freebsd-skq/sys/dev/qlxgbe/ql_hw.c
2016-08-17 02:40:17 +00:00

4967 lines
124 KiB
C

/*
* Copyright (c) 2013-2016 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: ql_hw.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
* Content: Contains Hardware dependent functions
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "ql_os.h"
#include "ql_hw.h"
#include "ql_def.h"
#include "ql_inline.h"
#include "ql_ver.h"
#include "ql_glbl.h"
#include "ql_dbg.h"
#include "ql_minidump.h"
/*
* Static Functions
*/
static void qla_del_rcv_cntxt(qla_host_t *ha);
static int qla_init_rcv_cntxt(qla_host_t *ha);
static void qla_del_xmt_cntxt(qla_host_t *ha);
static int qla_init_xmt_cntxt(qla_host_t *ha);
static void qla_hw_tx_done_locked(qla_host_t *ha, uint32_t txr_idx);
static int qla_mbx_cmd(qla_host_t *ha, uint32_t *h_mbox, uint32_t n_hmbox,
uint32_t *fw_mbox, uint32_t n_fwmbox, uint32_t no_pause);
static int qla_config_intr_cntxt(qla_host_t *ha, uint32_t start_idx,
uint32_t num_intrs, uint32_t create);
static int qla_config_rss(qla_host_t *ha, uint16_t cntxt_id);
static int qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id,
int tenable, int rcv);
static int qla_set_mac_rcv_mode(qla_host_t *ha, uint32_t mode);
static int qla_link_event_req(qla_host_t *ha, uint16_t cntxt_id);
static int qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd,
uint8_t *hdr);
static int qla_hw_add_all_mcast(qla_host_t *ha);
static int qla_hw_del_all_mcast(qla_host_t *ha);
static int qla_add_rcv_rings(qla_host_t *ha, uint32_t sds_idx, uint32_t nsds);
static int qla_init_nic_func(qla_host_t *ha);
static int qla_stop_nic_func(qla_host_t *ha);
static int qla_query_fw_dcbx_caps(qla_host_t *ha);
static int qla_set_port_config(qla_host_t *ha, uint32_t cfg_bits);
static int qla_get_port_config(qla_host_t *ha, uint32_t *cfg_bits);
static void qla_get_quick_stats(qla_host_t *ha);
static int qla_set_cam_search_mode(qla_host_t *ha, uint32_t search_mode);
static int qla_get_cam_search_mode(qla_host_t *ha);
static void ql_minidump_free(qla_host_t *ha);
static int
qla_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
{
int err = 0, ret;
qla_host_t *ha;
uint32_t i;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
device_printf(ha->pci_dev,
"%s: sds_ring[%d] = %p\n", __func__,i,
(void *)ha->hw.sds[i].intr_count);
device_printf(ha->pci_dev,
"%s: sds_ring[%d].spurious_intr_count = %p\n",
__func__,
i, (void *)ha->hw.sds[i].spurious_intr_count);
device_printf(ha->pci_dev,
"%s: sds_ring[%d].rx_free = %d\n", __func__,i,
ha->hw.sds[i].rx_free);
}
for (i = 0; i < ha->hw.num_tx_rings; i++)
device_printf(ha->pci_dev,
"%s: tx[%d] = %p\n", __func__,i,
(void *)ha->tx_ring[i].count);
for (i = 0; i < ha->hw.num_rds_rings; i++)
device_printf(ha->pci_dev,
"%s: rds_ring[%d] = %p\n", __func__,i,
(void *)ha->hw.rds[i].count);
device_printf(ha->pci_dev, "%s: lro_pkt_count = %p\n", __func__,
(void *)ha->lro_pkt_count);
device_printf(ha->pci_dev, "%s: lro_bytes = %p\n", __func__,
(void *)ha->lro_bytes);
#ifdef QL_ENABLE_ISCSI_TLV
device_printf(ha->pci_dev, "%s: iscsi_pkts = %p\n", __func__,
(void *)ha->hw.iscsi_pkt_count);
#endif /* #ifdef QL_ENABLE_ISCSI_TLV */
}
return (err);
}
static int
qla_sysctl_get_quick_stats(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
qla_get_quick_stats(ha);
}
return (err);
}
#ifdef QL_DBG
static void
qla_stop_pegs(qla_host_t *ha)
{
uint32_t val = 1;
ql_rdwr_indreg32(ha, Q8_CRB_PEG_0, &val, 0);
ql_rdwr_indreg32(ha, Q8_CRB_PEG_1, &val, 0);
ql_rdwr_indreg32(ha, Q8_CRB_PEG_2, &val, 0);
ql_rdwr_indreg32(ha, Q8_CRB_PEG_3, &val, 0);
ql_rdwr_indreg32(ha, Q8_CRB_PEG_4, &val, 0);
device_printf(ha->pci_dev, "%s PEGS HALTED!!!!!\n", __func__);
}
static int
qla_sysctl_stop_pegs(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
(void)QLA_LOCK(ha, __func__, 0);
qla_stop_pegs(ha);
QLA_UNLOCK(ha, __func__);
}
return err;
}
#endif /* #ifdef QL_DBG */
static int
qla_validate_set_port_cfg_bit(uint32_t bits)
{
if ((bits & 0xF) > 1)
return (-1);
if (((bits >> 4) & 0xF) > 2)
return (-1);
if (((bits >> 8) & 0xF) > 2)
return (-1);
return (0);
}
static int
qla_sysctl_port_cfg(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
uint32_t cfg_bits;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if ((qla_validate_set_port_cfg_bit((uint32_t)ret) == 0)) {
ha = (qla_host_t *)arg1;
err = qla_get_port_config(ha, &cfg_bits);
if (err)
goto qla_sysctl_set_port_cfg_exit;
if (ret & 0x1) {
cfg_bits |= Q8_PORT_CFG_BITS_DCBX_ENABLE;
} else {
cfg_bits &= ~Q8_PORT_CFG_BITS_DCBX_ENABLE;
}
ret = ret >> 4;
cfg_bits &= ~Q8_PORT_CFG_BITS_PAUSE_CFG_MASK;
if ((ret & 0xF) == 0) {
cfg_bits |= Q8_PORT_CFG_BITS_PAUSE_DISABLED;
} else if ((ret & 0xF) == 1){
cfg_bits |= Q8_PORT_CFG_BITS_PAUSE_STD;
} else {
cfg_bits |= Q8_PORT_CFG_BITS_PAUSE_PPM;
}
ret = ret >> 4;
cfg_bits &= ~Q8_PORT_CFG_BITS_STDPAUSE_DIR_MASK;
if (ret == 0) {
cfg_bits |= Q8_PORT_CFG_BITS_STDPAUSE_XMT_RCV;
} else if (ret == 1){
cfg_bits |= Q8_PORT_CFG_BITS_STDPAUSE_XMT;
} else {
cfg_bits |= Q8_PORT_CFG_BITS_STDPAUSE_RCV;
}
err = qla_set_port_config(ha, cfg_bits);
} else {
ha = (qla_host_t *)arg1;
err = qla_get_port_config(ha, &cfg_bits);
}
qla_sysctl_set_port_cfg_exit:
return err;
}
static int
qla_sysctl_set_cam_search_mode(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
ha = (qla_host_t *)arg1;
if ((ret == Q8_HW_CONFIG_CAM_SEARCH_MODE_INTERNAL) ||
(ret == Q8_HW_CONFIG_CAM_SEARCH_MODE_AUTO)) {
err = qla_set_cam_search_mode(ha, (uint32_t)ret);
} else {
device_printf(ha->pci_dev, "%s: ret = %d\n", __func__, ret);
}
return (err);
}
static int
qla_sysctl_get_cam_search_mode(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
ha = (qla_host_t *)arg1;
err = qla_get_cam_search_mode(ha);
return (err);
}
/*
* Name: ql_hw_add_sysctls
* Function: Add P3Plus specific sysctls
*/
void
ql_hw_add_sysctls(qla_host_t *ha)
{
device_t dev;
dev = ha->pci_dev;
ha->hw.num_sds_rings = MAX_SDS_RINGS;
ha->hw.num_rds_rings = MAX_RDS_RINGS;
ha->hw.num_tx_rings = NUM_TX_RINGS;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_rds_rings", CTLFLAG_RD, &ha->hw.num_rds_rings,
ha->hw.num_rds_rings, "Number of Rcv Descriptor Rings");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_sds_rings", CTLFLAG_RD, &ha->hw.num_sds_rings,
ha->hw.num_sds_rings, "Number of Status Descriptor Rings");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_tx_rings", CTLFLAG_RD, &ha->hw.num_tx_rings,
ha->hw.num_tx_rings, "Number of Transmit Rings");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "tx_ring_index", CTLFLAG_RW, &ha->txr_idx,
ha->txr_idx, "Tx Ring Used");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "drvr_stats", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "quick_stats", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_quick_stats, "I", "Quick Statistics");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "max_tx_segs", CTLFLAG_RD, &ha->hw.max_tx_segs,
ha->hw.max_tx_segs, "Max # of Segments in a non-TSO pkt");
ha->hw.sds_cidx_thres = 32;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "sds_cidx_thres", CTLFLAG_RW, &ha->hw.sds_cidx_thres,
ha->hw.sds_cidx_thres,
"Number of SDS entries to process before updating"
" SDS Ring Consumer Index");
ha->hw.rds_pidx_thres = 32;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rds_pidx_thres", CTLFLAG_RW, &ha->hw.rds_pidx_thres,
ha->hw.rds_pidx_thres,
"Number of Rcv Rings Entries to post before updating"
" RDS Ring Producer Index");
ha->hw.rcv_intr_coalesce = (3 << 16) | 256;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rcv_intr_coalesce", CTLFLAG_RW,
&ha->hw.rcv_intr_coalesce,
ha->hw.rcv_intr_coalesce,
"Rcv Intr Coalescing Parameters\n"
"\tbits 15:0 max packets\n"
"\tbits 31:16 max micro-seconds to wait\n"
"\tplease run\n"
"\tifconfig <if> down && ifconfig <if> up\n"
"\tto take effect \n");
ha->hw.xmt_intr_coalesce = (64 << 16) | 64;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "xmt_intr_coalesce", CTLFLAG_RW,
&ha->hw.xmt_intr_coalesce,
ha->hw.xmt_intr_coalesce,
"Xmt Intr Coalescing Parameters\n"
"\tbits 15:0 max packets\n"
"\tbits 31:16 max micro-seconds to wait\n"
"\tplease run\n"
"\tifconfig <if> down && ifconfig <if> up\n"
"\tto take effect \n");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "port_cfg", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_port_cfg, "I",
"Set Port Configuration if values below "
"otherwise Get Port Configuration\n"
"\tBits 0-3 ; 1 = DCBX Enable; 0 = DCBX Disable\n"
"\tBits 4-7 : 0 = no pause; 1 = std ; 2 = ppm \n"
"\tBits 8-11: std pause cfg; 0 = xmt and rcv;"
" 1 = xmt only; 2 = rcv only;\n"
);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "set_cam_search_mode", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_set_cam_search_mode, "I",
"Set CAM Search Mode"
"\t 1 = search mode internal\n"
"\t 2 = search mode auto\n");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "get_cam_search_mode", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_cam_search_mode, "I",
"Get CAM Search Mode"
"\t 1 = search mode internal\n"
"\t 2 = search mode auto\n");
ha->hw.enable_9kb = 1;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "enable_9kb", CTLFLAG_RW, &ha->hw.enable_9kb,
ha->hw.enable_9kb, "Enable 9Kbyte Buffers when MTU = 9000");
ha->hw.mdump_active = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "minidump_active", CTLFLAG_RW, &ha->hw.mdump_active,
ha->hw.mdump_active,
"Minidump retrieval is Active");
ha->hw.mdump_done = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mdump_done", CTLFLAG_RW,
&ha->hw.mdump_done, ha->hw.mdump_done,
"Minidump has been done and available for retrieval");
ha->hw.mdump_capture_mask = 0xF;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "minidump_capture_mask", CTLFLAG_RW,
&ha->hw.mdump_capture_mask, ha->hw.mdump_capture_mask,
"Minidump capture mask");
#ifdef QL_DBG
ha->err_inject = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "err_inject",
CTLFLAG_RW, &ha->err_inject, ha->err_inject,
"Error to be injected\n"
"\t\t\t 0: No Errors\n"
"\t\t\t 1: rcv: rxb struct invalid\n"
"\t\t\t 2: rcv: mp == NULL\n"
"\t\t\t 3: lro: rxb struct invalid\n"
"\t\t\t 4: lro: mp == NULL\n"
"\t\t\t 5: rcv: num handles invalid\n"
"\t\t\t 6: reg: indirect reg rd_wr failure\n"
"\t\t\t 7: ocm: offchip memory rd_wr failure\n"
"\t\t\t 8: mbx: mailbox command failure\n"
"\t\t\t 9: heartbeat failure\n"
"\t\t\t A: temperature failure\n"
"\t\t\t 11: m_getcl or m_getjcl failure\n" );
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "peg_stop", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_stop_pegs, "I", "Peg Stop");
#endif /* #ifdef QL_DBG */
ha->hw.user_pri_nic = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "user_pri_nic", CTLFLAG_RW, &ha->hw.user_pri_nic,
ha->hw.user_pri_nic,
"VLAN Tag User Priority for Normal Ethernet Packets");
ha->hw.user_pri_iscsi = 4;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "user_pri_iscsi", CTLFLAG_RW, &ha->hw.user_pri_iscsi,
ha->hw.user_pri_iscsi,
"VLAN Tag User Priority for iSCSI Packets");
}
void
ql_hw_link_status(qla_host_t *ha)
{
device_printf(ha->pci_dev, "cable_oui\t\t 0x%08x\n", ha->hw.cable_oui);
if (ha->hw.link_up) {
device_printf(ha->pci_dev, "link Up\n");
} else {
device_printf(ha->pci_dev, "link Down\n");
}
if (ha->hw.flags.fduplex) {
device_printf(ha->pci_dev, "Full Duplex\n");
} else {
device_printf(ha->pci_dev, "Half Duplex\n");
}
if (ha->hw.flags.autoneg) {
device_printf(ha->pci_dev, "Auto Negotiation Enabled\n");
} else {
device_printf(ha->pci_dev, "Auto Negotiation Disabled\n");
}
switch (ha->hw.link_speed) {
case 0x710:
device_printf(ha->pci_dev, "link speed\t\t 10Gps\n");
break;
case 0x3E8:
device_printf(ha->pci_dev, "link speed\t\t 1Gps\n");
break;
case 0x64:
device_printf(ha->pci_dev, "link speed\t\t 100Mbps\n");
break;
default:
device_printf(ha->pci_dev, "link speed\t\t Unknown\n");
break;
}
switch (ha->hw.module_type) {
case 0x01:
device_printf(ha->pci_dev, "Module Type 10GBase-LRM\n");
break;
case 0x02:
device_printf(ha->pci_dev, "Module Type 10GBase-LR\n");
break;
case 0x03:
device_printf(ha->pci_dev, "Module Type 10GBase-SR\n");
break;
case 0x04:
device_printf(ha->pci_dev,
"Module Type 10GE Passive Copper(Compliant)[%d m]\n",
ha->hw.cable_length);
break;
case 0x05:
device_printf(ha->pci_dev, "Module Type 10GE Active"
" Limiting Copper(Compliant)[%d m]\n",
ha->hw.cable_length);
break;
case 0x06:
device_printf(ha->pci_dev,
"Module Type 10GE Passive Copper"
" (Legacy, Best Effort)[%d m]\n",
ha->hw.cable_length);
break;
case 0x07:
device_printf(ha->pci_dev, "Module Type 1000Base-SX\n");
break;
case 0x08:
device_printf(ha->pci_dev, "Module Type 1000Base-LX\n");
break;
case 0x09:
device_printf(ha->pci_dev, "Module Type 1000Base-CX\n");
break;
case 0x0A:
device_printf(ha->pci_dev, "Module Type 1000Base-T\n");
break;
case 0x0B:
device_printf(ha->pci_dev, "Module Type 1GE Passive Copper"
"(Legacy, Best Effort)\n");
break;
default:
device_printf(ha->pci_dev, "Unknown Module Type 0x%x\n",
