1235 lines
33 KiB
C
1235 lines
33 KiB
C
/* $FreeBSD$ */
|
|
/*
|
|
* Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters.
|
|
*
|
|
* Copyright (c) 1999 by Matthew Jacob
|
|
* All rights reserved.
|
|
* mjacob@feral.com
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Include header file appropriate for platform we're building on.
|
|
*/
|
|
|
|
#ifdef __NetBSD__
|
|
#include <dev/ic/isp_netbsd.h>
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
#include <dev/isp/isp_freebsd.h>
|
|
#endif
|
|
#ifdef __OpenBSD__
|
|
#include <dev/ic/isp_openbsd.h>
|
|
#endif
|
|
#ifdef __linux__
|
|
#include "isp_linux.h"
|
|
#endif
|
|
|
|
#ifdef ISP_TARGET_MODE
|
|
int isp_tdebug = 0;
|
|
|
|
static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *));
|
|
static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *));
|
|
static void isp_notify_ack __P((struct ispsoftc *, void *));
|
|
static void isp_handle_atio(struct ispsoftc *, at_entry_t *);
|
|
static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *);
|
|
static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *);
|
|
static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *);
|
|
|
|
/*
|
|
* The Qlogic driver gets an interrupt to look at response queue entries.
|
|
* Some of these are status completions for initiatior mode commands, but
|
|
* if target mode is enabled, we get a whole wad of response queue entries
|
|
* to be handled here.
|
|
*
|
|
* Basically the split into 3 main groups: Lun Enable/Modification responses,
|
|
* SCSI Command processing, and Immediate Notification events.
|
|
*
|
|
* You start by writing a request queue entry to enable target mode (and
|
|
* establish some resource limitations which you can modify later).
|
|
* The f/w responds with a LUN ENABLE or LUN MODIFY response with
|
|
* the status of this action. If the enable was successful, you can expect...
|
|
*
|
|
* Response queue entries with SCSI commands encapsulate show up in an ATIO
|
|
* (Accept Target IO) type- sometimes with enough info to stop the command at
|
|
* this level. Ultimately the driver has to feed back to the f/w's request
|
|
* queue a sequence of CTIOs (continue target I/O) that describe data to
|
|
* be moved and/or status to be sent) and finally finishing with sending
|
|
* to the f/w's response queue an ATIO which then completes the handshake
|
|
* with the f/w for that command. There's a lot of variations on this theme,
|
|
* including flags you can set in the CTIO for the Qlogic 2X00 fibre channel
|
|
* cards that 'auto-replenish' the f/w's ATIO count, but this is the basic
|
|
* gist of it.
|
|
*
|
|
* The third group that can show up in the response queue are Immediate
|
|
* Notification events. These include things like notifications of SCSI bus
|
|
* resets, or Bus Device Reset messages or other messages received. This
|
|
* a classic oddbins area. It can get a little wierd because you then turn
|
|
* around and acknowledge the Immediate Notify by writing an entry onto the
|
|
* request queue and then the f/w turns around and gives you an acknowledgement
|
|
* to *your* acknowledgement on the response queue (the idea being to let
|
|
* the f/w tell you when the event is *really* over I guess).
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
* A new response queue entry has arrived. The interrupt service code
|
|
* has already swizzled it into the platform dependent from canonical form.
|
|
*
|
|
* Because of the way this driver is designed, unfortunately most of the
|
|
* actual synchronization work has to be done in the platform specific
|
|
* code- we have no synchroniation primitives in the common code.
