7abbdcfd9b
Submitted by: bde
858 lines
20 KiB
C
858 lines
20 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_rlimit.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/file.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
static int donice __P((struct proc *curp, struct proc *chgp, int n));
|
|
/* dosetrlimit non-static: Needed by SysVR4 emulator */
|
|
int dosetrlimit __P((struct proc *p, u_int which, struct rlimit *limp));
|
|
|
|
static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
|
|
#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
|
|
static struct mtx uihashtbl_mtx;
|
|
static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
|
|
static u_long uihash; /* size of hash table - 1 */
|
|
|
|
static struct uidinfo *uicreate __P((uid_t uid));
|
|
static struct uidinfo *uilookup __P((uid_t uid));
|
|
|
|
/*
|
|
* Resource controls and accounting.
|
|
*/
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getpriority_args {
|
|
int which;
|
|
int who;
|
|
};
|
|
#endif
|
|
int
|
|
getpriority(curp, uap)
|
|
struct proc *curp;
|
|
register struct getpriority_args *uap;
|
|
{
|
|
register struct proc *p;
|
|
register int low = PRIO_MAX + 1;
|
|
|
|
switch (uap->which) {
|
|
|
|
case PRIO_PROCESS:
|
|
if (uap->who == 0)
|
|
p = curp;
|
|
else
|
|
p = pfind(uap->who);
|
|
if (p == 0)
|
|
break;
|
|
if (p_can(curp, p, P_CAN_SEE, NULL))
|
|
break;
|
|
low = p->p_nice;
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
register struct pgrp *pg;
|
|
|
|
if (uap->who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pgfind(uap->who)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
if (!p_can(curp, p, P_CAN_SEE, NULL) && p->p_nice < low)
|
|
low = p->p_nice;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (uap->who == 0)
|
|
uap->who = curp->p_ucred->cr_uid;
|
|
lockmgr(&allproc_lock, LK_SHARED, NULL, CURPROC);
|
|
LIST_FOREACH(p, &allproc, p_list)
|
|
if (!p_can(curp, p, P_CAN_SEE, NULL) &&
|
|
p->p_ucred->cr_uid == uap->who &&
|
|
p->p_nice < low)
|
|
low = p->p_nice;
|
|
lockmgr(&allproc_lock, LK_RELEASE, NULL, CURPROC);
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (low == PRIO_MAX + 1)
|
|
return (ESRCH);
|
|
curp->p_retval[0] = low;
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct setpriority_args {
|
|
int which;
|
|
int who;
|
|
int prio;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
setpriority(curp, uap)
|
|
struct proc *curp;
|
|
register struct setpriority_args *uap;
|
|
{
|
|
register struct proc *p;
|
|
int found = 0, error = 0;
|
|
|
|
switch (uap->which) {
|
|
|
|
case PRIO_PROCESS:
|
|
if (uap->who == 0)
|
|
p = curp;
|
|
else
|
|
p = pfind(uap->who);
|
|
if (p == 0)
|
|
break;
|
|
if (p_can(curp, p, P_CAN_SEE, NULL))
|
|
break;
|
|
error = donice(curp, p, uap->prio);
|
|
found++;
|
|
break;
|
|
|
|
case PRIO_PGRP: {
|
|
register struct pgrp *pg;
|
|
|
|
if (uap->who == 0)
|
|
pg = curp->p_pgrp;
|
|
else if ((pg = pgfind(uap->who)) == NULL)
|
|
break;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
if (!p_can(curp, p, P_CAN_SEE, NULL)) {
|
|
error = donice(curp, p, uap->prio);
|
|
found++;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PRIO_USER:
|
|
if (uap->who == 0)
|
|
uap->who = curp->p_ucred->cr_uid;
|
|
lockmgr(&allproc_lock, LK_SHARED, NULL, CURPROC);
|
|
LIST_FOREACH(p, &allproc, p_list)
|
|
if (p->p_ucred->cr_uid == uap->who &&
|
|
!p_can(curp, p, P_CAN_SEE, NULL)) {
|
|
error = donice(curp, p, uap->prio);
|
|
found++;
|
|
}
|
|
lockmgr(&allproc_lock, LK_RELEASE, NULL, CURPROC);
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (found == 0)
|
|
return (ESRCH);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
donice(curp, chgp, n)
|
|
register struct proc *curp, *chgp;
|
|
register int n;
|
|
{
|
|
int error;
|
|
|
|
if ((error = p_can(curp, chgp, P_CAN_SCHED, NULL)))
|
|
return (error);
|
|
if (n > PRIO_MAX)
|
|
n = PRIO_MAX;
|
|
if (n < PRIO_MIN)