ha->hw.module_type);
break;
}
if (ha->hw.link_faults == 1)
device_printf(ha->pci_dev, "SFP Power Fault\n");
}
/*
* Name: ql_free_dma
* Function: Frees the DMA'able memory allocated in ql_alloc_dma()
*/
void
ql_free_dma(qla_host_t *ha)
{
uint32_t i;
if (ha->hw.dma_buf.flags.sds_ring) {
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ql_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
}
ha->hw.dma_buf.flags.sds_ring = 0;
}
if (ha->hw.dma_buf.flags.rds_ring) {
for (i = 0; i < ha->hw.num_rds_rings; i++) {
ql_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
}
ha->hw.dma_buf.flags.rds_ring = 0;
}
if (ha->hw.dma_buf.flags.tx_ring) {
ql_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
ha->hw.dma_buf.flags.tx_ring = 0;
}
ql_minidump_free(ha);
}
/*
* Name: ql_alloc_dma
* Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
*/
int
ql_alloc_dma(qla_host_t *ha)
{
device_t dev;
uint32_t i, j, size, tx_ring_size;
qla_hw_t *hw;
qla_hw_tx_cntxt_t *tx_cntxt;
uint8_t *vaddr;
bus_addr_t paddr;
dev = ha->pci_dev;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
hw = &ha->hw;
/*
* Allocate Transmit Ring
*/
tx_ring_size = (sizeof(q80_tx_cmd_t) * NUM_TX_DESCRIPTORS);
size = (tx_ring_size * ha->hw.num_tx_rings);
hw->dma_buf.tx_ring.alignment = 8;
hw->dma_buf.tx_ring.size = size + PAGE_SIZE;
if (ql_alloc_dmabuf(ha, &hw->dma_buf.tx_ring)) {
device_printf(dev, "%s: tx ring alloc failed\n", __func__);
goto ql_alloc_dma_exit;
}
vaddr = (uint8_t *)hw->dma_buf.tx_ring.dma_b;
paddr = hw->dma_buf.tx_ring.dma_addr;
for (i = 0; i < ha->hw.num_tx_rings; i++) {
tx_cntxt = (qla_hw_tx_cntxt_t *)&hw->tx_cntxt[i];
tx_cntxt->tx_ring_base = (q80_tx_cmd_t *)vaddr;
tx_cntxt->tx_ring_paddr = paddr;
vaddr += tx_ring_size;
paddr += tx_ring_size;
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
tx_cntxt = (qla_hw_tx_cntxt_t *)&hw->tx_cntxt[i];
tx_cntxt->tx_cons = (uint32_t *)vaddr;
tx_cntxt->tx_cons_paddr = paddr;
vaddr += sizeof (uint32_t);
paddr += sizeof (uint32_t);
}
ha->hw.dma_buf.flags.tx_ring = 1;
QL_DPRINT2(ha, (dev, "%s: tx_ring phys %p virt %p\n",
__func__, (void *)(hw->dma_buf.tx_ring.dma_addr),
hw->dma_buf.tx_ring.dma_b));
/*
* Allocate Receive Descriptor Rings
*/
for (i = 0; i < hw->num_rds_rings; i++) {
hw->dma_buf.rds_ring[i].alignment = 8;
hw->dma_buf.rds_ring[i].size =
(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
if (ql_alloc_dmabuf(ha, &hw->dma_buf.rds_ring[i])) {
device_printf(dev, "%s: rds ring[%d] alloc failed\n",
__func__, i);
for (j = 0; j < i; j++)
ql_free_dmabuf(ha, &hw->dma_buf.rds_ring[j]);
goto ql_alloc_dma_exit;
}
QL_DPRINT4(ha, (dev, "%s: rx_ring[%d] phys %p virt %p\n",
__func__, i, (void *)(hw->dma_buf.rds_ring[i].dma_addr),
hw->dma_buf.rds_ring[i].dma_b));
}
hw->dma_buf.flags.rds_ring = 1;
/*
* Allocate Status Descriptor Rings
*/
for (i = 0; i < hw->num_sds_rings; i++) {
hw->dma_buf.sds_ring[i].alignment = 8;
hw->dma_buf.sds_ring[i].size =
(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
if (ql_alloc_dmabuf(ha, &hw->dma_buf.sds_ring[i])) {
device_printf(dev, "%s: sds ring alloc failed\n",
__func__);
for (j = 0; j < i; j++)
ql_free_dmabuf(ha, &hw->dma_buf.sds_ring[j]);
goto ql_alloc_dma_exit;
}
QL_DPRINT4(ha, (dev, "%s: sds_ring[%d] phys %p virt %p\n",
__func__, i,
(void *)(hw->dma_buf.sds_ring[i].dma_addr),
hw->dma_buf.sds_ring[i].dma_b));
}
for (i = 0; i < hw->num_sds_rings; i++) {
hw->sds[i].sds_ring_base =
(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
}
hw->dma_buf.flags.sds_ring = 1;
return 0;
ql_alloc_dma_exit:
ql_free_dma(ha);
return -1;
}
#define Q8_MBX_MSEC_DELAY 5000
static int
qla_mbx_cmd(qla_host_t *ha, uint32_t *h_mbox, uint32_t n_hmbox,
uint32_t *fw_mbox, uint32_t n_fwmbox, uint32_t no_pause)
{
uint32_t i;
uint32_t data;
int ret = 0;
if (QL_ERR_INJECT(ha, INJCT_MBX_CMD_FAILURE)) {
ret = -3;
ha->qla_initiate_recovery = 1;
goto exit_qla_mbx_cmd;
}
if (no_pause)
i = 1000;
else
i = Q8_MBX_MSEC_DELAY;
while (i) {
data = READ_REG32(ha, Q8_HOST_MBOX_CNTRL);
if (data == 0)
break;
if (no_pause) {
DELAY(1000);
} else {
qla_mdelay(__func__, 1);
}
i--;
}
if (i == 0) {
device_printf(ha->pci_dev, "%s: host_mbx_cntrl 0x%08x\n",
__func__, data);
ret = -1;
ha->qla_initiate_recovery = 1;
goto exit_qla_mbx_cmd;
}
for (i = 0; i < n_hmbox; i++) {
WRITE_REG32(ha, (Q8_HOST_MBOX0 + (i << 2)), *h_mbox);
h_mbox++;
}
WRITE_REG32(ha, Q8_HOST_MBOX_CNTRL, 0x1);
i = Q8_MBX_MSEC_DELAY;
while (i) {
data = READ_REG32(ha, Q8_FW_MBOX_CNTRL);
if ((data & 0x3) == 1) {
data = READ_REG32(ha, Q8_FW_MBOX0);
if ((data & 0xF000) != 0x8000)
break;
}
if (no_pause) {
DELAY(1000);
} else {
qla_mdelay(__func__, 1);
}
i--;
}
if (i == 0) {
device_printf(ha->pci_dev, "%s: fw_mbx_cntrl 0x%08x\n",
__func__, data);
ret = -2;
ha->qla_initiate_recovery = 1;
goto exit_qla_mbx_cmd;
}
for (i = 0; i < n_fwmbox; i++) {
*fw_mbox++ = READ_REG32(ha, (Q8_FW_MBOX0 + (i << 2)));
}
WRITE_REG32(ha, Q8_FW_MBOX_CNTRL, 0x0);
WRITE_REG32(ha, ha->hw.mbx_intr_mask_offset, 0x0);
exit_qla_mbx_cmd:
return (ret);
}
int
qla_get_nic_partition(qla_host_t *ha, uint32_t *supports_9kb,
uint32_t *num_rcvq)
{
uint32_t *mbox, err;
device_t dev = ha->pci_dev;
bzero(ha->hw.mbox, (sizeof (uint32_t) * Q8_NUM_MBOX));
mbox = ha->hw.mbox;
mbox[0] = Q8_MBX_GET_NIC_PARTITION | (0x2 << 16) | (0x2 << 29);
if (qla_mbx_cmd(ha, mbox, 2, mbox, 19, 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
err = mbox[0] >> 25;
if (supports_9kb != NULL) {
if (mbox[16] & 0x80) /* bit 7 of mbox 16 */
*supports_9kb = 1;
else
*supports_9kb = 0;
}
if (num_rcvq != NULL)
*num_rcvq = ((mbox[6] >> 16) & 0xFFFF);
if ((err != 1) && (err != 0)) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return 0;
}
static int
qla_config_intr_cntxt(qla_host_t *ha, uint32_t start_idx, uint32_t num_intrs,
uint32_t create)
{
uint32_t i, err;
device_t dev = ha->pci_dev;
q80_config_intr_t *c_intr;
q80_config_intr_rsp_t *c_intr_rsp;
c_intr = (q80_config_intr_t *)ha->hw.mbox;
bzero(c_intr, (sizeof (q80_config_intr_t)));
c_intr->opcode = Q8_MBX_CONFIG_INTR;
c_intr->count_version = (sizeof (q80_config_intr_t) >> 2);
c_intr->count_version |= Q8_MBX_CMD_VERSION;
c_intr->nentries = num_intrs;
for (i = 0; i < num_intrs; i++) {
if (create) {
c_intr->intr[i].cmd_type = Q8_MBX_CONFIG_INTR_CREATE;
c_intr->intr[i].msix_index = start_idx + 1 + i;
} else {
c_intr->intr[i].cmd_type = Q8_MBX_CONFIG_INTR_DELETE;
c_intr->intr[i].msix_index =
ha->hw.intr_id[(start_idx + i)];
}
c_intr->intr[i].cmd_type |= Q8_MBX_CONFIG_INTR_TYPE_MSI_X;
}
if (qla_mbx_cmd(ha, (uint32_t *)c_intr,
(sizeof (q80_config_intr_t) >> 2),
ha->hw.mbox, (sizeof (q80_config_intr_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
c_intr_rsp = (q80_config_intr_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(c_intr_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x, %d]\n", __func__, err,
c_intr_rsp->nentries);
for (i = 0; i < c_intr_rsp->nentries; i++) {
device_printf(dev, "%s: [%d]:[0x%x 0x%x 0x%x]\n",
__func__, i,
c_intr_rsp->intr[i].status,
c_intr_rsp->intr[i].intr_id,
c_intr_rsp->intr[i].intr_src);
}
return (-1);
}
for (i = 0; ((i < num_intrs) && create); i++) {
if (!c_intr_rsp->intr[i].status) {
ha->hw.intr_id[(start_idx + i)] =
c_intr_rsp->intr[i].intr_id;
ha->hw.intr_src[(start_idx + i)] =
c_intr_rsp->intr[i].intr_src;
}
}
return (0);
}
/*
* Name: qla_config_rss
* Function: Configure RSS for the context/interface.
*/
static const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL,
0x8030f20c77cb2da3ULL,
0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
0x255b0ec26d5a56daULL };
static int
qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
{
q80_config_rss_t *c_rss;
q80_config_rss_rsp_t *c_rss_rsp;
uint32_t err, i;
device_t dev = ha->pci_dev;
c_rss = (q80_config_rss_t *)ha->hw.mbox;
bzero(c_rss, (sizeof (q80_config_rss_t)));
c_rss->opcode = Q8_MBX_CONFIG_RSS;
c_rss->count_version = (sizeof (q80_config_rss_t) >> 2);
c_rss->count_version |= Q8_MBX_CMD_VERSION;
c_rss->hash_type = (Q8_MBX_RSS_HASH_TYPE_IPV4_TCP_IP |
Q8_MBX_RSS_HASH_TYPE_IPV6_TCP_IP);
//c_rss->hash_type = (Q8_MBX_RSS_HASH_TYPE_IPV4_TCP |
// Q8_MBX_RSS_HASH_TYPE_IPV6_TCP);
c_rss->flags = Q8_MBX_RSS_FLAGS_ENABLE_RSS;
c_rss->flags |= Q8_MBX_RSS_FLAGS_USE_IND_TABLE;
c_rss->indtbl_mask = Q8_MBX_RSS_INDTBL_MASK;
c_rss->indtbl_mask |= Q8_MBX_RSS_FLAGS_MULTI_RSS_VALID;
c_rss->flags |= Q8_MBX_RSS_FLAGS_TYPE_CRSS;
c_rss->cntxt_id = cntxt_id;
for (i = 0; i < 5; i++) {
c_rss->rss_key[i] = rss_key[i];
}
if (qla_mbx_cmd(ha, (uint32_t *)c_rss,
(sizeof (q80_config_rss_t) >> 2),
ha->hw.mbox, (sizeof(q80_config_rss_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
c_rss_rsp = (q80_config_rss_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(c_rss_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return 0;
}
static int
qla_set_rss_ind_table(qla_host_t *ha, uint32_t start_idx, uint32_t count,
uint16_t cntxt_id, uint8_t *ind_table)
{
q80_config_rss_ind_table_t *c_rss_ind;
q80_config_rss_ind_table_rsp_t *c_rss_ind_rsp;
uint32_t err;
device_t dev = ha->pci_dev;
if ((count > Q8_RSS_IND_TBL_SIZE) ||
((start_idx + count - 1) > Q8_RSS_IND_TBL_MAX_IDX)) {
device_printf(dev, "%s: illegal count [%d, %d]\n", __func__,
start_idx, count);
return (-1);
}
c_rss_ind = (q80_config_rss_ind_table_t *)ha->hw.mbox;
bzero(c_rss_ind, sizeof (q80_config_rss_ind_table_t));
c_rss_ind->opcode = Q8_MBX_CONFIG_RSS_TABLE;
c_rss_ind->count_version = (sizeof (q80_config_rss_ind_table_t) >> 2);
c_rss_ind->count_version |= Q8_MBX_CMD_VERSION;
c_rss_ind->start_idx = start_idx;
c_rss_ind->end_idx = start_idx + count - 1;
c_rss_ind->cntxt_id = cntxt_id;
bcopy(ind_table, c_rss_ind->ind_table, count);
if (qla_mbx_cmd(ha, (uint32_t *)c_rss_ind,
(sizeof (q80_config_rss_ind_table_t) >> 2), ha->hw.mbox,
(sizeof(q80_config_rss_ind_table_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
c_rss_ind_rsp = (q80_config_rss_ind_table_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(c_rss_ind_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return 0;
}
/*
* Name: qla_config_intr_coalesce
* Function: Configure Interrupt Coalescing.
*/
static int
qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable,
int rcv)
{
q80_config_intr_coalesc_t *intrc;
q80_config_intr_coalesc_rsp_t *intrc_rsp;
uint32_t err, i;
device_t dev = ha->pci_dev;
intrc = (q80_config_intr_coalesc_t *)ha->hw.mbox;
bzero(intrc, (sizeof (q80_config_intr_coalesc_t)));
intrc->opcode = Q8_MBX_CONFIG_INTR_COALESCE;
intrc->count_version = (sizeof (q80_config_intr_coalesc_t) >> 2);
intrc->count_version |= Q8_MBX_CMD_VERSION;
if (rcv) {
intrc->flags = Q8_MBX_INTRC_FLAGS_RCV;
intrc->max_pkts = ha->hw.rcv_intr_coalesce & 0xFFFF;
intrc->max_mswait = (ha->hw.rcv_intr_coalesce >> 16) & 0xFFFF;
} else {
intrc->flags = Q8_MBX_INTRC_FLAGS_XMT;
intrc->max_pkts = ha->hw.xmt_intr_coalesce & 0xFFFF;
intrc->max_mswait = (ha->hw.xmt_intr_coalesce >> 16) & 0xFFFF;
}
intrc->cntxt_id = cntxt_id;
if (tenable) {
intrc->flags |= Q8_MBX_INTRC_FLAGS_PERIODIC;
intrc->timer_type = Q8_MBX_INTRC_TIMER_PERIODIC;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
intrc->sds_ring_mask |= (1 << i);
}
intrc->ms_timeout = 1000;
}
if (qla_mbx_cmd(ha, (uint32_t *)intrc,
(sizeof (q80_config_intr_coalesc_t) >> 2),
ha->hw.mbox, (sizeof(q80_config_intr_coalesc_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
intrc_rsp = (q80_config_intr_coalesc_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(intrc_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return 0;
}
/*
* Name: qla_config_mac_addr
* Function: binds a MAC address to the context/interface.
* Can be unicast, multicast or broadcast.
*/
static int
qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint32_t add_mac)
{
q80_config_mac_addr_t *cmac;
q80_config_mac_addr_rsp_t *cmac_rsp;
uint32_t err;
device_t dev = ha->pci_dev;
cmac = (q80_config_mac_addr_t *)ha->hw.mbox;
bzero(cmac, (sizeof (q80_config_mac_addr_t)));
cmac->opcode = Q8_MBX_CONFIG_MAC_ADDR;
cmac->count_version = sizeof (q80_config_mac_addr_t) >> 2;
cmac->count_version |= Q8_MBX_CMD_VERSION;
if (add_mac)
cmac->cmd = Q8_MBX_CMAC_CMD_ADD_MAC_ADDR;
else
cmac->cmd = Q8_MBX_CMAC_CMD_DEL_MAC_ADDR;
cmac->cmd |= Q8_MBX_CMAC_CMD_CAM_INGRESS;
cmac->nmac_entries = 1;
cmac->cntxt_id = ha->hw.rcv_cntxt_id;
bcopy(mac_addr, cmac->mac_addr[0].addr, 6);
if (qla_mbx_cmd(ha, (uint32_t *)cmac,
(sizeof (q80_config_mac_addr_t) >> 2),
ha->hw.mbox, (sizeof(q80_config_mac_addr_rsp_t) >> 2), 1)) {
device_printf(dev, "%s: %s failed0\n", __func__,
(add_mac ? "Add" : "Del"));
return (-1);
}
cmac_rsp = (q80_config_mac_addr_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(cmac_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: %s "
"%02x:%02x:%02x:%02x:%02x:%02x failed1 [0x%08x]\n",
__func__, (add_mac ? "Add" : "Del"),
mac_addr[0], mac_addr[1], mac_addr[2],
mac_addr[3], mac_addr[4], mac_addr[5], err);
return (-1);
}
return 0;
}
/*
* Name: qla_set_mac_rcv_mode
* Function: Enable/Disable AllMulticast and Promiscous Modes.