|
|
*/
|
|
|
|
int
|
|
isp_target_notify(isp, vptr, optrp)
|
|
struct ispsoftc *isp;
|
|
void *vptr;
|
|
u_int16_t *optrp;
|
|
{
|
|
u_int16_t status, seqid;
|
|
union {
|
|
at_entry_t *atiop;
|
|
at2_entry_t *at2iop;
|
|
ct_entry_t *ctiop;
|
|
ct2_entry_t *ct2iop;
|
|
lun_entry_t *lunenp;
|
|
in_entry_t *inotp;
|
|
in_fcentry_t *inot_fcp;
|
|
na_entry_t *nackp;
|
|
na_fcentry_t *nack_fcp;
|
|
isphdr_t *hp;
|
|
void * *vp;
|
|
#define atiop unp.atiop
|
|
#define at2iop unp.at2iop
|
|
#define ctiop unp.ctiop
|
|
#define ct2iop unp.ct2iop
|
|
#define lunenp unp.lunenp
|
|
#define inotp unp.inotp
|
|
#define inot_fcp unp.inot_fcp
|
|
#define nackp unp.nackp
|
|
#define nack_fcp unp.nack_fcp
|
|
#define hdrp unp.hp
|
|
} unp;
|
|
int bus, rval = 0;
|
|
|
|
unp.vp = vptr;
|
|
|
|
ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr);
|
|
|
|
switch(hdrp->rqs_entry_type) {
|
|
case RQSTYPE_ATIO:
|
|
isp_handle_atio(isp, atiop);
|
|
break;
|
|
case RQSTYPE_CTIO:
|
|
isp_handle_ctio(isp, ctiop);
|
|
break;
|
|
case RQSTYPE_ATIO2:
|
|
isp_handle_atio2(isp, at2iop);
|
|
break;
|
|
case RQSTYPE_CTIO2:
|
|
isp_handle_ctio2(isp, ct2iop);
|
|
break;
|
|
case RQSTYPE_ENABLE_LUN:
|
|
case RQSTYPE_MODIFY_LUN:
|
|
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr);
|
|
break;
|
|
|
|
case RQSTYPE_NOTIFY:
|
|
/*
|
|
* Either the ISP received a SCSI message it can't
|
|
* handle, or it's returning an Immed. Notify entry
|
|
* we sent. We can send Immed. Notify entries to
|
|
* increment the firmware's resource count for them
|
|
* (we set this initially in the Enable Lun entry).
|
|
*/
|
|
bus = 0;
|
|
if (IS_FC(isp)) {
|
|
status = inot_fcp->in_status;
|
|
seqid = inot_fcp->in_seqid;
|
|
} else {
|
|
status = inotp->in_status & 0xff;
|
|
seqid = inotp->in_seqid;
|
|
if (IS_DUALBUS(isp)) {
|
|
bus = (inotp->in_iid & 0x80) >> 7;
|
|
inotp->in_iid &= ~0x80;
|
|
}
|
|
}
|
|
ITDEBUG(2, ("isp_target_notify: Immediate Notify, "
|
|
"status=0x%x seqid=0x%x\n", status, seqid));
|
|
switch (status) {
|
|
case IN_RESET:
|
|
(void) isp_async(isp, ISPASYNC_BUS_RESET, &bus);
|
|
break;
|
|
case IN_MSG_RECEIVED:
|
|
case IN_IDE_RECEIVED:
|
|
if (IS_FC(isp)) {
|
|
isp_got_msg_fc(isp, bus, vptr);
|
|
} else {
|
|
isp_got_msg(isp, bus, vptr);
|
|
}
|
|
break;
|
|
case IN_RSRC_UNAVAIL:
|
|
PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name);
|
|
break;
|
|
case IN_ABORT_TASK:
|
|
PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n",
|
|
isp->isp_name, inot_fcp->in_iid, seqid);
|
|
break;
|
|
case IN_PORT_LOGOUT:
|
|
PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n",
|
|
isp->isp_name, inot_fcp->in_iid, seqid);
|
|
break;
|
|
case IN_PORT_CHANGED:
|
|
PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n",
|
|
isp->isp_name, inot_fcp->in_iid, seqid);
|
|
break;
|
|
case IN_GLOBAL_LOGO:
|
|
PRINTF("%s: All ports logged out\n", isp->isp_name);
|
|
break;
|
|
default:
|
|
PRINTF("%s: bad status (0x%x) in isp_target_notify\n",
|
|
isp->isp_name, status);
|
|
break;
|
|
}
|
|
isp_notify_ack(isp, vptr);
|
|
break;
|
|
|
|
case RQSTYPE_NOTIFY_ACK:
|
|
/*
|
|
* The ISP is acknowledging our acknowledgement of an
|
|
* Immediate Notify entry for some asynchronous event.
|
|
*/
|
|
if (IS_FC(isp)) {
|
|
ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n",
|
|
isp->isp_name, nack_fcp->na_status,
|
|
nack_fcp->na_seqid));
|
|
} else {
|
|
ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x "
|
|
"seqid 0x%x\n", isp->isp_name, nackp->na_event,
|
|
nackp->na_status, nackp->na_seqid));
|
|
}
|
|
break;
|
|
default:
|
|
PRINTF("%s: Unknown entry type 0x%x in isp_target_notify",
|
|
isp->isp_name, hdrp->rqs_entry_type);
|
|
rval = -1;
|
|
break;
|
|
}
|
|
#undef atiop
|
|
#undef at2iop
|
|
#undef ctiop
|
|
#undef ct2iop
|
|
#undef lunenp
|
|
#undef inotp
|
|
#undef inot_fcp
|
|
#undef nackp
|
|
#undef nack_fcp
|
|
#undef hdrp
|
|
return (rval);
|
|
}
|
|
|
|
|
|
/*
|
|
* Toggle (on/off) target mode for bus/target/lun
|
|
*
|
|
* The caller has checked for overlap and legality.