|
|
n = PRIO_MIN;
|
|
if (n < chgp->p_nice && suser(curp))
|
|
return (EACCES);
|
|
chgp->p_nice = n;
|
|
(void)resetpriority(chgp);
|
|
return (0);
|
|
}
|
|
|
|
/* rtprio system call */
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct rtprio_args {
|
|
int function;
|
|
pid_t pid;
|
|
struct rtprio *rtp;
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Set realtime priority
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
rtprio(curp, uap)
|
|
struct proc *curp;
|
|
register struct rtprio_args *uap;
|
|
{
|
|
register struct proc *p;
|
|
struct rtprio rtp;
|
|
int error;
|
|
|
|
error = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (uap->pid == 0)
|
|
p = curp;
|
|
else
|
|
p = pfind(uap->pid);
|
|
|
|
if (p == 0)
|
|
return (ESRCH);
|
|
|
|
switch (uap->function) {
|
|
case RTP_LOOKUP:
|
|
return (copyout(&p->p_rtprio, uap->rtp, sizeof(struct rtprio)));
|
|
case RTP_SET:
|
|
if ((error = p_can(curp, p, P_CAN_SCHED, NULL)))
|
|
return (error);
|
|
/* disallow setting rtprio in most cases if not superuser */
|
|
if (suser(curp) != 0) {
|
|
/* can't set someone else's */
|
|
if (uap->pid)
|
|
return (EPERM);
|
|
/* can't set realtime priority */
|
|
/*
|
|
* Realtime priority has to be restricted for reasons which should be
|
|
* obvious. However, for idle priority, there is a potential for
|
|
* system deadlock if an idleprio process gains a lock on a resource
|
|
* that other processes need (and the idleprio process can't run
|
|
* due to a CPU-bound normal process). Fix me! XXX
|
|
*/
|
|
#if 0
|
|
if (RTP_PRIO_IS_REALTIME(rtp.type))
|
|
#endif
|
|
if (rtp.type != RTP_PRIO_NORMAL)
|
|
return (EPERM);
|
|
}
|
|
switch (rtp.type) {
|
|
#ifdef RTP_PRIO_FIFO
|
|
case RTP_PRIO_FIFO:
|
|
#endif
|
|
case RTP_PRIO_REALTIME:
|
|
case RTP_PRIO_NORMAL:
|
|
case RTP_PRIO_IDLE:
|
|
if (rtp.prio > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
p->p_rtprio = rtp;
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osetrlimit_args {
|
|
u_int which;
|
|
struct orlimit *rlp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
osetrlimit(p, uap)
|
|
struct proc *p;
|
|
register struct osetrlimit_args *uap;
|
|
{
|
|
struct orlimit olim;
|
|
struct rlimit lim;
|
|
int error;
|
|
|
|
if ((error =
|
|
copyin((caddr_t)uap->rlp, (caddr_t)&olim, sizeof(struct orlimit))))
|
|
return (error);
|
|
lim.rlim_cur = olim.rlim_cur;
|
|
lim.rlim_max = olim.rlim_max;
|
|
return (dosetrlimit(p, uap->which, &lim));
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ogetrlimit_args {
|
|
u_int which;
|
|
struct orlimit *rlp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
ogetrlimit(p, uap)
|
|
struct proc *p;
|
|
register struct ogetrlimit_args *uap;
|
|
{
|
|
struct orlimit olim;
|
|
|
|
if (uap->which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur;
|
|
if (olim.rlim_cur == -1)
|
|
olim.rlim_cur = 0x7fffffff;
|
|
olim.rlim_max = p->p_rlimit[uap->which].rlim_max;
|
|
if (olim.rlim_max == -1)
|
|
olim.rlim_max = 0x7fffffff;
|
|
return (copyout((caddr_t)&olim, (caddr_t)uap->rlp, sizeof(olim)));
|
|
}
|
|
#endif /* COMPAT_43 || COMPAT_SUNOS */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct __setrlimit_args {
|
|
u_int which;
|
|
struct rlimit *rlp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
setrlimit(p, uap)
|
|
struct proc *p;
|
|
register struct __setrlimit_args *uap;
|
|
{
|
|
struct rlimit alim;
|
|
int error;
|
|
|
|
if ((error =
|
|
copyin((caddr_t)uap->rlp, (caddr_t)&alim, sizeof (struct rlimit))))
|
|
return (error);
|
|
return (dosetrlimit(p, uap->which, &alim));
|
|
}
|
|
|
|
int
|
|
dosetrlimit(p, which, limp)
|
|
struct proc *p;
|
|
u_int which;
|
|
struct rlimit *limp;
|
|
{
|
|
register struct rlimit *alimp;
|
|
int error;
|
|
|
|
if (which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
alimp = &p->p_rlimit[which];
|
|
|
|
/*
|
|
* Preserve historical bugs by treating negative limits as unsigned.