*/
static int
qla_set_mac_rcv_mode(qla_host_t *ha, uint32_t mode)
{
q80_config_mac_rcv_mode_t *rcv_mode;
uint32_t err;
q80_config_mac_rcv_mode_rsp_t *rcv_mode_rsp;
device_t dev = ha->pci_dev;
rcv_mode = (q80_config_mac_rcv_mode_t *)ha->hw.mbox;
bzero(rcv_mode, (sizeof (q80_config_mac_rcv_mode_t)));
rcv_mode->opcode = Q8_MBX_CONFIG_MAC_RX_MODE;
rcv_mode->count_version = sizeof (q80_config_mac_rcv_mode_t) >> 2;
rcv_mode->count_version |= Q8_MBX_CMD_VERSION;
rcv_mode->mode = mode;
rcv_mode->cntxt_id = ha->hw.rcv_cntxt_id;
if (qla_mbx_cmd(ha, (uint32_t *)rcv_mode,
(sizeof (q80_config_mac_rcv_mode_t) >> 2),
ha->hw.mbox, (sizeof(q80_config_mac_rcv_mode_rsp_t) >> 2), 1)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
rcv_mode_rsp = (q80_config_mac_rcv_mode_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(rcv_mode_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return 0;
}
int
ql_set_promisc(qla_host_t *ha)
{
int ret;
ha->hw.mac_rcv_mode |= Q8_MBX_MAC_RCV_PROMISC_ENABLE;
ret = qla_set_mac_rcv_mode(ha, ha->hw.mac_rcv_mode);
return (ret);
}
void
qla_reset_promisc(qla_host_t *ha)
{
ha->hw.mac_rcv_mode &= ~Q8_MBX_MAC_RCV_PROMISC_ENABLE;
(void)qla_set_mac_rcv_mode(ha, ha->hw.mac_rcv_mode);
}
int
ql_set_allmulti(qla_host_t *ha)
{
int ret;
ha->hw.mac_rcv_mode |= Q8_MBX_MAC_ALL_MULTI_ENABLE;
ret = qla_set_mac_rcv_mode(ha, ha->hw.mac_rcv_mode);
return (ret);
}
void
qla_reset_allmulti(qla_host_t *ha)
{
ha->hw.mac_rcv_mode &= ~Q8_MBX_MAC_ALL_MULTI_ENABLE;
(void)qla_set_mac_rcv_mode(ha, ha->hw.mac_rcv_mode);
}
/*
* Name: ql_set_max_mtu
* Function:
* Sets the maximum transfer unit size for the specified rcv context.
*/
int
ql_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
{
device_t dev;
q80_set_max_mtu_t *max_mtu;
q80_set_max_mtu_rsp_t *max_mtu_rsp;
uint32_t err;
dev = ha->pci_dev;
max_mtu = (q80_set_max_mtu_t *)ha->hw.mbox;
bzero(max_mtu, (sizeof (q80_set_max_mtu_t)));
max_mtu->opcode = Q8_MBX_SET_MAX_MTU;
max_mtu->count_version = (sizeof (q80_set_max_mtu_t) >> 2);
max_mtu->count_version |= Q8_MBX_CMD_VERSION;
max_mtu->cntxt_id = cntxt_id;
max_mtu->mtu = mtu;
if (qla_mbx_cmd(ha, (uint32_t *)max_mtu,
(sizeof (q80_set_max_mtu_t) >> 2),
ha->hw.mbox, (sizeof (q80_set_max_mtu_rsp_t) >> 2), 1)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
max_mtu_rsp = (q80_set_max_mtu_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(max_mtu_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_link_event_req(qla_host_t *ha, uint16_t cntxt_id)
{
device_t dev;
q80_link_event_t *lnk;
q80_link_event_rsp_t *lnk_rsp;
uint32_t err;
dev = ha->pci_dev;
lnk = (q80_link_event_t *)ha->hw.mbox;
bzero(lnk, (sizeof (q80_link_event_t)));
lnk->opcode = Q8_MBX_LINK_EVENT_REQ;
lnk->count_version = (sizeof (q80_link_event_t) >> 2);
lnk->count_version |= Q8_MBX_CMD_VERSION;
lnk->cntxt_id = cntxt_id;
lnk->cmd = Q8_LINK_EVENT_CMD_ENABLE_ASYNC;
if (qla_mbx_cmd(ha, (uint32_t *)lnk, (sizeof (q80_link_event_t) >> 2),
ha->hw.mbox, (sizeof (q80_link_event_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
lnk_rsp = (q80_link_event_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(lnk_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_config_fw_lro(qla_host_t *ha, uint16_t cntxt_id)
{
device_t dev;
q80_config_fw_lro_t *fw_lro;
q80_config_fw_lro_rsp_t *fw_lro_rsp;
uint32_t err;
dev = ha->pci_dev;
fw_lro = (q80_config_fw_lro_t *)ha->hw.mbox;
bzero(fw_lro, sizeof(q80_config_fw_lro_t));
fw_lro->opcode = Q8_MBX_CONFIG_FW_LRO;
fw_lro->count_version = (sizeof (q80_config_fw_lro_t) >> 2);
fw_lro->count_version |= Q8_MBX_CMD_VERSION;
fw_lro->flags |= Q8_MBX_FW_LRO_IPV4 | Q8_MBX_FW_LRO_IPV4_WO_DST_IP_CHK;
fw_lro->flags |= Q8_MBX_FW_LRO_IPV6 | Q8_MBX_FW_LRO_IPV6_WO_DST_IP_CHK;
fw_lro->cntxt_id = cntxt_id;
if (qla_mbx_cmd(ha, (uint32_t *)fw_lro,
(sizeof (q80_config_fw_lro_t) >> 2),
ha->hw.mbox, (sizeof (q80_config_fw_lro_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
fw_lro_rsp = (q80_config_fw_lro_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(fw_lro_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_set_cam_search_mode(qla_host_t *ha, uint32_t search_mode)
{
device_t dev;
q80_hw_config_t *hw_config;
q80_hw_config_rsp_t *hw_config_rsp;
uint32_t err;
dev = ha->pci_dev;
hw_config = (q80_hw_config_t *)ha->hw.mbox;
bzero(hw_config, sizeof (q80_hw_config_t));
hw_config->opcode = Q8_MBX_HW_CONFIG;
hw_config->count_version = Q8_HW_CONFIG_SET_CAM_SEARCH_MODE_COUNT;
hw_config->count_version |= Q8_MBX_CMD_VERSION;
hw_config->cmd = Q8_HW_CONFIG_SET_CAM_SEARCH_MODE;
hw_config->u.set_cam_search_mode.mode = search_mode;
if (qla_mbx_cmd(ha, (uint32_t *)hw_config,
(sizeof (q80_hw_config_t) >> 2),
ha->hw.mbox, (sizeof (q80_hw_config_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
hw_config_rsp = (q80_hw_config_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(hw_config_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_get_cam_search_mode(qla_host_t *ha)
{
device_t dev;
q80_hw_config_t *hw_config;
q80_hw_config_rsp_t *hw_config_rsp;
uint32_t err;
dev = ha->pci_dev;
hw_config = (q80_hw_config_t *)ha->hw.mbox;
bzero(hw_config, sizeof (q80_hw_config_t));
hw_config->opcode = Q8_MBX_HW_CONFIG;
hw_config->count_version = Q8_HW_CONFIG_GET_CAM_SEARCH_MODE_COUNT;
hw_config->count_version |= Q8_MBX_CMD_VERSION;
hw_config->cmd = Q8_HW_CONFIG_GET_CAM_SEARCH_MODE;
if (qla_mbx_cmd(ha, (uint32_t *)hw_config,
(sizeof (q80_hw_config_t) >> 2),
ha->hw.mbox, (sizeof (q80_hw_config_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
hw_config_rsp = (q80_hw_config_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(hw_config_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
} else {
device_printf(dev, "%s: cam search mode [0x%08x]\n", __func__,
hw_config_rsp->u.get_cam_search_mode.mode);
}
return 0;
}
static void
qla_xmt_stats(qla_host_t *ha, q80_xmt_stats_t *xstat, int i)
{
device_t dev = ha->pci_dev;
if (i < ha->hw.num_tx_rings) {
device_printf(dev, "%s[%d]: total_bytes\t\t%" PRIu64 "\n",
__func__, i, xstat->total_bytes);
device_printf(dev, "%s[%d]: total_pkts\t\t%" PRIu64 "\n",
__func__, i, xstat->total_pkts);
device_printf(dev, "%s[%d]: errors\t\t%" PRIu64 "\n",
__func__, i, xstat->errors);
device_printf(dev, "%s[%d]: pkts_dropped\t%" PRIu64 "\n",
__func__, i, xstat->pkts_dropped);
device_printf(dev, "%s[%d]: switch_pkts\t\t%" PRIu64 "\n",
__func__, i, xstat->switch_pkts);
device_printf(dev, "%s[%d]: num_buffers\t\t%" PRIu64 "\n",
__func__, i, xstat->num_buffers);
} else {
device_printf(dev, "%s: total_bytes\t\t\t%" PRIu64 "\n",
__func__, xstat->total_bytes);
device_printf(dev, "%s: total_pkts\t\t\t%" PRIu64 "\n",
__func__, xstat->total_pkts);
device_printf(dev, "%s: errors\t\t\t%" PRIu64 "\n",
__func__, xstat->errors);
device_printf(dev, "%s: pkts_dropped\t\t\t%" PRIu64 "\n",
__func__, xstat->pkts_dropped);
device_printf(dev, "%s: switch_pkts\t\t\t%" PRIu64 "\n",
__func__, xstat->switch_pkts);
device_printf(dev, "%s: num_buffers\t\t\t%" PRIu64 "\n",
__func__, xstat->num_buffers);
}
}
static void
qla_rcv_stats(qla_host_t *ha, q80_rcv_stats_t *rstat)
{
device_t dev = ha->pci_dev;
device_printf(dev, "%s: total_bytes\t\t\t%" PRIu64 "\n", __func__,
rstat->total_bytes);
device_printf(dev, "%s: total_pkts\t\t\t%" PRIu64 "\n", __func__,
rstat->total_pkts);
device_printf(dev, "%s: lro_pkt_count\t\t%" PRIu64 "\n", __func__,
rstat->lro_pkt_count);
device_printf(dev, "%s: sw_pkt_count\t\t\t%" PRIu64 "\n", __func__,
rstat->sw_pkt_count);
device_printf(dev, "%s: ip_chksum_err\t\t%" PRIu64 "\n", __func__,
rstat->ip_chksum_err);
device_printf(dev, "%s: pkts_wo_acntxts\t\t%" PRIu64 "\n", __func__,
rstat->pkts_wo_acntxts);
device_printf(dev, "%s: pkts_dropped_no_sds_card\t%" PRIu64 "\n",
__func__, rstat->pkts_dropped_no_sds_card);
device_printf(dev, "%s: pkts_dropped_no_sds_host\t%" PRIu64 "\n",
__func__, rstat->pkts_dropped_no_sds_host);
device_printf(dev, "%s: oversized_pkts\t\t%" PRIu64 "\n", __func__,
rstat->oversized_pkts);
device_printf(dev, "%s: pkts_dropped_no_rds\t\t%" PRIu64 "\n",
__func__, rstat->pkts_dropped_no_rds);
device_printf(dev, "%s: unxpctd_mcast_pkts\t\t%" PRIu64 "\n",
__func__, rstat->unxpctd_mcast_pkts);
device_printf(dev, "%s: re1_fbq_error\t\t%" PRIu64 "\n", __func__,
rstat->re1_fbq_error);
device_printf(dev, "%s: invalid_mac_addr\t\t%" PRIu64 "\n", __func__,
rstat->invalid_mac_addr);
device_printf(dev, "%s: rds_prime_trys\t\t%" PRIu64 "\n", __func__,
rstat->rds_prime_trys);
device_printf(dev, "%s: rds_prime_success\t\t%" PRIu64 "\n", __func__,
rstat->rds_prime_success);
device_printf(dev, "%s: lro_flows_added\t\t%" PRIu64 "\n", __func__,
rstat->lro_flows_added);
device_printf(dev, "%s: lro_flows_deleted\t\t%" PRIu64 "\n", __func__,
rstat->lro_flows_deleted);
device_printf(dev, "%s: lro_flows_active\t\t%" PRIu64 "\n", __func__,
rstat->lro_flows_active);
device_printf(dev, "%s: pkts_droped_unknown\t\t%" PRIu64 "\n",
__func__, rstat->pkts_droped_unknown);
}
static void
qla_mac_stats(qla_host_t *ha, q80_mac_stats_t *mstat)
{
device_t dev = ha->pci_dev;
device_printf(dev, "%s: xmt_frames\t\t\t%" PRIu64 "\n", __func__,
mstat->xmt_frames);
device_printf(dev, "%s: xmt_bytes\t\t\t%" PRIu64 "\n", __func__,
mstat->xmt_bytes);
device_printf(dev, "%s: xmt_mcast_pkts\t\t%" PRIu64 "\n", __func__,
mstat->xmt_mcast_pkts);
device_printf(dev, "%s: xmt_bcast_pkts\t\t%" PRIu64 "\n", __func__,
mstat->xmt_bcast_pkts);
device_printf(dev, "%s: xmt_pause_frames\t\t%" PRIu64 "\n", __func__,
mstat->xmt_pause_frames);
device_printf(dev, "%s: xmt_cntrl_pkts\t\t%" PRIu64 "\n", __func__,
mstat->xmt_cntrl_pkts);
device_printf(dev, "%s: xmt_pkt_lt_64bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_64bytes);
device_printf(dev, "%s: xmt_pkt_lt_127bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_127bytes);
device_printf(dev, "%s: xmt_pkt_lt_255bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_255bytes);
device_printf(dev, "%s: xmt_pkt_lt_511bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_511bytes);
device_printf(dev, "%s: xmt_pkt_lt_1023bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_1023bytes);
device_printf(dev, "%s: xmt_pkt_lt_1518bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_lt_1518bytes);
device_printf(dev, "%s: xmt_pkt_gt_1518bytes\t\t%" PRIu64 "\n",
__func__, mstat->xmt_pkt_gt_1518bytes);
device_printf(dev, "%s: rcv_frames\t\t\t%" PRIu64 "\n", __func__,
mstat->rcv_frames);
device_printf(dev, "%s: rcv_bytes\t\t\t%" PRIu64 "\n", __func__,
mstat->rcv_bytes);
device_printf(dev, "%s: rcv_mcast_pkts\t\t%" PRIu64 "\n", __func__,
mstat->rcv_mcast_pkts);
device_printf(dev, "%s: rcv_bcast_pkts\t\t%" PRIu64 "\n", __func__,
mstat->rcv_bcast_pkts);
device_printf(dev, "%s: rcv_pause_frames\t\t%" PRIu64 "\n", __func__,
mstat->rcv_pause_frames);
device_printf(dev, "%s: rcv_cntrl_pkts\t\t%" PRIu64 "\n", __func__,
mstat->rcv_cntrl_pkts);
device_printf(dev, "%s: rcv_pkt_lt_64bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_64bytes);
device_printf(dev, "%s: rcv_pkt_lt_127bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_127bytes);
device_printf(dev, "%s: rcv_pkt_lt_255bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_255bytes);
device_printf(dev, "%s: rcv_pkt_lt_511bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_511bytes);
device_printf(dev, "%s: rcv_pkt_lt_1023bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_1023bytes);
device_printf(dev, "%s: rcv_pkt_lt_1518bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_lt_1518bytes);
device_printf(dev, "%s: rcv_pkt_gt_1518bytes\t\t%" PRIu64 "\n",
__func__, mstat->rcv_pkt_gt_1518bytes);
device_printf(dev, "%s: rcv_len_error\t\t%" PRIu64 "\n", __func__,
mstat->rcv_len_error);
device_printf(dev, "%s: rcv_len_small\t\t%" PRIu64 "\n", __func__,
mstat->rcv_len_small);
device_printf(dev, "%s: rcv_len_large\t\t%" PRIu64 "\n", __func__,
mstat->rcv_len_large);
device_printf(dev, "%s: rcv_jabber\t\t\t%" PRIu64 "\n", __func__,
mstat->rcv_jabber);
device_printf(dev, "%s: rcv_dropped\t\t\t%" PRIu64 "\n", __func__,
mstat->rcv_dropped);
device_printf(dev, "%s: fcs_error\t\t\t%" PRIu64 "\n", __func__,
mstat->fcs_error);
device_printf(dev, "%s: align_error\t\t\t%" PRIu64 "\n", __func__,
mstat->align_error);
}
static int
qla_get_hw_stats(qla_host_t *ha, uint32_t cmd, uint32_t rsp_size)
{
device_t dev;
q80_get_stats_t *stat;
q80_get_stats_rsp_t *stat_rsp;
uint32_t err;
dev = ha->pci_dev;
stat = (q80_get_stats_t *)ha->hw.mbox;
bzero(stat, (sizeof (q80_get_stats_t)));
stat->opcode = Q8_MBX_GET_STATS;
stat->count_version = 2;
stat->count_version |= Q8_MBX_CMD_VERSION;
stat->cmd = cmd;
if (qla_mbx_cmd(ha, (uint32_t *)stat, 2,
ha->hw.mbox, (rsp_size >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
stat_rsp = (q80_get_stats_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(stat_rsp->regcnt_status);
if (err) {
return -1;
}
return 0;
}
void
ql_get_stats(qla_host_t *ha)
{
q80_get_stats_rsp_t *stat_rsp;
q80_mac_stats_t *mstat;
q80_xmt_stats_t *xstat;
q80_rcv_stats_t *rstat;
uint32_t cmd;
int i;
stat_rsp = (q80_get_stats_rsp_t *)ha->hw.mbox;
/*
* Get MAC Statistics
*/
cmd = Q8_GET_STATS_CMD_TYPE_MAC;
// cmd |= Q8_GET_STATS_CMD_CLEAR;
cmd |= ((ha->pci_func & 0x1) << 16);
if (qla_get_hw_stats(ha, cmd, sizeof (q80_get_stats_rsp_t)) == 0) {
mstat = (q80_mac_stats_t *)&stat_rsp->u.mac;
qla_mac_stats(ha, mstat);
} else {
device_printf(ha->pci_dev, "%s: mac failed [0x%08x]\n",
__func__, ha->hw.mbox[0]);
}
/*
* Get RCV Statistics
*/
cmd = Q8_GET_STATS_CMD_RCV | Q8_GET_STATS_CMD_TYPE_CNTXT;
// cmd |= Q8_GET_STATS_CMD_CLEAR;
cmd |= (ha->hw.rcv_cntxt_id << 16);
if (qla_get_hw_stats(ha, cmd, sizeof (q80_get_stats_rsp_t)) == 0) {
rstat = (q80_rcv_stats_t *)&stat_rsp->u.rcv;
qla_rcv_stats(ha, rstat);
} else {
device_printf(ha->pci_dev, "%s: rcv failed [0x%08x]\n",
__func__, ha->hw.mbox[0]);
}
/*
* Get XMT Statistics
*/
for (i = 0 ; i < ha->hw.num_tx_rings; i++) {
cmd = Q8_GET_STATS_CMD_XMT | Q8_GET_STATS_CMD_TYPE_CNTXT;
// cmd |= Q8_GET_STATS_CMD_CLEAR;
cmd |= (ha->hw.tx_cntxt[i].tx_cntxt_id << 16);
if (qla_get_hw_stats(ha, cmd, sizeof(q80_get_stats_rsp_t))
== 0) {
xstat = (q80_xmt_stats_t *)&stat_rsp->u.xmt;
qla_xmt_stats(ha, xstat, i);
} else {
device_printf(ha->pci_dev, "%s: xmt failed [0x%08x]\n",
__func__, ha->hw.mbox[0]);
}
}
return;
}
static void
qla_get_quick_stats(qla_host_t *ha)
{
q80_get_mac_rcv_xmt_stats_rsp_t *stat_rsp;
q80_mac_stats_t *mstat;
q80_xmt_stats_t *xstat;
q80_rcv_stats_t *rstat;
uint32_t cmd;
stat_rsp = (q80_get_mac_rcv_xmt_stats_rsp_t *)ha->hw.mbox;
cmd = Q8_GET_STATS_CMD_TYPE_ALL;
// cmd |= Q8_GET_STATS_CMD_CLEAR;
// cmd |= ((ha->pci_func & 0x3) << 16);
cmd |= (0xFFFF << 16);
if (qla_get_hw_stats(ha, cmd,
sizeof (q80_get_mac_rcv_xmt_stats_rsp_t)) == 0) {
mstat = (q80_mac_stats_t *)&stat_rsp->mac;
rstat = (q80_rcv_stats_t *)&stat_rsp->rcv;
xstat = (q80_xmt_stats_t *)&stat_rsp->xmt;
qla_mac_stats(ha, mstat);
qla_rcv_stats(ha, rstat);
qla_xmt_stats(ha, xstat, ha->hw.num_tx_rings);
} else {
device_printf(ha->pci_dev, "%s: failed [0x%08x]\n",
__func__, ha->hw.mbox[0]);
}
return;
}
/*
* Name: qla_tx_tso
* Function: Checks if the packet to be transmitted is a candidate for
* Large TCP Segment Offload. If yes, the appropriate fields in the Tx
* Ring Structure are plugged in.