|
|
*
|
|
* Note that not all of bus, target or lun can be paid attention to.
|
|
* Note also that this action will not be complete until the f/w writes
|
|
* response entry. The caller is responsible for synchronizing this.
|
|
*/
|
|
int
|
|
isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque)
|
|
struct ispsoftc *isp;
|
|
int cmd;
|
|
int bus;
|
|
int tgt;
|
|
int lun;
|
|
u_int32_t opaque;
|
|
{
|
|
lun_entry_t el;
|
|
u_int16_t iptr, optr;
|
|
void *outp;
|
|
|
|
|
|
MEMZERO(&el, sizeof (el));
|
|
if (IS_DUALBUS(isp)) {
|
|
el.le_rsvd = (bus & 0x1) << 7;
|
|
}
|
|
el.le_cmd_count = DFLT_CMD_CNT;
|
|
el.le_in_count = DFLT_INOTIFY;
|
|
if (cmd == RQSTYPE_ENABLE_LUN) {
|
|
if (IS_SCSI(isp)) {
|
|
el.le_flags = LUN_TQAE;
|
|
el.le_cdb6len = 12;
|
|
el.le_cdb7len = 12;
|
|
}
|
|
} else if (cmd == -RQSTYPE_ENABLE_LUN) {
|
|
cmd = RQSTYPE_ENABLE_LUN;
|
|
el.le_cmd_count = 0;
|
|
el.le_in_count = 0;
|
|
} else if (cmd == -RQSTYPE_MODIFY_LUN) {
|
|
cmd = RQSTYPE_MODIFY_LUN;
|
|
el.le_ops = LUN_CCDECR | LUN_INDECR;
|
|
} else {
|
|
el.le_ops = LUN_CCINCR | LUN_ININCR;
|
|
}
|
|
el.le_header.rqs_entry_type = cmd;
|
|
el.le_header.rqs_entry_count = 1;
|
|
el.le_reserved = opaque;
|
|
if (IS_SCSI(isp)) {
|
|
el.le_tgt = tgt;
|
|
el.le_lun = lun;
|
|
#ifndef ISP2100_SCCLUN
|
|
} else {
|
|
el.le_lun = lun;
|
|
#endif
|
|
}
|
|
|
|
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
|
|
PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n",
|
|
isp->isp_name);
|
|
return (-1);
|
|
}
|
|
ISP_SWIZ_ENABLE_LUN(isp, outp, &el);
|
|
ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el);
|
|
ISP_ADD_REQUEST(isp, iptr);
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
isp_target_put_entry(isp, ap)
|
|
struct ispsoftc *isp;
|
|
void *ap;
|
|
{
|
|
void *outp;
|
|
u_int16_t iptr, optr;
|
|
u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type;
|
|
|
|
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
|
|
PRINTF("%s: Request Queue Overflow in isp_target_put_entry "
|
|
"for type 0x%x\n", isp->isp_name, etype);
|
|
return (-1);
|
|
}
|
|
switch (etype) {
|
|
case RQSTYPE_ATIO:
|
|
ISP_SWIZ_ATIO(isp, outp, ap);
|
|
break;
|
|
case RQSTYPE_ATIO2:
|
|
ISP_SWIZ_ATIO2(isp, outp, ap);
|
|
break;
|
|
case RQSTYPE_CTIO:
|
|
ISP_SWIZ_CTIO(isp, outp, ap);
|
|
break;
|
|
case RQSTYPE_CTIO2:
|
|
ISP_SWIZ_CTIO2(isp, outp, ap);
|
|
break;
|
|
default:
|
|
PRINTF("%s: Unknown type 0x%x in isp_put_entry\n",
|
|
isp->isp_name, etype);
|
|
return (-1);
|
|
}
|
|
|
|
ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);;
|
|
|
|
ISP_ADD_REQUEST(isp, iptr);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
isp_target_put_atio(isp, iid, tgt, lun, ttype, tval)
|
|
struct ispsoftc *isp;
|
|
int iid;
|
|
int tgt;
|
|
int lun;
|
|
int ttype;
|
|
int tval;
|
|
{
|
|
union {
|
|
at_entry_t _atio;
|
|
at2_entry_t _atio2;
|
|
} atun;
|
|
|
|
MEMZERO(&atun, sizeof atun);
|
|
if (IS_FC(isp)) {
|
|
atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2;
|
|
atun._atio2.at_header.rqs_entry_count = 1;
|
|
#ifdef ISP2100_SCCLUN
|
|
atun._atio2.at_scclun = (uint16_t) lun;
|
|
#else
|
|
atun._atio2.at_lun = (uint8_t) lun;
|
|
#endif
|
|
atun._atio2.at_status = CT_OK;
|
|
} else {
|
|
atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO;
|
|
atun._atio.at_header.rqs_entry_count = 1;
|
|
atun._atio.at_iid = iid;
|
|
atun._atio.at_tgt = tgt;
|
|
atun._atio.at_lun = lun;
|
|
atun._atio.at_tag_type = ttype;
|
|
atun._atio.at_tag_val = tval;
|
|
atun._atio.at_status = CT_OK;
|
|
}
|
|
return (isp_target_put_entry(isp, &atun));
|
|
}
|
|
|
|
/*
|
|
* Command completion- both for handling cases of no resources or
|
|
* no blackhole driver, or other cases where we have to, inline,
|
|
* finish the command sanely, or for normal command completion.