|
|
*/
|
|
if (limp->rlim_cur < 0)
|
|
limp->rlim_cur = RLIM_INFINITY;
|
|
if (limp->rlim_max < 0)
|
|
limp->rlim_max = RLIM_INFINITY;
|
|
|
|
if (limp->rlim_cur > alimp->rlim_max ||
|
|
limp->rlim_max > alimp->rlim_max)
|
|
if ((error = suser_xxx(0, p, PRISON_ROOT)))
|
|
return (error);
|
|
if (limp->rlim_cur > limp->rlim_max)
|
|
limp->rlim_cur = limp->rlim_max;
|
|
if (p->p_limit->p_refcnt > 1 &&
|
|
(p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
|
|
p->p_limit->p_refcnt--;
|
|
p->p_limit = limcopy(p->p_limit);
|
|
alimp = &p->p_rlimit[which];
|
|
}
|
|
|
|
switch (which) {
|
|
|
|
case RLIMIT_CPU:
|
|
if (limp->rlim_cur > RLIM_INFINITY / (rlim_t)1000000)
|
|
p->p_limit->p_cpulimit = RLIM_INFINITY;
|
|
else
|
|
p->p_limit->p_cpulimit =
|
|
(rlim_t)1000000 * limp->rlim_cur;
|
|
break;
|
|
case RLIMIT_DATA:
|
|
if (limp->rlim_cur > MAXDSIZ)
|
|
limp->rlim_cur = MAXDSIZ;
|
|
if (limp->rlim_max > MAXDSIZ)
|
|
limp->rlim_max = MAXDSIZ;
|
|
break;
|
|
|
|
case RLIMIT_STACK:
|
|
if (limp->rlim_cur > MAXSSIZ)
|
|
limp->rlim_cur = MAXSSIZ;
|
|
if (limp->rlim_max > MAXSSIZ)
|
|
limp->rlim_max = MAXSSIZ;
|
|
/*
|
|
* Stack is allocated to the max at exec time with only
|
|
* "rlim_cur" bytes accessible. If stack limit is going
|
|
* up make more accessible, if going down make inaccessible.
|
|
*/
|
|
if (limp->rlim_cur != alimp->rlim_cur) {
|
|
vm_offset_t addr;
|
|
vm_size_t size;
|
|
vm_prot_t prot;
|
|
|
|
if (limp->rlim_cur > alimp->rlim_cur) {
|
|
prot = VM_PROT_ALL;
|
|
size = limp->rlim_cur - alimp->rlim_cur;
|
|
addr = USRSTACK - limp->rlim_cur;
|
|
} else {
|
|
prot = VM_PROT_NONE;
|
|
size = alimp->rlim_cur - limp->rlim_cur;
|
|
addr = USRSTACK - alimp->rlim_cur;
|
|
}
|
|
addr = trunc_page(addr);
|
|
size = round_page(size);
|
|
(void) vm_map_protect(&p->p_vmspace->vm_map,
|
|
addr, addr+size, prot, FALSE);
|
|
}
|
|
break;
|
|
|
|
case RLIMIT_NOFILE:
|
|
if (limp->rlim_cur > maxfilesperproc)
|
|
limp->rlim_cur = maxfilesperproc;
|
|
if (limp->rlim_max > maxfilesperproc)
|
|
limp->rlim_max = maxfilesperproc;
|
|
break;
|
|
|
|
case RLIMIT_NPROC:
|
|
if (limp->rlim_cur > maxprocperuid)
|
|
limp->rlim_cur = maxprocperuid;
|
|
if (limp->rlim_max > maxprocperuid)
|
|
limp->rlim_max = maxprocperuid;
|
|
break;
|
|
}
|
|
*alimp = *limp;
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct __getrlimit_args {
|
|
u_int which;
|
|
struct rlimit *rlp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
getrlimit(p, uap)
|
|
struct proc *p;
|
|
register struct __getrlimit_args *uap;
|
|
{
|
|
|
|
if (uap->which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
return (copyout((caddr_t)&p->p_rlimit[uap->which], (caddr_t)uap->rlp,
|
|
sizeof (struct rlimit)));
|
|
}
|
|
|
|
/*
|
|
* Transform the running time and tick information in proc p into user,
|
|
* system, and interrupt time usage.