*/
static int
qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
{
struct ether_vlan_header *eh;
struct ip *ip = NULL;
struct ip6_hdr *ip6 = NULL;
struct tcphdr *th = NULL;
uint32_t ehdrlen, hdrlen, ip_hlen, tcp_hlen, tcp_opt_off;
uint16_t etype, opcode, offload = 1;
device_t dev;
dev = ha->pci_dev;
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
hdrlen = 0;
switch (etype) {
case ETHERTYPE_IP:
tcp_opt_off = ehdrlen + sizeof(struct ip) +
sizeof(struct tcphdr);
if (mp->m_len < tcp_opt_off) {
m_copydata(mp, 0, tcp_opt_off, hdr);
ip = (struct ip *)(hdr + ehdrlen);
} else {
ip = (struct ip *)(mp->m_data + ehdrlen);
}
ip_hlen = ip->ip_hl << 2;
opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
if ((ip->ip_p != IPPROTO_TCP) ||
(ip_hlen != sizeof (struct ip))){
/* IP Options are not supported */
offload = 0;
} else
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
break;
case ETHERTYPE_IPV6:
tcp_opt_off = ehdrlen + sizeof(struct ip6_hdr) +
sizeof (struct tcphdr);
if (mp->m_len < tcp_opt_off) {
m_copydata(mp, 0, tcp_opt_off, hdr);
ip6 = (struct ip6_hdr *)(hdr + ehdrlen);
} else {
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
}
ip_hlen = sizeof(struct ip6_hdr);
opcode = Q8_TX_CMD_OP_XMT_TCP_LSO_IPV6;
if (ip6->ip6_nxt != IPPROTO_TCP) {
//device_printf(dev, "%s: ipv6\n", __func__);
offload = 0;
} else
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
break;
default:
QL_DPRINT8(ha, (dev, "%s: type!=ip\n", __func__));
offload = 0;
break;
}
if (!offload)
return (-1);
tcp_hlen = th->th_off << 2;
hdrlen = ehdrlen + ip_hlen + tcp_hlen;
if (mp->m_len < hdrlen) {
if (mp->m_len < tcp_opt_off) {
if (tcp_hlen > sizeof(struct tcphdr)) {
m_copydata(mp, tcp_opt_off,
(tcp_hlen - sizeof(struct tcphdr)),
&hdr[tcp_opt_off]);
}
} else {
m_copydata(mp, 0, hdrlen, hdr);
}
}
tx_cmd->mss = mp->m_pkthdr.tso_segsz;
tx_cmd->flags_opcode = opcode ;
tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
tx_cmd->total_hdr_len = hdrlen;
/* Check for Multicast least significant bit of MSB == 1 */
if (eh->evl_dhost[0] & 0x01) {
tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_MULTICAST;
}
if (mp->m_len < hdrlen) {
printf("%d\n", hdrlen);
return (1);
}
return (0);
}
/*
* Name: qla_tx_chksum
* Function: Checks if the packet to be transmitted is a candidate for
* TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
* Ring Structure are plugged in.
*/
static int
qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, uint32_t *op_code,
uint32_t *tcp_hdr_off)
{
struct ether_vlan_header *eh;
struct ip *ip;
struct ip6_hdr *ip6;
uint32_t ehdrlen, ip_hlen;
uint16_t etype, opcode, offload = 1;
device_t dev;
uint8_t buf[sizeof(struct ip6_hdr)];
dev = ha->pci_dev;
*op_code = 0;
if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
return (-1);
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = sizeof (struct ip);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof(struct ip), buf);
ip = (struct ip *)buf;
}
if (ip->ip_p == IPPROTO_TCP)
opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
else if (ip->ip_p == IPPROTO_UDP)
opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
else {
//device_printf(dev, "%s: ipv4\n", __func__);
offload = 0;
}
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
ip_hlen = sizeof(struct ip6_hdr);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof (struct ip6_hdr),
buf);
ip6 = (struct ip6_hdr *)buf;
}
if (ip6->ip6_nxt == IPPROTO_TCP)
opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
else if (ip6->ip6_nxt == IPPROTO_UDP)
opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
else {
//device_printf(dev, "%s: ipv6\n", __func__);
offload = 0;
}
break;
default:
offload = 0;
break;
}
if (!offload)
return (-1);
*op_code = opcode;
*tcp_hdr_off = (ip_hlen + ehdrlen);
return (0);
}
#define QLA_TX_MIN_FREE 2
/*
* Name: ql_hw_send
* Function: Transmits a packet. It first checks if the packet is a
* candidate for Large TCP Segment Offload and then for UDP/TCP checksum
* offload. If either of these creteria are not met, it is transmitted
* as a regular ethernet frame.
*/
int
ql_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
uint32_t tx_idx, struct mbuf *mp, uint32_t txr_idx, uint32_t iscsi_pdu)
{
struct ether_vlan_header *eh;
qla_hw_t *hw = &ha->hw;
q80_tx_cmd_t *tx_cmd, tso_cmd;
bus_dma_segment_t *c_seg;
uint32_t num_tx_cmds, hdr_len = 0;
uint32_t total_length = 0, bytes, tx_cmd_count = 0, txr_next;
device_t dev;
int i, ret;
uint8_t *src = NULL, *dst = NULL;
uint8_t frame_hdr[QL_FRAME_HDR_SIZE];
uint32_t op_code = 0;
uint32_t tcp_hdr_off = 0;
dev = ha->pci_dev;
/*
* Always make sure there is atleast one empty slot in the tx_ring
* tx_ring is considered full when there only one entry available
*/
num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
total_length = mp->m_pkthdr.len;
if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
__func__, total_length);
return (-1);
}
eh = mtod(mp, struct ether_vlan_header *);
if (mp->m_pkthdr.csum_flags & CSUM_TSO) {
bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
src = frame_hdr;
ret = qla_tx_tso(ha, mp, &tso_cmd, src);
if (!(ret & ~1)) {
/* find the additional tx_cmd descriptors required */
if (mp->m_flags & M_VLANTAG)
tso_cmd.total_hdr_len += ETHER_VLAN_ENCAP_LEN;
hdr_len = tso_cmd.total_hdr_len;
bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
bytes = QL_MIN(bytes, hdr_len);
num_tx_cmds++;
hdr_len -= bytes;
while (hdr_len) {
bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
hdr_len -= bytes;
num_tx_cmds++;
}
hdr_len = tso_cmd.total_hdr_len;
if (ret == 0)
src = (uint8_t *)eh;
} else
return (EINVAL);
} else {
(void)qla_tx_chksum(ha, mp, &op_code, &tcp_hdr_off);
}
if (iscsi_pdu)
ha->hw.iscsi_pkt_count++;
if (hw->tx_cntxt[txr_idx].txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
qla_hw_tx_done_locked(ha, txr_idx);
if (hw->tx_cntxt[txr_idx].txr_free <=
(num_tx_cmds + QLA_TX_MIN_FREE)) {
QL_DPRINT8(ha, (dev, "%s: (hw->txr_free <= "
"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
__func__));
return (-1);
}
}
tx_cmd = &hw->tx_cntxt[txr_idx].tx_ring_base[tx_idx];
if (!(mp->m_pkthdr.csum_flags & CSUM_TSO)) {
if (nsegs > ha->hw.max_tx_segs)
ha->hw.max_tx_segs = nsegs;
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
if (op_code) {
tx_cmd->flags_opcode = op_code;
tx_cmd->tcp_hdr_off = tcp_hdr_off;
} else {
tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
}
} else {
bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
ha->tx_tso_frames++;
}
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
if (iscsi_pdu)
eh->evl_tag |= ha->hw.user_pri_iscsi << 13;
} else if (mp->m_flags & M_VLANTAG) {
if (hdr_len) { /* TSO */
tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
Q8_TX_CMD_FLAGS_HW_VLAN_ID);
tx_cmd->tcp_hdr_off += ETHER_VLAN_ENCAP_LEN;
} else
tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_HW_VLAN_ID;
ha->hw_vlan_tx_frames++;
tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
if (iscsi_pdu) {
tx_cmd->vlan_tci |= ha->hw.user_pri_iscsi << 13;
mp->m_pkthdr.ether_vtag = tx_cmd->vlan_tci;
}
}
tx_cmd->n_bufs = (uint8_t)nsegs;
tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
tx_cmd->cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
c_seg = segs;
while (1) {
for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
switch (i) {
case 0:
tx_cmd->buf1_addr = c_seg->ds_addr;
tx_cmd->buf1_len = c_seg->ds_len;
break;
case 1:
tx_cmd->buf2_addr = c_seg->ds_addr;
tx_cmd->buf2_len = c_seg->ds_len;
break;
case 2:
tx_cmd->buf3_addr = c_seg->ds_addr;
tx_cmd->buf3_len = c_seg->ds_len;
break;
case 3:
tx_cmd->buf4_addr = c_seg->ds_addr;
tx_cmd->buf4_len = c_seg->ds_len;
break;
}
c_seg++;
nsegs--;
}
txr_next = hw->tx_cntxt[txr_idx].txr_next =
(hw->tx_cntxt[txr_idx].txr_next + 1) &
(NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
if (!nsegs)
break;
tx_cmd = &hw->tx_cntxt[txr_idx].tx_ring_base[txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
}
if (mp->m_pkthdr.csum_flags & CSUM_TSO) {
/* TSO : Copy the header in the following tx cmd descriptors */
txr_next = hw->tx_cntxt[txr_idx].txr_next;
tx_cmd = &hw->tx_cntxt[txr_idx].tx_ring_base[txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
bytes = QL_MIN(bytes, hdr_len);
dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
if (mp->m_flags & M_VLANTAG) {
/* first copy the src/dst MAC addresses */
bcopy(src, dst, (ETHER_ADDR_LEN * 2));
dst += (ETHER_ADDR_LEN * 2);
src += (ETHER_ADDR_LEN * 2);
*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
dst += 2;
*((uint16_t *)dst) = htons(mp->m_pkthdr.ether_vtag);
dst += 2;
/* bytes left in src header */
hdr_len -= ((ETHER_ADDR_LEN * 2) +
ETHER_VLAN_ENCAP_LEN);
/* bytes left in TxCmd Entry */
bytes -= ((ETHER_ADDR_LEN * 2) + ETHER_VLAN_ENCAP_LEN);
bcopy(src, dst, bytes);
src += bytes;
hdr_len -= bytes;
} else {
bcopy(src, dst, bytes);
src += bytes;
hdr_len -= bytes;
}
txr_next = hw->tx_cntxt[txr_idx].txr_next =
(hw->tx_cntxt[txr_idx].txr_next + 1) &
(NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
while (hdr_len) {
tx_cmd = &hw->tx_cntxt[txr_idx].tx_ring_base[txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
bcopy(src, tx_cmd, bytes);
src += bytes;
hdr_len -= bytes;
txr_next = hw->tx_cntxt[txr_idx].txr_next =
(hw->tx_cntxt[txr_idx].txr_next + 1) &
(NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
}
}
hw->tx_cntxt[txr_idx].txr_free =
hw->tx_cntxt[txr_idx].txr_free - tx_cmd_count;
QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->tx_cntxt[txr_idx].txr_next,\
txr_idx);
QL_DPRINT8(ha, (dev, "%s: return\n", __func__));
return (0);
}
#define Q8_CONFIG_IND_TBL_SIZE 32 /* < Q8_RSS_IND_TBL_SIZE and power of 2 */
static int
qla_config_rss_ind_table(qla_host_t *ha)
{
uint32_t i, count;
uint8_t rss_ind_tbl[Q8_CONFIG_IND_TBL_SIZE];
for (i = 0; i < Q8_CONFIG_IND_TBL_SIZE; i++) {
rss_ind_tbl[i] = i % ha->hw.num_sds_rings;
}
for (i = 0; i <= Q8_RSS_IND_TBL_MAX_IDX ;
i = i + Q8_CONFIG_IND_TBL_SIZE) {
if ((i + Q8_CONFIG_IND_TBL_SIZE) > Q8_RSS_IND_TBL_MAX_IDX) {
count = Q8_RSS_IND_TBL_MAX_IDX - i + 1;
} else {
count = Q8_CONFIG_IND_TBL_SIZE;
}
if (qla_set_rss_ind_table(ha, i, count, ha->hw.rcv_cntxt_id,
rss_ind_tbl))
return (-1);
}
return (0);
}
/*
* Name: ql_del_hw_if
* Function: Destroys the hardware specific entities corresponding to an
* Ethernet Interface
*/
void
ql_del_hw_if(qla_host_t *ha)
{
uint32_t i;
uint32_t num_msix;
(void)qla_stop_nic_func(ha);
qla_del_rcv_cntxt(ha);
qla_del_xmt_cntxt(ha);
if (ha->hw.flags.init_intr_cnxt) {
for (i = 0; i < ha->hw.num_sds_rings; ) {
if ((i + Q8_MAX_INTR_VECTORS) < ha->hw.num_sds_rings)
num_msix = Q8_MAX_INTR_VECTORS;
else
num_msix = ha->hw.num_sds_rings - i;
qla_config_intr_cntxt(ha, i, num_msix, 0);
i += num_msix;
}
ha->hw.flags.init_intr_cnxt = 0;
}
return;
}
void
qla_confirm_9kb_enable(qla_host_t *ha)
{
uint32_t supports_9kb = 0;
ha->hw.mbx_intr_mask_offset = READ_REG32(ha, Q8_MBOX_INT_MASK_MSIX);
/* Use MSI-X vector 0; Enable Firmware Mailbox Interrupt */
WRITE_REG32(ha, Q8_MBOX_INT_ENABLE, BIT_2);
WRITE_REG32(ha, ha->hw.mbx_intr_mask_offset, 0x0);
qla_get_nic_partition(ha, &supports_9kb, NULL);
if (!supports_9kb)
ha->hw.enable_9kb = 0;
return;
}
/*
* Name: ql_init_hw_if
* Function: Creates the hardware specific entities corresponding to an
* Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
* corresponding to the interface. Enables LRO if allowed.
