
ifp->if_flags &= ~IFF_RUNNING;
bfe_init(sc);
}
/* A packet was received */
if(istat & BFE_ISTAT_RX)
bfe_rxeof(sc);
/* A packet was sent */
if(istat & BFE_ISTAT_TX)
bfe_txeof(sc);
/* We have packets pending, fire them out */
if (ifp->if_flags & IFF_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bfe_start(ifp);
BFE_UNLOCK(sc);
}
static int
bfe_encap(struct bfe_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
{
struct bfe_desc *d = NULL;
struct bfe_data *r = NULL;
struct mbuf *m;
u_int32_t frag, cur, cnt = 0;
int chainlen = 0;
if(BFE_TX_LIST_CNT - sc->bfe_tx_cnt < 2)
return (ENOBUFS);
/*
* Count the number of frags in this chain to see if
* we need to m_defrag. Since the descriptor list is shared
* by all packets, we'll m_defrag long chains so that they
* do not use up the entire list, even if they would fit.
*/
for(m = m_head; m != NULL; m = m->m_next)
chainlen++;
if ((chainlen > BFE_TX_LIST_CNT / 4) ||
((BFE_TX_LIST_CNT - (chainlen + sc->bfe_tx_cnt)) < 2)) {
m = m_defrag(m_head, M_DONTWAIT);
if (m == NULL)
return (ENOBUFS);
m_head = m;
}
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
cnt = 0;
for(m = m_head; m != NULL; m = m->m_next) {
if(m->m_len != 0) {
if((BFE_TX_LIST_CNT - (sc->bfe_tx_cnt + cnt)) < 2)
return (ENOBUFS);
d = &sc->bfe_tx_list[cur];
r = &sc->bfe_tx_ring[cur];
d->bfe_ctrl = BFE_DESC_LEN & m->m_len;
/* always intterupt on completion */
d->bfe_ctrl |= BFE_DESC_IOC;
if(cnt == 0)
/* Set start of frame */
d->bfe_ctrl |= BFE_DESC_SOF;
if(cur == BFE_TX_LIST_CNT - 1)
/*
* Tell the chip to wrap to the start of
* the descriptor list
*/
d->bfe_ctrl |= BFE_DESC_EOT;
bus_dmamap_load(sc->bfe_tag,
r->bfe_map, mtod(m, void*), m->m_len,
bfe_dma_map_desc, d, 0);
bus_dmamap_sync(sc->bfe_tag, r->bfe_map,
BUS_DMASYNC_PREREAD);
frag = cur;
BFE_INC(cur, BFE_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return (ENOBUFS);
sc->bfe_tx_list[frag].bfe_ctrl |= BFE_DESC_EOF;
sc->bfe_tx_ring[frag].bfe_mbuf = m_head;
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD);
*txidx = cur;
sc->bfe_tx_cnt += cnt;
return (0);
}
/*
* Set up to transmit a packet
*/
static void
bfe_start(struct ifnet *ifp)
{
struct bfe_softc *sc;
struct mbuf *m_head = NULL;
int idx;
sc = ifp->if_softc;
idx = sc->bfe_tx_prod;
BFE_LOCK(sc);
/*
* Not much point trying to send if the link is down
* or we have nothing to send.
*/
if (!sc->bfe_link && ifp->if_snd.ifq_len < 10) {
BFE_UNLOCK(sc);
return;
}
if (ifp->if_flags & IFF_OACTIVE) {
BFE_UNLOCK(sc);
return;
}
while(sc->bfe_tx_ring[idx].bfe_mbuf == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if(m_head == NULL)
break;
/*
* Pack the data into the tx ring. If we dont have
* enough room, let the chip drain the ring.
*/
if(bfe_encap(sc, m_head, &idx)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
sc->bfe_tx_prod = idx;
/* Transmit - twice due to apparent hardware bug */
CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc));
CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc));
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
BFE_UNLOCK(sc);
}
static void
bfe_init(void *xsc)
{
struct bfe_softc *sc = (struct bfe_softc*)xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
BFE_LOCK(sc);
if (ifp->if_flags & IFF_RUNNING) {
BFE_UNLOCK(sc);
return;
}
bfe_stop(sc);
bfe_chip_reset(sc);
if (bfe_list_rx_init(sc) == ENOBUFS) {
printf("bfe%d: bfe_init: Not enough memory for list buffers\n",
sc->bfe_unit);
bfe_stop(sc);
return;
}
bfe_set_rx_mode(sc);
/* Enable the chip and core */
BFE_OR(sc, BFE_ENET_CTRL, BFE_ENET_ENABLE);
/* Enable interrupts */
CSR_WRITE_4(sc, BFE_IMASK, BFE_IMASK_DEF);
bfe_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->bfe_stat_ch = timeout(bfe_tick, sc, hz);
BFE_UNLOCK(sc);
}
/*
* Set media options.
*/
static int
bfe_ifmedia_upd(struct ifnet *ifp)
{
struct bfe_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
BFE_LOCK(sc);
mii = device_get_softc(sc->bfe_miibus);
sc->bfe_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
mii_mediachg(mii);
BFE_UNLOCK(sc);
return (0);
}
/*
* Report current media status.
*/
static void
bfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
BFE_LOCK(sc);
mii = device_get_softc(sc->bfe_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
BFE_UNLOCK(sc);
}
static int
bfe_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bfe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
BFE_LOCK(sc);
switch(command) {
case SIOCSIFFLAGS:
if(ifp->if_flags & IFF_UP)
if(ifp->if_flags & IFF_RUNNING)
bfe_set_rx_mode(sc);
else
bfe_init(sc);
else if(ifp->if_flags & IFF_RUNNING)
bfe_stop(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if(ifp->if_flags & IFF_RUNNING)
bfe_set_rx_mode(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->bfe_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
BFE_UNLOCK(sc);
return (error);
}
static void
bfe_watchdog(struct ifnet *ifp)
{
struct bfe_softc *sc;
sc = ifp->if_softc;
BFE_LOCK(sc);
printf("bfe%d: watchdog timeout -- resetting\n", sc->bfe_unit);
ifp->if_flags &= ~IFF_RUNNING;
bfe_init(sc);
ifp->if_oerrors++;
BFE_UNLOCK(sc);
}
static void
bfe_tick(void *xsc)
{
struct bfe_softc *sc = xsc;
struct mii_data *mii;
if (sc == NULL)
return;
BFE_LOCK(sc);
mii = device_get_softc(sc->bfe_miibus);
bfe_stats_update(sc);
sc->bfe_stat_ch = timeout(bfe_tick, sc, hz);
if(sc->bfe_link) {
BFE_UNLOCK(sc);
return;
}
mii_tick(mii);
if (!sc->bfe_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->bfe_link++;
BFE_UNLOCK(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bfe_stop(struct bfe_softc *sc)
{
struct ifnet *ifp;
BFE_LOCK(sc);
untimeout(bfe_tick, sc, sc->bfe_stat_ch);
ifp = &sc->arpcom.ac_if;
bfe_chip_halt(sc);
bfe_tx_ring_free(sc);
bfe_rx_ring_free(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
BFE_UNLOCK(sc);
}