|
|
*/
|
|
void
|
|
calcru(p, up, sp, ip)
|
|
struct proc *p;
|
|
struct timeval *up;
|
|
struct timeval *sp;
|
|
struct timeval *ip;
|
|
{
|
|
/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
|
|
u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
|
|
int s;
|
|
struct timeval tv;
|
|
|
|
/* XXX: why spl-protect ? worst case is an off-by-one report */
|
|
s = splstatclock();
|
|
ut = p->p_uticks;
|
|
st = p->p_sticks;
|
|
it = p->p_iticks;
|
|
splx(s);
|
|
|
|
tt = ut + st + it;
|
|
if (tt == 0) {
|
|
st = 1;
|
|
tt = 1;
|
|
}
|
|
|
|
tu = p->p_runtime;
|
|
if (p == curproc) {
|
|
/*
|
|
* Adjust for the current time slice. This is actually fairly
|
|
* important since the error here is on the order of a time
|
|
* quantum, which is much greater than the sampling error.
|
|
*/
|
|
microuptime(&tv);
|
|
if (timevalcmp(&tv, &switchtime, <))
|
|
printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
|
|
switchtime.tv_sec, switchtime.tv_usec,
|
|
tv.tv_sec, tv.tv_usec);
|
|
else
|
|
tu += (tv.tv_usec - switchtime.tv_usec) +
|
|
(tv.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
|
|
}
|
|
ptu = p->p_uu + p->p_su + p->p_iu;
|
|
if (tu < ptu || (int64_t)tu < 0) {
|
|
/* XXX no %qd in kernel. Truncate. */
|
|
printf("calcru: negative time of %ld usec for pid %d (%s)\n",
|
|
(long)tu, p->p_pid, p->p_comm);
|
|
tu = ptu;
|
|
}
|
|
|
|
/* Subdivide tu. */
|
|
uu = (tu * ut) / tt;
|
|
su = (tu * st) / tt;
|
|
iu = tu - uu - su;
|
|
|
|
/* Enforce monotonicity. */
|
|
if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
|
|
if (uu < p->p_uu)
|
|
uu = p->p_uu;
|
|
else if (uu + p->p_su + p->p_iu > tu)
|
|
uu = tu - p->p_su - p->p_iu;
|
|
if (st == 0)
|
|
su = p->p_su;
|
|
else {
|
|
su = ((tu - uu) * st) / (st + it);
|
|
if (su < p->p_su)
|
|
su = p->p_su;
|
|
else if (uu + su + p->p_iu > tu)
|
|
su = tu - uu - p->p_iu;
|
|
}
|
|
KASSERT(uu + su + p->p_iu <= tu,
|
|
("calcru: monotonisation botch 1"));
|
|
iu = tu - uu - su;
|
|
KASSERT(iu >= p->p_iu,
|
|
("calcru: monotonisation botch 2"));
|
|
}
|
|
p->p_uu = uu;
|
|
p->p_su = su;
|
|
p->p_iu = iu;
|
|
|
|
up->tv_sec = uu / 1000000;
|
|
up->tv_usec = uu % 1000000;
|
|
sp->tv_sec = su / 1000000;
|
|
sp->tv_usec = su % 1000000;
|
|
if (ip != NULL) {
|
|
ip->tv_sec = iu / 1000000;
|
|
ip->tv_usec = iu % 1000000;
|
|
}
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getrusage_args {
|
|
int who;
|
|
struct rusage *rusage;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
getrusage(p, uap)
|
|
register struct proc *p;
|
|
register struct getrusage_args *uap;
|
|
{
|
|
register struct rusage *rup;
|
|
|
|
switch (uap->who) {
|
|
|
|
case RUSAGE_SELF:
|
|
rup = &p->p_stats->p_ru;
|
|
calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
|
|
break;
|
|
|
|
case RUSAGE_CHILDREN:
|
|
rup = &p->p_stats->p_cru;
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (copyout((caddr_t)rup, (caddr_t)uap->rusage,
|
|
sizeof (struct rusage)));
|
|
}
|
|
|
|
void
|
|
ruadd(ru, ru2)
|
|
register struct rusage *ru, *ru2;
|
|
{
|
|
register long *ip, *ip2;
|
|
register int i;
|
|
|
|
timevaladd(&ru->ru_utime, &ru2->ru_utime);
|
|
timevaladd(&ru->ru_stime, &ru2->ru_stime);
|
|
if (ru->ru_maxrss < ru2->ru_maxrss)
|
|
ru->ru_maxrss = ru2->ru_maxrss;
|
|
ip = &ru->ru_first; ip2 = &ru2->ru_first;
|
|
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
|
|
*ip++ += *ip2++;
|
|
}
|
|
|
|
/*
|
|
* Make a copy of the plimit structure.