*/
int
ql_init_hw_if(qla_host_t *ha)
{
device_t dev;
uint32_t i;
uint8_t bcast_mac[6];
qla_rdesc_t *rdesc;
uint32_t num_msix;
dev = ha->pci_dev;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
ha->hw.dma_buf.sds_ring[i].size);
}
for (i = 0; i < ha->hw.num_sds_rings; ) {
if ((i + Q8_MAX_INTR_VECTORS) < ha->hw.num_sds_rings)
num_msix = Q8_MAX_INTR_VECTORS;
else
num_msix = ha->hw.num_sds_rings - i;
if (qla_config_intr_cntxt(ha, i, num_msix, 1)) {
if (i > 0) {
num_msix = i;
for (i = 0; i < num_msix; ) {
qla_config_intr_cntxt(ha, i,
Q8_MAX_INTR_VECTORS, 0);
i += Q8_MAX_INTR_VECTORS;
}
}
return (-1);
}
i = i + num_msix;
}
ha->hw.flags.init_intr_cnxt = 1;
/*
* Create Receive Context
*/
if (qla_init_rcv_cntxt(ha)) {
return (-1);
}
for (i = 0; i < ha->hw.num_rds_rings; i++) {
rdesc = &ha->hw.rds[i];
rdesc->rx_next = NUM_RX_DESCRIPTORS - 2;
rdesc->rx_in = 0;
/* Update the RDS Producer Indices */
QL_UPDATE_RDS_PRODUCER_INDEX(ha, rdesc->prod_std,\
rdesc->rx_next);
}
/*
* Create Transmit Context
*/
if (qla_init_xmt_cntxt(ha)) {
qla_del_rcv_cntxt(ha);
return (-1);
}
ha->hw.max_tx_segs = 0;
if (qla_config_mac_addr(ha, ha->hw.mac_addr, 1))
return(-1);
ha->hw.flags.unicast_mac = 1;
bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
if (qla_config_mac_addr(ha, bcast_mac, 1))
return (-1);
ha->hw.flags.bcast_mac = 1;
/*
* program any cached multicast addresses
*/
if (qla_hw_add_all_mcast(ha))
return (-1);
if (qla_config_rss(ha, ha->hw.rcv_cntxt_id))
return (-1);
if (qla_config_rss_ind_table(ha))
return (-1);
if (qla_config_intr_coalesce(ha, ha->hw.rcv_cntxt_id, 0, 1))
return (-1);
if (qla_link_event_req(ha, ha->hw.rcv_cntxt_id))
return (-1);
if (qla_config_fw_lro(ha, ha->hw.rcv_cntxt_id))
return (-1);
if (qla_init_nic_func(ha))
return (-1);
if (qla_query_fw_dcbx_caps(ha))
return (-1);
for (i = 0; i < ha->hw.num_sds_rings; i++)
QL_ENABLE_INTERRUPTS(ha, i);
return (0);
}
static int
qla_map_sds_to_rds(qla_host_t *ha, uint32_t start_idx, uint32_t num_idx)
{
device_t dev = ha->pci_dev;
q80_rq_map_sds_to_rds_t *map_rings;
q80_rsp_map_sds_to_rds_t *map_rings_rsp;
uint32_t i, err;
qla_hw_t *hw = &ha->hw;
map_rings = (q80_rq_map_sds_to_rds_t *)ha->hw.mbox;
bzero(map_rings, sizeof(q80_rq_map_sds_to_rds_t));
map_rings->opcode = Q8_MBX_MAP_SDS_TO_RDS;
map_rings->count_version = (sizeof (q80_rq_map_sds_to_rds_t) >> 2);
map_rings->count_version |= Q8_MBX_CMD_VERSION;
map_rings->cntxt_id = hw->rcv_cntxt_id;
map_rings->num_rings = num_idx;
for (i = 0; i < num_idx; i++) {
map_rings->sds_rds[i].sds_ring = i + start_idx;
map_rings->sds_rds[i].rds_ring = i + start_idx;
}
if (qla_mbx_cmd(ha, (uint32_t *)map_rings,
(sizeof (q80_rq_map_sds_to_rds_t) >> 2),
ha->hw.mbox, (sizeof(q80_rsp_add_rcv_rings_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
map_rings_rsp = (q80_rsp_map_sds_to_rds_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(map_rings_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return (0);
}
/*
* Name: qla_init_rcv_cntxt
* Function: Creates the Receive Context.
*/
static int
qla_init_rcv_cntxt(qla_host_t *ha)
{
q80_rq_rcv_cntxt_t *rcntxt;
q80_rsp_rcv_cntxt_t *rcntxt_rsp;
q80_stat_desc_t *sdesc;
int i, j;
qla_hw_t *hw = &ha->hw;
device_t dev;
uint32_t err;
uint32_t rcntxt_sds_rings;
uint32_t rcntxt_rds_rings;
uint32_t max_idx;
dev = ha->pci_dev;
/*
* Create Receive Context
*/
for (i = 0; i < hw->num_sds_rings; i++) {
sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
sdesc->data[0] = 1ULL;
sdesc->data[1] = 1ULL;
}
}
rcntxt_sds_rings = hw->num_sds_rings;
if (hw->num_sds_rings > MAX_RCNTXT_SDS_RINGS)
rcntxt_sds_rings = MAX_RCNTXT_SDS_RINGS;
rcntxt_rds_rings = hw->num_rds_rings;
if (hw->num_rds_rings > MAX_RDS_RING_SETS)
rcntxt_rds_rings = MAX_RDS_RING_SETS;
rcntxt = (q80_rq_rcv_cntxt_t *)ha->hw.mbox;
bzero(rcntxt, (sizeof (q80_rq_rcv_cntxt_t)));
rcntxt->opcode = Q8_MBX_CREATE_RX_CNTXT;
rcntxt->count_version = (sizeof (q80_rq_rcv_cntxt_t) >> 2);
rcntxt->count_version |= Q8_MBX_CMD_VERSION;
rcntxt->cap0 = Q8_RCV_CNTXT_CAP0_BASEFW |
Q8_RCV_CNTXT_CAP0_LRO |
Q8_RCV_CNTXT_CAP0_HW_LRO |
Q8_RCV_CNTXT_CAP0_RSS |
Q8_RCV_CNTXT_CAP0_SGL_LRO;
if (ha->hw.enable_9kb)
rcntxt->cap0 |= Q8_RCV_CNTXT_CAP0_SINGLE_JUMBO;
else
rcntxt->cap0 |= Q8_RCV_CNTXT_CAP0_SGL_JUMBO;
if (ha->hw.num_rds_rings > 1) {
rcntxt->nrds_sets_rings = rcntxt_rds_rings | (1 << 5);
rcntxt->cap0 |= Q8_RCV_CNTXT_CAP0_MULTI_RDS;
} else
rcntxt->nrds_sets_rings = 0x1 | (1 << 5);
rcntxt->nsds_rings = rcntxt_sds_rings;
rcntxt->rds_producer_mode = Q8_RCV_CNTXT_RDS_PROD_MODE_UNIQUE;
rcntxt->rcv_vpid = 0;
for (i = 0; i < rcntxt_sds_rings; i++) {
rcntxt->sds[i].paddr =
qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
rcntxt->sds[i].size =
qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
if (ha->msix_count == 2) {
rcntxt->sds[i].intr_id =
qla_host_to_le16(hw->intr_id[0]);
rcntxt->sds[i].intr_src_bit = qla_host_to_le16((i));
} else {
rcntxt->sds[i].intr_id =
qla_host_to_le16(hw->intr_id[i]);
rcntxt->sds[i].intr_src_bit = qla_host_to_le16(0);
}
}
for (i = 0; i < rcntxt_rds_rings; i++) {
rcntxt->rds[i].paddr_std =
qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
if (ha->hw.enable_9kb)
rcntxt->rds[i].std_bsize =
qla_host_to_le64(MJUM9BYTES);
else
rcntxt->rds[i].std_bsize = qla_host_to_le64(MCLBYTES);
rcntxt->rds[i].std_nentries =
qla_host_to_le32(NUM_RX_DESCRIPTORS);
}
if (qla_mbx_cmd(ha, (uint32_t *)rcntxt,
(sizeof (q80_rq_rcv_cntxt_t) >> 2),
ha->hw.mbox, (sizeof(q80_rsp_rcv_cntxt_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
rcntxt_rsp = (q80_rsp_rcv_cntxt_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(rcntxt_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
for (i = 0; i < rcntxt_sds_rings; i++) {
hw->sds[i].sds_consumer = rcntxt_rsp->sds_cons[i];
}
for (i = 0; i < rcntxt_rds_rings; i++) {
hw->rds[i].prod_std = rcntxt_rsp->rds[i].prod_std;
}
hw->rcv_cntxt_id = rcntxt_rsp->cntxt_id;
ha->hw.flags.init_rx_cnxt = 1;
if (hw->num_sds_rings > MAX_RCNTXT_SDS_RINGS) {
for (i = MAX_RCNTXT_SDS_RINGS; i < hw->num_sds_rings;) {
if ((i + MAX_RCNTXT_SDS_RINGS) < hw->num_sds_rings)
max_idx = MAX_RCNTXT_SDS_RINGS;
else
max_idx = hw->num_sds_rings - i;
err = qla_add_rcv_rings(ha, i, max_idx);
if (err)
return -1;
i += max_idx;
}
}
if (hw->num_rds_rings > 1) {
for (i = 0; i < hw->num_rds_rings; ) {
if ((i + MAX_SDS_TO_RDS_MAP) < hw->num_rds_rings)
max_idx = MAX_SDS_TO_RDS_MAP;
else
max_idx = hw->num_rds_rings - i;
err = qla_map_sds_to_rds(ha, i, max_idx);
if (err)
return -1;
i += max_idx;
}
}
return (0);
}
static int
qla_add_rcv_rings(qla_host_t *ha, uint32_t sds_idx, uint32_t nsds)
{
device_t dev = ha->pci_dev;
q80_rq_add_rcv_rings_t *add_rcv;
q80_rsp_add_rcv_rings_t *add_rcv_rsp;
uint32_t i,j, err;
qla_hw_t *hw = &ha->hw;
add_rcv = (q80_rq_add_rcv_rings_t *)ha->hw.mbox;
bzero(add_rcv, sizeof (q80_rq_add_rcv_rings_t));
add_rcv->opcode = Q8_MBX_ADD_RX_RINGS;
add_rcv->count_version = (sizeof (q80_rq_add_rcv_rings_t) >> 2);
add_rcv->count_version |= Q8_MBX_CMD_VERSION;
add_rcv->nrds_sets_rings = nsds | (1 << 5);
add_rcv->nsds_rings = nsds;
add_rcv->cntxt_id = hw->rcv_cntxt_id;
for (i = 0; i < nsds; i++) {
j = i + sds_idx;
add_rcv->sds[i].paddr =
qla_host_to_le64(hw->dma_buf.sds_ring[j].dma_addr);
add_rcv->sds[i].size =
qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
if (ha->msix_count == 2) {
add_rcv->sds[i].intr_id =
qla_host_to_le16(hw->intr_id[0]);
add_rcv->sds[i].intr_src_bit = qla_host_to_le16(j);
} else {
add_rcv->sds[i].intr_id =
qla_host_to_le16(hw->intr_id[j]);
add_rcv->sds[i].intr_src_bit = qla_host_to_le16(0);
}
}
for (i = 0; (i < nsds); i++) {
j = i + sds_idx;
add_rcv->rds[i].paddr_std =
qla_host_to_le64(hw->dma_buf.rds_ring[j].dma_addr);
if (ha->hw.enable_9kb)
add_rcv->rds[i].std_bsize =
qla_host_to_le64(MJUM9BYTES);
else
add_rcv->rds[i].std_bsize = qla_host_to_le64(MCLBYTES);
add_rcv->rds[i].std_nentries =
qla_host_to_le32(NUM_RX_DESCRIPTORS);
}
if (qla_mbx_cmd(ha, (uint32_t *)add_rcv,
(sizeof (q80_rq_add_rcv_rings_t) >> 2),
ha->hw.mbox, (sizeof(q80_rsp_add_rcv_rings_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
add_rcv_rsp = (q80_rsp_add_rcv_rings_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(add_rcv_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
for (i = 0; i < nsds; i++) {
hw->sds[(i + sds_idx)].sds_consumer = add_rcv_rsp->sds_cons[i];
}
for (i = 0; i < nsds; i++) {
hw->rds[(i + sds_idx)].prod_std = add_rcv_rsp->rds[i].prod_std;
}
return (0);
}
/*
* Name: qla_del_rcv_cntxt
* Function: Destroys the Receive Context.
*/
static void
qla_del_rcv_cntxt(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
q80_rcv_cntxt_destroy_t *rcntxt;
q80_rcv_cntxt_destroy_rsp_t *rcntxt_rsp;
uint32_t err;
uint8_t bcast_mac[6];
if (!ha->hw.flags.init_rx_cnxt)
return;
if (qla_hw_del_all_mcast(ha))
return;
if (ha->hw.flags.bcast_mac) {
bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
if (qla_config_mac_addr(ha, bcast_mac, 0))
return;
ha->hw.flags.bcast_mac = 0;
}
if (ha->hw.flags.unicast_mac) {
if (qla_config_mac_addr(ha, ha->hw.mac_addr, 0))
return;
ha->hw.flags.unicast_mac = 0;
}
rcntxt = (q80_rcv_cntxt_destroy_t *)ha->hw.mbox;
bzero(rcntxt, (sizeof (q80_rcv_cntxt_destroy_t)));
rcntxt->opcode = Q8_MBX_DESTROY_RX_CNTXT;
rcntxt->count_version = (sizeof (q80_rcv_cntxt_destroy_t) >> 2);
rcntxt->count_version |= Q8_MBX_CMD_VERSION;
rcntxt->cntxt_id = ha->hw.rcv_cntxt_id;
if (qla_mbx_cmd(ha, (uint32_t *)rcntxt,
(sizeof (q80_rcv_cntxt_destroy_t) >> 2),
ha->hw.mbox, (sizeof(q80_rcv_cntxt_destroy_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return;
}
rcntxt_rsp = (q80_rcv_cntxt_destroy_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(rcntxt_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
}
ha->hw.flags.init_rx_cnxt = 0;
return;
}
/*
* Name: qla_init_xmt_cntxt
* Function: Creates the Transmit Context.
*/
static int
qla_init_xmt_cntxt_i(qla_host_t *ha, uint32_t txr_idx)
{
device_t dev;
qla_hw_t *hw = &ha->hw;
q80_rq_tx_cntxt_t *tcntxt;
q80_rsp_tx_cntxt_t *tcntxt_rsp;
uint32_t err;
qla_hw_tx_cntxt_t *hw_tx_cntxt;
hw_tx_cntxt = &hw->tx_cntxt[txr_idx];
dev = ha->pci_dev;
/*
* Create Transmit Context
*/
tcntxt = (q80_rq_tx_cntxt_t *)ha->hw.mbox;
bzero(tcntxt, (sizeof (q80_rq_tx_cntxt_t)));
tcntxt->opcode = Q8_MBX_CREATE_TX_CNTXT;
tcntxt->count_version = (sizeof (q80_rq_tx_cntxt_t) >> 2);
tcntxt->count_version |= Q8_MBX_CMD_VERSION;
#ifdef QL_ENABLE_ISCSI_TLV
tcntxt->cap0 = Q8_TX_CNTXT_CAP0_BASEFW | Q8_TX_CNTXT_CAP0_LSO |
Q8_TX_CNTXT_CAP0_TC;
if (txr_idx >= (ha->hw.num_tx_rings >> 1)) {
tcntxt->traffic_class = 1;
}
#else
tcntxt->cap0 = Q8_TX_CNTXT_CAP0_BASEFW | Q8_TX_CNTXT_CAP0_LSO;
#endif /* #ifdef QL_ENABLE_ISCSI_TLV */
tcntxt->ntx_rings = 1;
tcntxt->tx_ring[0].paddr =
qla_host_to_le64(hw_tx_cntxt->tx_ring_paddr);
tcntxt->tx_ring[0].tx_consumer =
qla_host_to_le64(hw_tx_cntxt->tx_cons_paddr);
tcntxt->tx_ring[0].nentries = qla_host_to_le16(NUM_TX_DESCRIPTORS);
tcntxt->tx_ring[0].intr_id = qla_host_to_le16(hw->intr_id[0]);
tcntxt->tx_ring[0].intr_src_bit = qla_host_to_le16(0);
hw_tx_cntxt->txr_free = NUM_TX_DESCRIPTORS;
hw_tx_cntxt->txr_next = hw_tx_cntxt->txr_comp = 0;
if (qla_mbx_cmd(ha, (uint32_t *)tcntxt,
(sizeof (q80_rq_tx_cntxt_t) >> 2),
ha->hw.mbox,
(sizeof(q80_rsp_tx_cntxt_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
tcntxt_rsp = (q80_rsp_tx_cntxt_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(tcntxt_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return -1;
}
hw_tx_cntxt->tx_prod_reg = tcntxt_rsp->tx_ring[0].prod_index;
hw_tx_cntxt->tx_cntxt_id = tcntxt_rsp->tx_ring[0].cntxt_id;
if (qla_config_intr_coalesce(ha, hw_tx_cntxt->tx_cntxt_id, 0, 0))
return (-1);
return (0);
}
/*
* Name: qla_del_xmt_cntxt
* Function: Destroys the Transmit Context.
*/
static int
qla_del_xmt_cntxt_i(qla_host_t *ha, uint32_t txr_idx)
{
device_t dev = ha->pci_dev;
q80_tx_cntxt_destroy_t *tcntxt;
q80_tx_cntxt_destroy_rsp_t *tcntxt_rsp;
uint32_t err;
tcntxt = (q80_tx_cntxt_destroy_t *)ha->hw.mbox;
bzero(tcntxt, (sizeof (q80_tx_cntxt_destroy_t)));
tcntxt->opcode = Q8_MBX_DESTROY_TX_CNTXT;
tcntxt->count_version = (sizeof (q80_tx_cntxt_destroy_t) >> 2);
tcntxt->count_version |= Q8_MBX_CMD_VERSION;
tcntxt->cntxt_id = ha->hw.tx_cntxt[txr_idx].tx_cntxt_id;
if (qla_mbx_cmd(ha, (uint32_t *)tcntxt,
(sizeof (q80_tx_cntxt_destroy_t) >> 2),
ha->hw.mbox, (sizeof (q80_tx_cntxt_destroy_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed0\n", __func__);
return (-1);
}
tcntxt_rsp = (q80_tx_cntxt_destroy_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(tcntxt_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed1 [0x%08x]\n", __func__, err);
return (-1);
}
return (0);
}
static void
qla_del_xmt_cntxt(qla_host_t *ha)
{
uint32_t i;
if (!ha->hw.flags.init_tx_cnxt)
return;
for (i = 0; i < ha->hw.num_tx_rings; i++) {
if (qla_del_xmt_cntxt_i(ha, i))
break;
}
ha->hw.flags.init_tx_cnxt = 0;
}
static int
qla_init_xmt_cntxt(qla_host_t *ha)
{
uint32_t i, j;
for (i = 0; i < ha->hw.num_tx_rings; i++) {
if (qla_init_xmt_cntxt_i(ha, i) != 0) {
for (j = 0; j < i; j++)
qla_del_xmt_cntxt_i(ha, j);
return (-1);
}
}
ha->hw.flags.init_tx_cnxt = 1;
return (0);
}
static int
qla_hw_add_all_mcast(qla_host_t *ha)
{
int i, nmcast;
nmcast = ha->hw.nmcast;
for (i = 0 ; ((i < Q8_MAX_NUM_MULTICAST_ADDRS) && nmcast); i++) {
if ((ha->hw.mcast[i].addr[0] != 0) ||
(ha->hw.mcast[i].addr[1] != 0) ||
(ha->hw.mcast[i].addr[2] != 0) ||
(ha->hw.mcast[i].addr[3] != 0) ||
(ha->hw.mcast[i].addr[4] != 0) ||
(ha->hw.mcast[i].addr[5] != 0)) {
if (qla_config_mac_addr(ha, ha->hw.mcast[i].addr, 1)) {
device_printf(ha->pci_dev, "%s: failed\n",
__func__);
return (-1);
}
nmcast--;
}
}
return 0;
}
static int
qla_hw_del_all_mcast(qla_host_t *ha)
{
int i, nmcast;
nmcast = ha->hw.nmcast;
for (i = 0 ; ((i < Q8_MAX_NUM_MULTICAST_ADDRS) && nmcast); i++) {
if ((ha->hw.mcast[i].addr[0] != 0) ||
(ha->hw.mcast[i].addr[1] != 0) ||
(ha->hw.mcast[i].addr[2] != 0) ||
(ha->hw.mcast[i].addr[3] != 0) ||
(ha->hw.mcast[i].addr[4] != 0) ||
(ha->hw.mcast[i].addr[5] != 0)) {
if (qla_config_mac_addr(ha, ha->hw.mcast[i].addr, 0))
return (-1);
nmcast--;
}
}
return 0;
}
static int
qla_hw_add_mcast(qla_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->hw.mcast[i].addr, mta) == 0)
return 0; /* its been already added */
}
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if ((ha->hw.mcast[i].addr[0] == 0) &&
(ha->hw.mcast[i].addr[1] == 0) &&
(ha->hw.mcast[i].addr[2] == 0) &&
(ha->hw.mcast[i].addr[3] == 0) &&
(ha->hw.mcast[i].addr[4] == 0) &&
(ha->hw.mcast[i].addr[5] == 0)) {
if (qla_config_mac_addr(ha, mta, 1))
return (-1);
bcopy(mta, ha->hw.mcast[i].addr, Q8_MAC_ADDR_LEN);
ha->hw.nmcast++;
return 0;
}
}
return 0;
}
static int
qla_hw_del_mcast(qla_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->hw.mcast[i].addr, mta) == 0) {
if (qla_config_mac_addr(ha, mta, 0))
return (-1);
ha->hw.mcast[i].addr[0] = 0;
ha->hw.mcast[i].addr[1] = 0;
ha->hw.mcast[i].addr[2] = 0;
ha->hw.mcast[i].addr[3] = 0;
ha->hw.mcast[i].addr[4] = 0;
ha->hw.mcast[i].addr[5] = 0;
ha->hw.nmcast--;
return 0;
}
}
return 0;
}
/*
* Name: ql_hw_set_multi
* Function: Sets the Multicast Addresses provided the host O.S into the
* hardware (for the given interface)
*/
int
ql_hw_set_multi(qla_host_t *ha, uint8_t *mcast, uint32_t mcnt,
uint32_t add_mac)
{
int i;
uint8_t *mta = mcast;
int ret = 0;
for (i = 0; i < mcnt; i++) {
if (add_mac) {
ret = qla_hw_add_mcast(ha, mta);
if (ret)
break;
} else {
ret = qla_hw_del_mcast(ha, mta);
if (ret)
break;
}
mta += Q8_MAC_ADDR_LEN;
}
return (ret);
}
/*
* Name: qla_hw_tx_done_locked
* Function: Handle Transmit Completions
*/
static void
qla_hw_tx_done_locked(qla_host_t *ha, uint32_t txr_idx)
{
qla_tx_buf_t *txb;
qla_hw_t *hw = &ha->hw;
uint32_t comp_idx, comp_count = 0;
qla_hw_tx_cntxt_t *hw_tx_cntxt;
hw_tx_cntxt = &hw->tx_cntxt[txr_idx];
/* retrieve index of last entry in tx ring completed */
comp_idx = qla_le32_to_host(*(hw_tx_cntxt->tx_cons));
while (comp_idx != hw_tx_cntxt->txr_comp) {
txb = &ha->tx_ring[txr_idx].tx_buf[hw_tx_cntxt->txr_comp];
hw_tx_cntxt->txr_comp++;
if (hw_tx_cntxt->txr_comp == NUM_TX_DESCRIPTORS)
hw_tx_cntxt->txr_comp = 0;
comp_count++;
if (txb->m_head) {
if_inc_counter(ha->ifp, IFCOUNTER_OPACKETS, 1);
bus_dmamap_sync(ha->tx_tag, txb->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
}
}
hw_tx_cntxt->txr_free += comp_count;
return;
}
/*
* Name: ql_hw_tx_done
* Function: Handle Transmit Completions
*/
void
ql_hw_tx_done(qla_host_t *ha)
{
int i;
uint32_t flag = 0;
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8(ha, (ha->pci_dev,
"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
return;
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
qla_hw_tx_done_locked(ha, i);
if (ha->hw.tx_cntxt[i].txr_free <= (NUM_TX_DESCRIPTORS >> 1))
flag = 1;
}
if (!flag)
ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
QLA_TX_UNLOCK(ha);
return;
}
void
ql_update_link_state(qla_host_t *ha)
{
uint32_t link_state;
uint32_t prev_link_state;
if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ha->hw.link_up = 0;
return;
}
link_state = READ_REG32(ha, Q8_LINK_STATE);
prev_link_state = ha->hw.link_up;
if (ha->pci_func == 0)
ha->hw.link_up = (((link_state & 0xF) == 1)? 1 : 0);
else
ha->hw.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
if (prev_link_state != ha->hw.link_up) {
if (ha->hw.link_up) {
if_link_state_change(ha->ifp, LINK_STATE_UP);
} else {
if_link_state_change(ha->ifp, LINK_STATE_DOWN);
}
}
return;
}
void
ql_hw_stop_rcv(qla_host_t *ha)
{
int i, done, count = 100;
ha->flags.stop_rcv = 1;
while (count) {
done = 1;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
if (ha->hw.sds[i].rcv_active)
done = 0;
}
if (done)
break;
else
qla_mdelay(__func__, 10);
count--;
}
if (!count)
device_printf(ha->pci_dev, "%s: Counter expired.\n", __func__);
return;
}
int
ql_hw_check_health(qla_host_t *ha)
{
uint32_t val;
ha->hw.health_count++;
if (ha->hw.health_count < 1000)
return 0;
ha->hw.health_count = 0;
val = READ_REG32(ha, Q8_ASIC_TEMPERATURE);
if (((val & 0xFFFF) == 2) || ((val & 0xFFFF) == 3) ||
(QL_ERR_INJECT(ha, INJCT_TEMPERATURE_FAILURE))) {
device_printf(ha->pci_dev, "%s: Temperature Alert [0x%08x]\n",
__func__, val);
return -1;
}
val = READ_REG32(ha, Q8_FIRMWARE_HEARTBEAT);
if ((val != ha->hw.hbeat_value) &&
(!(QL_ERR_INJECT(ha, INJCT_HEARTBEAT_FAILURE)))) {
ha->hw.hbeat_value = val;
return 0;
}
device_printf(ha->pci_dev, "%s: Heartbeat Failue [0x%08x]\n",
__func__, val);
return -1;
}
static int
qla_init_nic_func(qla_host_t *ha)
{
device_t dev;
q80_init_nic_func_t *init_nic;
q80_init_nic_func_rsp_t *init_nic_rsp;
uint32_t err;
dev = ha->pci_dev;
init_nic = (q80_init_nic_func_t *)ha->hw.mbox;
bzero(init_nic, sizeof(q80_init_nic_func_t));
init_nic->opcode = Q8_MBX_INIT_NIC_FUNC;
init_nic->count_version = (sizeof (q80_init_nic_func_t) >> 2);
init_nic->count_version |= Q8_MBX_CMD_VERSION;
init_nic->options = Q8_INIT_NIC_REG_DCBX_CHNG_AEN;
init_nic->options |= Q8_INIT_NIC_REG_SFP_CHNG_AEN;
init_nic->options |= Q8_INIT_NIC_REG_IDC_AEN;
//qla_dump_buf8(ha, __func__, init_nic, sizeof (q80_init_nic_func_t));
if (qla_mbx_cmd(ha, (uint32_t *)init_nic,
(sizeof (q80_init_nic_func_t) >> 2),
ha->hw.mbox, (sizeof (q80_init_nic_func_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
init_nic_rsp = (q80_init_nic_func_rsp_t *)ha->hw.mbox;
// qla_dump_buf8(ha, __func__, init_nic_rsp, sizeof (q80_init_nic_func_rsp_t));
err = Q8_MBX_RSP_STATUS(init_nic_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_stop_nic_func(qla_host_t *ha)
{
device_t dev;
q80_stop_nic_func_t *stop_nic;
q80_stop_nic_func_rsp_t *stop_nic_rsp;
uint32_t err;
dev = ha->pci_dev;
stop_nic = (q80_stop_nic_func_t *)ha->hw.mbox;
bzero(stop_nic, sizeof(q80_stop_nic_func_t));
stop_nic->opcode = Q8_MBX_STOP_NIC_FUNC;
stop_nic->count_version = (sizeof (q80_stop_nic_func_t) >> 2);
stop_nic->count_version |= Q8_MBX_CMD_VERSION;
stop_nic->options = Q8_STOP_NIC_DEREG_DCBX_CHNG_AEN;
stop_nic->options |= Q8_STOP_NIC_DEREG_SFP_CHNG_AEN;
//qla_dump_buf8(ha, __func__, stop_nic, sizeof (q80_stop_nic_func_t));
if (qla_mbx_cmd(ha, (uint32_t *)stop_nic,
(sizeof (q80_stop_nic_func_t) >> 2),
ha->hw.mbox, (sizeof (q80_stop_nic_func_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
stop_nic_rsp = (q80_stop_nic_func_rsp_t *)ha->hw.mbox;
//qla_dump_buf8(ha, __func__, stop_nic_rsp, sizeof (q80_stop_nic_func_rsp_ t));
err = Q8_MBX_RSP_STATUS(stop_nic_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_query_fw_dcbx_caps(qla_host_t *ha)
{
device_t dev;
q80_query_fw_dcbx_caps_t *fw_dcbx;
q80_query_fw_dcbx_caps_rsp_t *fw_dcbx_rsp;
uint32_t err;
dev = ha->pci_dev;
fw_dcbx = (q80_query_fw_dcbx_caps_t *)ha->hw.mbox;
bzero(fw_dcbx, sizeof(q80_query_fw_dcbx_caps_t));
fw_dcbx->opcode = Q8_MBX_GET_FW_DCBX_CAPS;
fw_dcbx->count_version = (sizeof (q80_query_fw_dcbx_caps_t) >> 2);
fw_dcbx->count_version |= Q8_MBX_CMD_VERSION;
ql_dump_buf8(ha, __func__, fw_dcbx, sizeof (q80_query_fw_dcbx_caps_t));
if (qla_mbx_cmd(ha, (uint32_t *)fw_dcbx,
(sizeof (q80_query_fw_dcbx_caps_t) >> 2),
ha->hw.mbox, (sizeof (q80_query_fw_dcbx_caps_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
fw_dcbx_rsp = (q80_query_fw_dcbx_caps_rsp_t *)ha->hw.mbox;
ql_dump_buf8(ha, __func__, fw_dcbx_rsp,
sizeof (q80_query_fw_dcbx_caps_rsp_t));
err = Q8_MBX_RSP_STATUS(fw_dcbx_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
}
return 0;
}
static int
qla_idc_ack(qla_host_t *ha, uint32_t aen_mb1, uint32_t aen_mb2,
uint32_t aen_mb3, uint32_t aen_mb4)
{
device_t dev;
q80_idc_ack_t *idc_ack;
q80_idc_ack_rsp_t *idc_ack_rsp;
uint32_t err;
int count = 300;
dev = ha->pci_dev;
idc_ack = (q80_idc_ack_t *)ha->hw.mbox;
bzero(idc_ack, sizeof(q80_idc_ack_t));
idc_ack->opcode = Q8_MBX_IDC_ACK;
idc_ack->count_version = (sizeof (q80_idc_ack_t) >> 2);
idc_ack->count_version |= Q8_MBX_CMD_VERSION;
idc_ack->aen_mb1 = aen_mb1;
idc_ack->aen_mb2 = aen_mb2;
idc_ack->aen_mb3 = aen_mb3;
idc_ack->aen_mb4 = aen_mb4;
ha->hw.imd_compl= 0;
if (qla_mbx_cmd(ha, (uint32_t *)idc_ack,
(sizeof (q80_idc_ack_t) >> 2),
ha->hw.mbox, (sizeof (q80_idc_ack_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
idc_ack_rsp = (q80_idc_ack_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(idc_ack_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
return(-1);
}
while (count && !ha->hw.imd_compl) {
qla_mdelay(__func__, 100);
count--;
}
if (!count)
return -1;
else
device_printf(dev, "%s: count %d\n", __func__, count);
return (0);
}
static int
qla_set_port_config(qla_host_t *ha, uint32_t cfg_bits)
{
device_t dev;
q80_set_port_cfg_t *pcfg;
q80_set_port_cfg_rsp_t *pfg_rsp;
uint32_t err;
int count = 300;
dev = ha->pci_dev;
pcfg = (q80_set_port_cfg_t *)ha->hw.mbox;
bzero(pcfg, sizeof(q80_set_port_cfg_t));
pcfg->opcode = Q8_MBX_SET_PORT_CONFIG;
pcfg->count_version = (sizeof (q80_set_port_cfg_t) >> 2);
pcfg->count_version |= Q8_MBX_CMD_VERSION;
pcfg->cfg_bits = cfg_bits;
device_printf(dev, "%s: cfg_bits"
" [STD_PAUSE_DIR, PAUSE_TYPE, DCBX]"
" [0x%x, 0x%x, 0x%x]\n", __func__,
((cfg_bits & Q8_PORT_CFG_BITS_STDPAUSE_DIR_MASK)>>20),
((cfg_bits & Q8_PORT_CFG_BITS_PAUSE_CFG_MASK) >> 5),
((cfg_bits & Q8_PORT_CFG_BITS_DCBX_ENABLE) ? 1: 0));
ha->hw.imd_compl= 0;
if (qla_mbx_cmd(ha, (uint32_t *)pcfg,
(sizeof (q80_set_port_cfg_t) >> 2),
ha->hw.mbox, (sizeof (q80_set_port_cfg_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
pfg_rsp = (q80_set_port_cfg_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(pfg_rsp->regcnt_status);
if (err == Q8_MBX_RSP_IDC_INTRMD_RSP) {
while (count && !ha->hw.imd_compl) {
qla_mdelay(__func__, 100);
count--;
}
if (count) {
device_printf(dev, "%s: count %d\n", __func__, count);
err = 0;
}
}
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
return(-1);
}
return (0);
}
static int
qla_get_minidump_tmplt_size(qla_host_t *ha, uint32_t *size)
{
uint32_t err;
device_t dev = ha->pci_dev;
q80_config_md_templ_size_t *md_size;
q80_config_md_templ_size_rsp_t *md_size_rsp;
#ifndef QL_LDFLASH_FW
ql_minidump_template_hdr_t *hdr;
hdr = (ql_minidump_template_hdr_t *)ql83xx_minidump;
*size = hdr->size_of_template;
return (0);
#endif /* #ifdef QL_LDFLASH_FW */
md_size = (q80_config_md_templ_size_t *) ha->hw.mbox;
bzero(md_size, sizeof(q80_config_md_templ_size_t));
md_size->opcode = Q8_MBX_GET_MINIDUMP_TMPLT_SIZE;
md_size->count_version = (sizeof (q80_config_md_templ_size_t) >> 2);
md_size->count_version |= Q8_MBX_CMD_VERSION;
if (qla_mbx_cmd(ha, (uint32_t *) md_size,
(sizeof(q80_config_md_templ_size_t) >> 2), ha->hw.mbox,
(sizeof(q80_config_md_templ_size_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return (-1);
}
md_size_rsp = (q80_config_md_templ_size_rsp_t *) ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(md_size_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
return(-1);
}
*size = md_size_rsp->templ_size;
return (0);
}
static int
qla_get_port_config(qla_host_t *ha, uint32_t *cfg_bits)
{
device_t dev;
q80_get_port_cfg_t *pcfg;
q80_get_port_cfg_rsp_t *pcfg_rsp;
uint32_t err;
dev = ha->pci_dev;
pcfg = (q80_get_port_cfg_t *)ha->hw.mbox;
bzero(pcfg, sizeof(q80_get_port_cfg_t));
pcfg->opcode = Q8_MBX_GET_PORT_CONFIG;
pcfg->count_version = (sizeof (q80_get_port_cfg_t) >> 2);