|
|
* We share these structures copy-on-write after fork,
|
|
* and copy when a limit is changed.
|
|
*/
|
|
struct plimit *
|
|
limcopy(lim)
|
|
struct plimit *lim;
|
|
{
|
|
register struct plimit *copy;
|
|
|
|
MALLOC(copy, struct plimit *, sizeof(struct plimit),
|
|
M_SUBPROC, M_WAITOK);
|
|
bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit));
|
|
copy->p_lflags = 0;
|
|
copy->p_refcnt = 1;
|
|
return (copy);
|
|
}
|
|
|
|
/*
|
|
* Find the uidinfo structure for a uid. This structure is used to
|
|
* track the total resource consumption (process count, socket buffer
|
|
* size, etc.) for the uid and impose limits.
|
|
*/
|
|
void
|
|
uihashinit()
|
|
{
|
|
|
|
uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
|
|
mtx_init(&uihashtbl_mtx, "uidinfo hash", MTX_DEF);
|
|
}
|
|
|
|
/*
|
|
* lookup a uidinfo struct for the parameter uid.
|
|
* uihashtbl_mtx must be locked.
|
|
*/
|
|
static struct uidinfo *
|
|
uilookup(uid)
|
|
uid_t uid;
|
|
{
|
|
struct uihashhead *uipp;
|
|
struct uidinfo *uip;
|
|
|
|
mtx_assert(&uihashtbl_mtx, MA_OWNED);
|
|
uipp = UIHASH(uid);
|
|
LIST_FOREACH(uip, uipp, ui_hash)
|
|
if (uip->ui_uid == uid)
|
|
break;
|
|
|
|
return (uip);
|
|
}
|
|
|
|
/*
|
|
* Create a uidinfo struct for the parameter uid.
|
|
* uihashtbl_mtx must be locked.
|
|
*/
|
|
static struct uidinfo *
|
|
uicreate(uid)
|
|
uid_t uid;
|
|
{
|
|
struct uidinfo *uip;
|
|
|
|
mtx_assert(&uihashtbl_mtx, MA_OWNED);
|
|
MALLOC(uip, struct uidinfo *, sizeof(*uip), M_UIDINFO,
|
|
M_WAITOK | M_ZERO);
|
|
LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
|
|
uip->ui_uid = uid;
|
|
mtx_init(&uip->ui_mtx, "uidinfo struct", MTX_DEF);
|
|
return (uip);
|
|
}
|
|
|
|
/*
|
|
* Find or allocate a struct uidinfo for a particular uid.
|
|
* Increase refcount on uidinfo struct returned.
|
|
* uifree() should be called on a struct uidinfo when released.
|
|
*/
|
|
struct uidinfo *
|
|
uifind(uid)
|
|
uid_t uid;
|
|
{
|
|
struct uidinfo *uip;
|
|
|
|
mtx_enter(&uihashtbl_mtx, MTX_DEF);
|
|
uip = uilookup(uid);
|
|
if (uip == NULL)
|
|
uip = uicreate(uid);
|
|
uihold(uip);
|
|
mtx_exit(&uihashtbl_mtx, MTX_DEF);
|
|
return (uip);
|
|
}
|
|
|
|
/*
|
|
* Place another refcount on a uidinfo struct.