pcfg->count_version |= Q8_MBX_CMD_VERSION;
if (qla_mbx_cmd(ha, (uint32_t *)pcfg,
(sizeof (q80_get_port_cfg_t) >> 2),
ha->hw.mbox, (sizeof (q80_get_port_cfg_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return -1;
}
pcfg_rsp = (q80_get_port_cfg_rsp_t *)ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(pcfg_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
return(-1);
}
device_printf(dev, "%s: [cfg_bits, port type]"
" [0x%08x, 0x%02x] [STD_PAUSE_DIR, PAUSE_TYPE, DCBX]"
" [0x%x, 0x%x, 0x%x]\n", __func__,
pcfg_rsp->cfg_bits, pcfg_rsp->phys_port_type,
((pcfg_rsp->cfg_bits & Q8_PORT_CFG_BITS_STDPAUSE_DIR_MASK)>>20),
((pcfg_rsp->cfg_bits & Q8_PORT_CFG_BITS_PAUSE_CFG_MASK) >> 5),
((pcfg_rsp->cfg_bits & Q8_PORT_CFG_BITS_DCBX_ENABLE) ? 1: 0)
);
*cfg_bits = pcfg_rsp->cfg_bits;
return (0);
}
int
qla_iscsi_pdu(qla_host_t *ha, struct mbuf *mp)
{
struct ether_vlan_header *eh;
uint16_t etype;
struct ip *ip = NULL;
struct ip6_hdr *ip6 = NULL;
struct tcphdr *th = NULL;
uint32_t hdrlen;
uint32_t offset;
uint8_t buf[sizeof(struct ip6_hdr)];
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
hdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
hdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
if (etype == ETHERTYPE_IP) {
offset = (hdrlen + sizeof (struct ip));
if (mp->m_len >= offset) {
ip = (struct ip *)(mp->m_data + hdrlen);
} else {
m_copydata(mp, hdrlen, sizeof (struct ip), buf);
ip = (struct ip *)buf;
}
if (ip->ip_p == IPPROTO_TCP) {
hdrlen += ip->ip_hl << 2;
offset = hdrlen + 4;
if (mp->m_len >= offset) {
th = (struct tcphdr *)(mp->m_data + hdrlen);;
} else {
m_copydata(mp, hdrlen, 4, buf);
th = (struct tcphdr *)buf;
}
}
} else if (etype == ETHERTYPE_IPV6) {
offset = (hdrlen + sizeof (struct ip6_hdr));
if (mp->m_len >= offset) {
ip6 = (struct ip6_hdr *)(mp->m_data + hdrlen);
} else {
m_copydata(mp, hdrlen, sizeof (struct ip6_hdr), buf);
ip6 = (struct ip6_hdr *)buf;
}
if (ip6->ip6_nxt == IPPROTO_TCP) {
hdrlen += sizeof(struct ip6_hdr);
offset = hdrlen + 4;
if (mp->m_len >= offset) {
th = (struct tcphdr *)(mp->m_data + hdrlen);;
} else {
m_copydata(mp, hdrlen, 4, buf);
th = (struct tcphdr *)buf;
}
}
}
if (th != NULL) {
if ((th->th_sport == htons(3260)) ||
(th->th_dport == htons(3260)))
return 0;
}
return (-1);
}
void
qla_hw_async_event(qla_host_t *ha)
{
switch (ha->hw.aen_mb0) {
case 0x8101:
(void)qla_idc_ack(ha, ha->hw.aen_mb1, ha->hw.aen_mb2,
ha->hw.aen_mb3, ha->hw.aen_mb4);
break;
default:
break;
}
return;
}
#ifdef QL_LDFLASH_FW
static int
ql_get_minidump_template(qla_host_t *ha)
{
uint32_t err;
device_t dev = ha->pci_dev;
q80_config_md_templ_cmd_t *md_templ;
q80_config_md_templ_cmd_rsp_t *md_templ_rsp;
md_templ = (q80_config_md_templ_cmd_t *) ha->hw.mbox;
bzero(md_templ, (sizeof (q80_config_md_templ_cmd_t)));
md_templ->opcode = Q8_MBX_GET_MINIDUMP_TMPLT;
md_templ->count_version = ( sizeof(q80_config_md_templ_cmd_t) >> 2);
md_templ->count_version |= Q8_MBX_CMD_VERSION;
md_templ->buf_addr = ha->hw.dma_buf.minidump.dma_addr;
md_templ->buff_size = ha->hw.dma_buf.minidump.size;
if (qla_mbx_cmd(ha, (uint32_t *) md_templ,
(sizeof(q80_config_md_templ_cmd_t) >> 2),
ha->hw.mbox,
(sizeof(q80_config_md_templ_cmd_rsp_t) >> 2), 0)) {
device_printf(dev, "%s: failed\n", __func__);
return (-1);
}
md_templ_rsp = (q80_config_md_templ_cmd_rsp_t *) ha->hw.mbox;
err = Q8_MBX_RSP_STATUS(md_templ_rsp->regcnt_status);
if (err) {
device_printf(dev, "%s: failed [0x%08x]\n", __func__, err);
return (-1);
}
return (0);
}
#endif /* #ifdef QL_LDFLASH_FW */
/*
* Minidump related functionality
*/
static int ql_parse_template(qla_host_t *ha);
static uint32_t ql_rdcrb(qla_host_t *ha,
ql_minidump_entry_rdcrb_t *crb_entry,
uint32_t * data_buff);
static uint32_t ql_pollrd(qla_host_t *ha,
ql_minidump_entry_pollrd_t *entry,
uint32_t * data_buff);
static uint32_t ql_pollrd_modify_write(qla_host_t *ha,
ql_minidump_entry_rd_modify_wr_with_poll_t *entry,
uint32_t *data_buff);
static uint32_t ql_L2Cache(qla_host_t *ha,
ql_minidump_entry_cache_t *cacheEntry,
uint32_t * data_buff);
static uint32_t ql_L1Cache(qla_host_t *ha,
ql_minidump_entry_cache_t *cacheEntry,
uint32_t *data_buff);
static uint32_t ql_rdocm(qla_host_t *ha,
ql_minidump_entry_rdocm_t *ocmEntry,
uint32_t *data_buff);
static uint32_t ql_rdmem(qla_host_t *ha,
ql_minidump_entry_rdmem_t *mem_entry,
uint32_t *data_buff);
static uint32_t ql_rdrom(qla_host_t *ha,
ql_minidump_entry_rdrom_t *romEntry,
uint32_t *data_buff);
static uint32_t ql_rdmux(qla_host_t *ha,
ql_minidump_entry_mux_t *muxEntry,
uint32_t *data_buff);
static uint32_t ql_rdmux2(qla_host_t *ha,
ql_minidump_entry_mux2_t *muxEntry,
uint32_t *data_buff);
static uint32_t ql_rdqueue(qla_host_t *ha,
ql_minidump_entry_queue_t *queueEntry,
uint32_t *data_buff);
static uint32_t ql_cntrl(qla_host_t *ha,
ql_minidump_template_hdr_t *template_hdr,
ql_minidump_entry_cntrl_t *crbEntry);
static uint32_t
ql_minidump_size(qla_host_t *ha)
{
uint32_t i, k;
uint32_t size = 0;
ql_minidump_template_hdr_t *hdr;
hdr = (ql_minidump_template_hdr_t *)ha->hw.dma_buf.minidump.dma_b;
i = 0x2;
for (k = 1; k < QL_DBG_CAP_SIZE_ARRAY_LEN; k++) {
if (i & ha->hw.mdump_capture_mask)
size += hdr->capture_size_array[k];
i = i << 1;
}
return (size);
}
static void
ql_free_minidump_buffer(qla_host_t *ha)
{
if (ha->hw.mdump_buffer != NULL) {
free(ha->hw.mdump_buffer, M_QLA83XXBUF);
ha->hw.mdump_buffer = NULL;
ha->hw.mdump_buffer_size = 0;
}
return;
}
static int
ql_alloc_minidump_buffer(qla_host_t *ha)
{
ha->hw.mdump_buffer_size = ql_minidump_size(ha);
if (!ha->hw.mdump_buffer_size)
return (-1);
ha->hw.mdump_buffer = malloc(ha->hw.mdump_buffer_size, M_QLA83XXBUF,
M_NOWAIT);
if (ha->hw.mdump_buffer == NULL)
return (-1);
return (0);
}
static void
ql_free_minidump_template_buffer(qla_host_t *ha)
{
if (ha->hw.mdump_template != NULL) {
free(ha->hw.mdump_template, M_QLA83XXBUF);
ha->hw.mdump_template = NULL;
ha->hw.mdump_template_size = 0;
}
return;
}
static int
ql_alloc_minidump_template_buffer(qla_host_t *ha)
{
ha->hw.mdump_template_size = ha->hw.dma_buf.minidump.size;
ha->hw.mdump_template = malloc(ha->hw.mdump_template_size,
M_QLA83XXBUF, M_NOWAIT);
if (ha->hw.mdump_template == NULL)
return (-1);
return (0);
}
static int
ql_alloc_minidump_buffers(qla_host_t *ha)
{
int ret;
ret = ql_alloc_minidump_template_buffer(ha);
if (ret)
return (ret);
ret = ql_alloc_minidump_buffer(ha);
if (ret)
ql_free_minidump_template_buffer(ha);
return (ret);
}
static uint32_t
ql_validate_minidump_checksum(qla_host_t *ha)
{
uint64_t sum = 0;
int count;
uint32_t *template_buff;
count = ha->hw.dma_buf.minidump.size / sizeof (uint32_t);
template_buff = ha->hw.dma_buf.minidump.dma_b;
while (count-- > 0) {
sum += *template_buff++;
}
while (sum >> 32) {
sum = (sum & 0xFFFFFFFF) + (sum >> 32);
}
return (~sum);
}
int
ql_minidump_init(qla_host_t *ha)
{
int ret = 0;
uint32_t template_size = 0;
device_t dev = ha->pci_dev;
/*
* Get Minidump Template Size
*/
ret = qla_get_minidump_tmplt_size(ha, &template_size);
if (ret || (template_size == 0)) {
device_printf(dev, "%s: failed [%d, %d]\n", __func__, ret,
template_size);
return (-1);
}
/*
* Allocate Memory for Minidump Template
*/
ha->hw.dma_buf.minidump.alignment = 8;
ha->hw.dma_buf.minidump.size = template_size;
#ifdef QL_LDFLASH_FW
if (ql_alloc_dmabuf(ha, &ha->hw.dma_buf.minidump)) {
device_printf(dev, "%s: minidump dma alloc failed\n", __func__);
return (-1);
}
ha->hw.dma_buf.flags.minidump = 1;
/*
* Retrieve Minidump Template
*/
ret = ql_get_minidump_template(ha);
#else
ha->hw.dma_buf.minidump.dma_b = ql83xx_minidump;
#endif /* #ifdef QL_LDFLASH_FW */
if (ret == 0) {
ret = ql_validate_minidump_checksum(ha);
if (ret == 0) {
ret = ql_alloc_minidump_buffers(ha);
if (ret == 0)
ha->hw.mdump_init = 1;
else
device_printf(dev,
"%s: ql_alloc_minidump_buffers"
" failed\n", __func__);
} else {
device_printf(dev, "%s: ql_validate_minidump_checksum"
" failed\n", __func__);
}
} else {
device_printf(dev, "%s: ql_get_minidump_template failed\n",
__func__);
}
if (ret)
ql_minidump_free(ha);
return (ret);
}
static void
ql_minidump_free(qla_host_t *ha)
{
ha->hw.mdump_init = 0;
if (ha->hw.dma_buf.flags.minidump) {
ha->hw.dma_buf.flags.minidump = 0;
ql_free_dmabuf(ha, &ha->hw.dma_buf.minidump);
}
ql_free_minidump_template_buffer(ha);
ql_free_minidump_buffer(ha);
return;
}
void
ql_minidump(qla_host_t *ha)
{
if (!ha->hw.mdump_init)
return;
if (ha->hw.mdump_done)
return;
ha->hw.mdump_start_seq_index = ql_stop_sequence(ha);
bzero(ha->hw.mdump_buffer, ha->hw.mdump_buffer_size);
bzero(ha->hw.mdump_template, ha->hw.mdump_template_size);
bcopy(ha->hw.dma_buf.minidump.dma_b, ha->hw.mdump_template,
ha->hw.mdump_template_size);
ql_parse_template(ha);
ql_start_sequence(ha, ha->hw.mdump_start_seq_index);
ha->hw.mdump_done = 1;
return;
}
/*
* helper routines
*/
static void
ql_entry_err_chk(ql_minidump_entry_t *entry, uint32_t esize)
{
if (esize != entry->hdr.entry_capture_size) {
entry->hdr.entry_capture_size = esize;
entry->hdr.driver_flags |= QL_DBG_SIZE_ERR_FLAG;
}
return;
}
static int
ql_parse_template(qla_host_t *ha)
{
uint32_t num_of_entries, buff_level, e_cnt, esize;
uint32_t end_cnt, rv = 0;
char *dump_buff, *dbuff;
int sane_start = 0, sane_end = 0;
ql_minidump_template_hdr_t *template_hdr;
ql_minidump_entry_t *entry;
uint32_t capture_mask;
uint32_t dump_size;
/* Setup parameters */
template_hdr = (ql_minidump_template_hdr_t *)ha->hw.mdump_template;
if (template_hdr->entry_type == TLHDR)
sane_start = 1;
dump_buff = (char *) ha->hw.mdump_buffer;
num_of_entries = template_hdr->num_of_entries;
entry = (ql_minidump_entry_t *) ((char *)template_hdr
+ template_hdr->first_entry_offset );
template_hdr->saved_state_array[QL_OCM0_ADDR_INDX] =
template_hdr->ocm_window_array[ha->pci_func];
template_hdr->saved_state_array[QL_PCIE_FUNC_INDX] = ha->pci_func;
capture_mask = ha->hw.mdump_capture_mask;
dump_size = ha->hw.mdump_buffer_size;
template_hdr->driver_capture_mask = capture_mask;
QL_DPRINT80(ha, (ha->pci_dev,
"%s: sane_start = %d num_of_entries = %d "
"capture_mask = 0x%x dump_size = %d \n",
__func__, sane_start, num_of_entries, capture_mask, dump_size));
for (buff_level = 0, e_cnt = 0; e_cnt < num_of_entries; e_cnt++) {
/*
* If the capture_mask of the entry does not match capture mask
* skip the entry after marking the driver_flags indicator.
*/
if (!(entry->hdr.entry_capture_mask & capture_mask)) {
entry->hdr.driver_flags |= QL_DBG_SKIPPED_FLAG;
entry = (ql_minidump_entry_t *) ((char *) entry
+ entry->hdr.entry_size);
continue;
}
/*
* This is ONLY needed in implementations where
* the capture buffer allocated is too small to capture
* all of the required entries for a given capture mask.
* We need to empty the buffer contents to a file
* if possible, before processing the next entry
* If the buff_full_flag is set, no further capture will happen
* and all remaining non-control entries will be skipped.
*/
if (entry->hdr.entry_capture_size != 0) {
if ((buff_level + entry->hdr.entry_capture_size) >
dump_size) {
/* Try to recover by emptying buffer to file */
entry->hdr.driver_flags |= QL_DBG_SKIPPED_FLAG;
entry = (ql_minidump_entry_t *) ((char *) entry
+ entry->hdr.entry_size);
continue;
}
}
/*
* Decode the entry type and process it accordingly
*/
switch (entry->hdr.entry_type) {
case RDNOP:
break;
case RDEND:
if (sane_end == 0) {
end_cnt = e_cnt;
}
sane_end++;
break;
case RDCRB:
dbuff = dump_buff + buff_level;
esize = ql_rdcrb(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case POLLRD:
dbuff = dump_buff + buff_level;
esize = ql_pollrd(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case POLLRDMWR:
dbuff = dump_buff + buff_level;
esize = ql_pollrd_modify_write(ha, (void *)entry,
(void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case L2ITG:
case L2DTG:
case L2DAT:
case L2INS:
dbuff = dump_buff + buff_level;
esize = ql_L2Cache(ha, (void *)entry, (void *)dbuff);
if (esize == -1) {
entry->hdr.driver_flags |= QL_DBG_SKIPPED_FLAG;
} else {
ql_entry_err_chk(entry, esize);
buff_level += esize;
}
break;
case L1DAT:
case L1INS:
dbuff = dump_buff + buff_level;
esize = ql_L1Cache(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case RDOCM:
dbuff = dump_buff + buff_level;
esize = ql_rdocm(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case RDMEM:
dbuff = dump_buff + buff_level;
esize = ql_rdmem(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case BOARD:
case RDROM:
dbuff = dump_buff + buff_level;
esize = ql_rdrom(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case RDMUX:
dbuff = dump_buff + buff_level;
esize = ql_rdmux(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case RDMUX2:
dbuff = dump_buff + buff_level;
esize = ql_rdmux2(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case QUEUE:
dbuff = dump_buff + buff_level;
esize = ql_rdqueue(ha, (void *)entry, (void *)dbuff);
ql_entry_err_chk(entry, esize);
buff_level += esize;
break;
case CNTRL:
if ((rv = ql_cntrl(ha, template_hdr, (void *)entry))) {
entry->hdr.driver_flags |= QL_DBG_SKIPPED_FLAG;
}
break;
default:
entry->hdr.driver_flags |= QL_DBG_SKIPPED_FLAG;
break;
}
/* next entry in the template */
entry = (ql_minidump_entry_t *) ((char *) entry
+ entry->hdr.entry_size);
}
if (!sane_start || (sane_end > 1)) {
device_printf(ha->pci_dev,
"\n%s: Template configuration error. Check Template\n",
__func__);
}
QL_DPRINT80(ha, (ha->pci_dev, "%s: Minidump num of entries = %d\n",
__func__, template_hdr->num_of_entries));
return 0;
}
/*
* Read CRB operation.
*/
static uint32_t
ql_rdcrb(qla_host_t *ha, ql_minidump_entry_rdcrb_t * crb_entry,
uint32_t * data_buff)
{
int loop_cnt;
int ret;
uint32_t op_count, addr, stride, value = 0;
addr = crb_entry->addr;
op_count = crb_entry->op_count;
stride = crb_entry->addr_stride;
for (loop_cnt = 0; loop_cnt < op_count; loop_cnt++) {
ret = ql_rdwr_indreg32(ha, addr, &value, 1);
if (ret)
return (0);
*data_buff++ = addr;
*data_buff++ = value;
addr = addr + stride;
}
/*
* for testing purpose we return amount of data written
*/
return (op_count * (2 * sizeof(uint32_t)));
}
/*
* Handle L2 Cache.
*/
static uint32_t
ql_L2Cache(qla_host_t *ha, ql_minidump_entry_cache_t *cacheEntry,
uint32_t * data_buff)
{
int i, k;
int loop_cnt;
int ret;
uint32_t read_value;
uint32_t addr, read_addr, cntrl_addr, tag_reg_addr, cntl_value_w;
uint32_t tag_value, read_cnt;
volatile uint8_t cntl_value_r;
long timeout;
uint32_t data;
loop_cnt = cacheEntry->op_count;
read_addr = cacheEntry->read_addr;
cntrl_addr = cacheEntry->control_addr;
cntl_value_w = (uint32_t) cacheEntry->write_value;
tag_reg_addr = cacheEntry->tag_reg_addr;
tag_value = cacheEntry->init_tag_value;
read_cnt = cacheEntry->read_addr_cnt;
for (i = 0; i < loop_cnt; i++) {
ret = ql_rdwr_indreg32(ha, tag_reg_addr, &tag_value, 0);
if (ret)
return (0);
if (cacheEntry->write_value != 0) {
ret = ql_rdwr_indreg32(ha, cntrl_addr,
&cntl_value_w, 0);
if (ret)
return (0);
}
if (cacheEntry->poll_mask != 0) {
timeout = cacheEntry->poll_wait;
ret = ql_rdwr_indreg32(ha, cntrl_addr, &data, 1);
if (ret)
return (0);
cntl_value_r = (uint8_t)data;
while ((cntl_value_r & cacheEntry->poll_mask) != 0) {
if (timeout) {
qla_mdelay(__func__, 1);
timeout--;
} else
break;
ret = ql_rdwr_indreg32(ha, cntrl_addr,
&data, 1);
if (ret)
return (0);
cntl_value_r = (uint8_t)data;
}
if (!timeout) {
/* Report timeout error.
* core dump capture failed
* Skip remaining entries.
* Write buffer out to file
* Use driver specific fields in template header
* to report this error.
*/
return (-1);
}
}
addr = read_addr;
for (k = 0; k < read_cnt; k++) {
ret = ql_rdwr_indreg32(ha, addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = read_value;
addr += cacheEntry->read_addr_stride;
}
tag_value += cacheEntry->tag_value_stride;
}
return (read_cnt * loop_cnt * sizeof(uint32_t));
}
/*
* Handle L1 Cache.
*/
static uint32_t
ql_L1Cache(qla_host_t *ha,
ql_minidump_entry_cache_t *cacheEntry,
uint32_t *data_buff)
{
int ret;
int i, k;
int loop_cnt;
uint32_t read_value;
uint32_t addr, read_addr, cntrl_addr, tag_reg_addr;
uint32_t tag_value, read_cnt;
uint32_t cntl_value_w;
loop_cnt = cacheEntry->op_count;
read_addr = cacheEntry->read_addr;
cntrl_addr = cacheEntry->control_addr;
cntl_value_w = (uint32_t) cacheEntry->write_value;
tag_reg_addr = cacheEntry->tag_reg_addr;
tag_value = cacheEntry->init_tag_value;
read_cnt = cacheEntry->read_addr_cnt;
for (i = 0; i < loop_cnt; i++) {
ret = ql_rdwr_indreg32(ha, tag_reg_addr, &tag_value, 0);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, cntrl_addr, &cntl_value_w, 0);
if (ret)
return (0);
addr = read_addr;
for (k = 0; k < read_cnt; k++) {
ret = ql_rdwr_indreg32(ha, addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = read_value;
addr += cacheEntry->read_addr_stride;
}
tag_value += cacheEntry->tag_value_stride;
}
return (read_cnt * loop_cnt * sizeof(uint32_t));
}
/*
* Reading OCM memory
*/
static uint32_t
ql_rdocm(qla_host_t *ha,
ql_minidump_entry_rdocm_t *ocmEntry,
uint32_t *data_buff)
{
int i, loop_cnt;
volatile uint32_t addr;
volatile uint32_t value;
addr = ocmEntry->read_addr;
loop_cnt = ocmEntry->op_count;
for (i = 0; i < loop_cnt; i++) {
value = READ_REG32(ha, addr);
*data_buff++ = value;
addr += ocmEntry->read_addr_stride;
}
return (loop_cnt * sizeof(value));
}
/*
* Read memory
*/
static uint32_t
ql_rdmem(qla_host_t *ha,
ql_minidump_entry_rdmem_t *mem_entry,
uint32_t *data_buff)
{
int ret;
int i, loop_cnt;
volatile uint32_t addr;
q80_offchip_mem_val_t val;
addr = mem_entry->read_addr;
/* size in bytes / 16 */
loop_cnt = mem_entry->read_data_size / (sizeof(uint32_t) * 4);
for (i = 0; i < loop_cnt; i++) {
ret = ql_rdwr_offchip_mem(ha, (addr & 0x0ffffffff), &val, 1);
if (ret)
return (0);
*data_buff++ = val.data_lo;
*data_buff++ = val.data_hi;
*data_buff++ = val.data_ulo;
*data_buff++ = val.data_uhi;
addr += (sizeof(uint32_t) * 4);
}
return (loop_cnt * (sizeof(uint32_t) * 4));
}
/*
* Read Rom
*/
static uint32_t
ql_rdrom(qla_host_t *ha,
ql_minidump_entry_rdrom_t *romEntry,
uint32_t *data_buff)
{
int ret;
int i, loop_cnt;
uint32_t addr;
uint32_t value;
addr = romEntry->read_addr;
loop_cnt = romEntry->read_data_size; /* This is size in bytes */
loop_cnt /= sizeof(value);
for (i = 0; i < loop_cnt; i++) {
ret = ql_rd_flash32(ha, addr, &value);
if (ret)
return (0);
*data_buff++ = value;
addr += sizeof(value);
}
return (loop_cnt * sizeof(value));
}
/*
* Read MUX data
*/
static uint32_t
ql_rdmux(qla_host_t *ha,
ql_minidump_entry_mux_t *muxEntry,
uint32_t *data_buff)
{
int ret;
int loop_cnt;
uint32_t read_value, sel_value;
uint32_t read_addr, select_addr;
select_addr = muxEntry->select_addr;
sel_value = muxEntry->select_value;
read_addr = muxEntry->read_addr;
for (loop_cnt = 0; loop_cnt < muxEntry->op_count; loop_cnt++) {
ret = ql_rdwr_indreg32(ha, select_addr, &sel_value, 0);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, read_addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = sel_value;
*data_buff++ = read_value;
sel_value += muxEntry->select_value_stride;
}
return (loop_cnt * (2 * sizeof(uint32_t)));
}
static uint32_t
ql_rdmux2(qla_host_t *ha,
ql_minidump_entry_mux2_t *muxEntry,
uint32_t *data_buff)
{
int ret;
int loop_cnt;
uint32_t select_addr_1, select_addr_2;
uint32_t select_value_1, select_value_2;
uint32_t select_value_count, select_value_mask;
uint32_t read_addr, read_value;
select_addr_1 = muxEntry->select_addr_1;
select_addr_2 = muxEntry->select_addr_2;
select_value_1 = muxEntry->select_value_1;
select_value_2 = muxEntry->select_value_2;
select_value_count = muxEntry->select_value_count;
select_value_mask = muxEntry->select_value_mask;
read_addr = muxEntry->read_addr;
for (loop_cnt = 0; loop_cnt < muxEntry->select_value_count;
loop_cnt++) {
uint32_t temp_sel_val;
ret = ql_rdwr_indreg32(ha, select_addr_1, &select_value_1, 0);
if (ret)
return (0);
temp_sel_val = select_value_1 & select_value_mask;
ret = ql_rdwr_indreg32(ha, select_addr_2, &temp_sel_val, 0);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, read_addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = temp_sel_val;
*data_buff++ = read_value;
ret = ql_rdwr_indreg32(ha, select_addr_1, &select_value_2, 0);
if (ret)
return (0);
temp_sel_val = select_value_2 & select_value_mask;
ret = ql_rdwr_indreg32(ha, select_addr_2, &temp_sel_val, 0);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, read_addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = temp_sel_val;
*data_buff++ = read_value;
select_value_1 += muxEntry->select_value_stride;
select_value_2 += muxEntry->select_value_stride;
}
return (loop_cnt * (4 * sizeof(uint32_t)));
}
/*
* Handling Queue State Reads.
*/
static uint32_t
ql_rdqueue(qla_host_t *ha,
ql_minidump_entry_queue_t *queueEntry,
uint32_t *data_buff)
{
int ret;
int loop_cnt, k;
uint32_t read_value;
uint32_t read_addr, read_stride, select_addr;
uint32_t queue_id, read_cnt;
read_cnt = queueEntry->read_addr_cnt;
read_stride = queueEntry->read_addr_stride;
select_addr = queueEntry->select_addr;
for (loop_cnt = 0, queue_id = 0; loop_cnt < queueEntry->op_count;
loop_cnt++) {
ret = ql_rdwr_indreg32(ha, select_addr, &queue_id, 0);
if (ret)
return (0);
read_addr = queueEntry->read_addr;
for (k = 0; k < read_cnt; k++) {
ret = ql_rdwr_indreg32(ha, read_addr, &read_value, 1);
if (ret)
return (0);
*data_buff++ = read_value;
read_addr += read_stride;
}
queue_id += queueEntry->queue_id_stride;
}
return (loop_cnt * (read_cnt * sizeof(uint32_t)));
}
/*
* Handling control entries.
*/
static uint32_t
ql_cntrl(qla_host_t *ha,
ql_minidump_template_hdr_t *template_hdr,
ql_minidump_entry_cntrl_t *crbEntry)
{
int ret;
int count;
uint32_t opcode, read_value, addr, entry_addr;
long timeout;
entry_addr = crbEntry->addr;
for (count = 0; count < crbEntry->op_count; count++) {
opcode = crbEntry->opcode;
if (opcode & QL_DBG_OPCODE_WR) {
ret = ql_rdwr_indreg32(ha, entry_addr,
&crbEntry->value_1, 0);
if (ret)
return (0);
opcode &= ~QL_DBG_OPCODE_WR;
}
if (opcode & QL_DBG_OPCODE_RW) {
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 1);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 0);
if (ret)
return (0);
opcode &= ~QL_DBG_OPCODE_RW;
}
if (opcode & QL_DBG_OPCODE_AND) {
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 1);
if (ret)
return (0);
read_value &= crbEntry->value_2;
opcode &= ~QL_DBG_OPCODE_AND;
if (opcode & QL_DBG_OPCODE_OR) {
read_value |= crbEntry->value_3;
opcode &= ~QL_DBG_OPCODE_OR;
}
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 0);
if (ret)
return (0);
}
if (opcode & QL_DBG_OPCODE_OR) {
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 1);
if (ret)
return (0);
read_value |= crbEntry->value_3;
ret = ql_rdwr_indreg32(ha, entry_addr, &read_value, 0);
if (ret)
return (0);
opcode &= ~QL_DBG_OPCODE_OR;
}
if (opcode & QL_DBG_OPCODE_POLL) {
opcode &= ~QL_DBG_OPCODE_POLL;
timeout = crbEntry->poll_timeout;
addr = entry_addr;
ret = ql_rdwr_indreg32(ha, addr, &read_value, 1);
if (ret)
return (0);
while ((read_value & crbEntry->value_2)
!= crbEntry->value_1) {
if (timeout) {
qla_mdelay(__func__, 1);
timeout--;
} else
break;
ret = ql_rdwr_indreg32(ha, addr,
&read_value, 1);
if (ret)
return (0);
}
if (!timeout) {
/*
* Report timeout error.
* core dump capture failed
* Skip remaining entries.
* Write buffer out to file
* Use driver specific fields in template header
* to report this error.
*/
return (-1);
}
}
if (opcode & QL_DBG_OPCODE_RDSTATE) {
/*
* decide which address to use.
*/
if (crbEntry->state_index_a) {
addr = template_hdr->saved_state_array[
crbEntry-> state_index_a];
} else {
addr = entry_addr;
}
ret = ql_rdwr_indreg32(ha, addr, &read_value, 1);
if (ret)
return (0);
template_hdr->saved_state_array[crbEntry->state_index_v]
= read_value;
opcode &= ~QL_DBG_OPCODE_RDSTATE;
}
if (opcode & QL_DBG_OPCODE_WRSTATE) {
/*
* decide which value to use.
*/
if (crbEntry->state_index_v) {
read_value = template_hdr->saved_state_array[
crbEntry->state_index_v];
} else {
read_value = crbEntry->value_1;
}
/*
* decide which address to use.
*/
if (crbEntry->state_index_a) {
addr = template_hdr->saved_state_array[
crbEntry-> state_index_a];
} else {
addr = entry_addr;
}
ret = ql_rdwr_indreg32(ha, addr, &read_value, 0);
if (ret)
return (0);
opcode &= ~QL_DBG_OPCODE_WRSTATE;
}
if (opcode & QL_DBG_OPCODE_MDSTATE) {
/* Read value from saved state using index */
read_value = template_hdr->saved_state_array[
crbEntry->state_index_v];
read_value <<= crbEntry->shl; /*Shift left operation */
read_value >>= crbEntry->shr; /*Shift right operation */
if (crbEntry->value_2) {
/* check if AND mask is provided */
read_value &= crbEntry->value_2;
}
read_value |= crbEntry->value_3; /* OR operation */
read_value += crbEntry->value_1; /* increment op */
/* Write value back to state area. */
template_hdr->saved_state_array[crbEntry->state_index_v]
= read_value;
opcode &= ~QL_DBG_OPCODE_MDSTATE;
}
entry_addr += crbEntry->addr_stride;
}
return (0);
}
/*
* Handling rd poll entry.
*/
static uint32_t
ql_pollrd(qla_host_t *ha, ql_minidump_entry_pollrd_t *entry,
uint32_t *data_buff)
{
int ret;
int loop_cnt;
uint32_t op_count, select_addr, select_value_stride, select_value;
uint32_t read_addr, poll, mask, data_size, data;
uint32_t wait_count = 0;
select_addr = entry->select_addr;
read_addr = entry->read_addr;
select_value = entry->select_value;
select_value_stride = entry->select_value_stride;
op_count = entry->op_count;
poll = entry->poll;
mask = entry->mask;
data_size = entry->data_size;
for (loop_cnt = 0; loop_cnt < op_count; loop_cnt++) {
ret = ql_rdwr_indreg32(ha, select_addr, &select_value, 0);
if (ret)
return (0);
wait_count = 0;
while (wait_count < poll) {
uint32_t temp;
ret = ql_rdwr_indreg32(ha, select_addr, &temp, 1);
if (ret)
return (0);
if ( (temp & mask) != 0 ) {
break;
}
wait_count++;
}
if (wait_count == poll) {
device_printf(ha->pci_dev,
"%s: Error in processing entry\n", __func__);
device_printf(ha->pci_dev,
"%s: wait_count <0x%x> poll <0x%x>\n",
__func__, wait_count, poll);
return 0;
}
ret = ql_rdwr_indreg32(ha, read_addr, &data, 1);
if (ret)
return (0);
*data_buff++ = select_value;
*data_buff++ = data;
select_value = select_value + select_value_stride;
}
/*
* for testing purpose we return amount of data written
*/
return (loop_cnt * (2 * sizeof(uint32_t)));
}
/*
* Handling rd modify write poll entry.
*/
static uint32_t
ql_pollrd_modify_write(qla_host_t *ha,
ql_minidump_entry_rd_modify_wr_with_poll_t *entry,
uint32_t *data_buff)
{
int ret;
uint32_t addr_1, addr_2, value_1, value_2, data;
uint32_t poll, mask, data_size, modify_mask;
uint32_t wait_count = 0;
addr_1 = entry->addr_1;
addr_2 = entry->addr_2;
value_1 = entry->value_1;
value_2 = entry->value_2;
poll = entry->poll;
mask = entry->mask;
modify_mask = entry->modify_mask;
data_size = entry->data_size;
ret = ql_rdwr_indreg32(ha, addr_1, &value_1, 0);
if (ret)
return (0);
wait_count = 0;
while (wait_count < poll) {
uint32_t temp;
ret = ql_rdwr_indreg32(ha, addr_1, &temp, 1);
if (ret)
return (0);
if ( (temp & mask) != 0 ) {
break;
}
wait_count++;
}
if (wait_count == poll) {
device_printf(ha->pci_dev, "%s Error in processing entry\n",
__func__);
} else {
ret = ql_rdwr_indreg32(ha, addr_2, &data, 1);
if (ret)
return (0);
data = (data & modify_mask);
ret = ql_rdwr_indreg32(ha, addr_2, &data, 0);
if (ret)
return (0);
ret = ql_rdwr_indreg32(ha, addr_1, &value_2, 0);
if (ret)
return (0);
/* Poll again */
wait_count = 0;
while (wait_count < poll) {
uint32_t temp;
ret = ql_rdwr_indreg32(ha, addr_1, &temp, 1);
if (ret)
return (0);
if ( (temp & mask) != 0 ) {
break;
}
wait_count++;
}
*data_buff++ = addr_2;
*data_buff++ = data;
}
/*
* for testing purpose we return amount of data written
*/
return (2 * sizeof(uint32_t));
}