|
|
*/
|
|
void
|
|
uihold(uip)
|
|
struct uidinfo *uip;
|
|
{
|
|
|
|
mtx_enter(&uip->ui_mtx, MTX_DEF);
|
|
uip->ui_ref++;
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
}
|
|
|
|
/*-
|
|
* Since uidinfo structs have a long lifetime, we use an
|
|
* opportunistic refcounting scheme to avoid locking the lookup hash
|
|
* for each release.
|
|
*
|
|
* If the refcount hits 0, we need to free the structure,
|
|
* which means we need to lock the hash.
|
|
* Optimal case:
|
|
* After locking the struct and lowering the refcount, if we find
|
|
* that we don't need to free, simply unlock and return.
|
|
* Suboptimal case:
|
|
* If refcount lowering results in need to free, bump the count
|
|
* back up, loose the lock and aquire the locks in the proper
|
|
* order to try again.
|
|
*/
|
|
void
|
|
uifree(uip)
|
|
struct uidinfo *uip;
|
|
{
|
|
|
|
/* Prepare for optimal case. */
|
|
mtx_enter(&uip->ui_mtx, MTX_DEF);
|
|
|
|
if (--uip->ui_ref != 0) {
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
return;
|
|
}
|
|
|
|
/* Prepare for suboptimal case. */
|
|
uip->ui_ref++;
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
mtx_enter(&uihashtbl_mtx, MTX_DEF);
|
|
mtx_enter(&uip->ui_mtx, MTX_DEF);
|
|
|
|
/*
|
|
* We must subtract one from the count again because we backed out
|
|
* our initial subtraction before dropping the lock.
|
|
* Since another thread may have added a reference after we dropped the
|
|
* initial lock we have to test for zero again.
|
|
*/
|
|
if (--uip->ui_ref == 0) {
|
|
LIST_REMOVE(uip, ui_hash);
|
|
mtx_exit(&uihashtbl_mtx, MTX_DEF);
|
|
if (uip->ui_sbsize != 0)
|
|
/* XXX no %qd in kernel. Truncate. */
|
|
printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
|
|
uip->ui_uid, (long)uip->ui_sbsize);
|
|
if (uip->ui_proccnt != 0)
|
|
printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
|
|
uip->ui_uid, uip->ui_proccnt);
|
|
mtx_destroy(&uip->ui_mtx);
|
|
FREE(uip, M_UIDINFO);
|
|
return;
|
|
}
|
|
|
|
mtx_exit(&uihashtbl_mtx, MTX_DEF);
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
}
|
|
|
|
/*
|
|
* Change the count associated with number of processes
|
|
* a given user is using. When 'max' is 0, don't enforce a limit
|
|
*/
|
|
int
|
|
chgproccnt(uip, diff, max)
|
|
struct uidinfo *uip;
|
|
int diff;
|
|
int max;
|
|
{
|
|
|
|
mtx_enter(&uip->ui_mtx, MTX_DEF);
|
|
/* don't allow them to exceed max, but allow subtraction */
|
|
if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
return (0);
|
|
}
|
|
uip->ui_proccnt += diff;
|
|
if (uip->ui_proccnt < 0)
|
|
printf("negative proccnt for uid = %d\n", uip->ui_uid);
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Change the total socket buffer size a user has used.
|
|
*/
|
|
int
|
|
chgsbsize(uip, hiwat, to, max)
|
|
struct uidinfo *uip;
|
|
u_long *hiwat;
|
|
u_long to;
|
|
rlim_t max;
|
|
{
|
|
rlim_t new;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mtx_enter(&uip->ui_mtx, MTX_DEF);
|
|
new = uip->ui_sbsize + to - *hiwat;
|
|
/* don't allow them to exceed max, but allow subtraction */
|
|
if (to > *hiwat && new > max) {
|
|
splx(s);
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
return (0);
|
|
}
|
|
uip->ui_sbsize = new;
|
|
*hiwat = to;
|
|
if (uip->ui_sbsize < 0)
|
|
printf("negative sbsize for uid = %d\n", uip->ui_uid);
|
|
splx(s);
|
|
mtx_exit(&uip->ui_mtx, MTX_DEF);
|
|
return (1);
|
|
}
|