|
|
*
|
|
* The 'completion' code value has the scsi status byte in the low 8 bits.
|
|
* If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have
|
|
* the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC
|
|
* values.
|
|
*
|
|
* NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't
|
|
* NB: inline SCSI sense reporting.
|
|
*
|
|
* For both parallel && fibre channel, we use the feature that does
|
|
* an automatic resource autoreplenish so we don't have then later do
|
|
* put of an atio to replenish the f/w's resource count.
|
|
*/
|
|
|
|
int
|
|
isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl)
|
|
{
|
|
int sts;
|
|
union {
|
|
ct_entry_t _ctio;
|
|
ct2_entry_t _ctio2;
|
|
} un;
|
|
|
|
MEMZERO(&un, sizeof un);
|
|
sts = code & 0xff;
|
|
|
|
if (IS_FC(isp)) {
|
|
at2_entry_t *aep = arg;
|
|
ct2_entry_t *cto = &un._ctio2;
|
|
|
|
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
cto->ct_iid = aep->at_iid;
|
|
#ifndef ISP2100_SCCLUN
|
|
cto->ct_lun = aep->at_lun;
|
|
#endif
|
|
cto->ct_rxid = aep->at_rxid;
|
|
cto->rsp.m1.ct_scsi_status = sts & 0xff;
|
|
cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1;
|
|
if (hdl == 0) {
|
|
cto->ct_flags |= CT2_CCINCR;
|
|
}
|
|
if (aep->at_datalen) {
|
|
cto->ct_resid = aep->at_datalen;
|
|
cto->ct_flags |= CT2_DATA_UNDER;
|
|
}
|
|
if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) {
|
|
cto->rsp.m1.ct_resp[0] = 0xf0;
|
|
cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf;
|
|
cto->rsp.m1.ct_resp[7] = 8;
|
|
cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff;
|
|
cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff;
|
|
cto->rsp.m1.ct_senselen = 16;
|
|
cto->ct_flags |= CT2_SNSLEN_VALID;
|
|
}
|
|
cto->ct_reserved = hdl;
|
|
} else {
|
|
at_entry_t *aep = arg;
|
|
ct_entry_t *cto = &un._ctio;
|
|
|
|
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
cto->ct_iid = aep->at_iid;
|
|
cto->ct_tgt = aep->at_tgt;
|
|
cto->ct_lun = aep->at_lun;
|
|
cto->ct_tag_type = aep->at_tag_type;
|
|
cto->ct_tag_val = aep->at_tag_val;
|
|
cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA;
|
|
if (hdl == 0) {
|
|
cto->ct_flags |= CT_CCINCR;
|
|
}
|
|
cto->ct_scsi_status = sts;
|
|
cto->ct_reserved = hdl;
|
|
}
|
|
return (isp_target_put_entry(isp, &un));
|
|
}
|
|
|
|
void
|
|
isp_target_async(isp, bus, event)
|
|
struct ispsoftc *isp;
|
|
int bus;
|
|
int event;
|
|
{
|
|
tmd_event_t evt;
|
|
tmd_msg_t msg;
|
|
|
|
switch (event) {
|
|
/*
|
|
* These three we handle here to propagate an effective bus reset
|
|
* upstream, but these do not require any immediate notify actions
|
|
* so we return when done.
|
|
*/
|
|
case ASYNC_LIP_OCCURRED:
|
|
case ASYNC_LOOP_UP:
|
|
case ASYNC_LOOP_DOWN:
|
|
evt.ev_bus = bus;
|
|
evt.ev_event = event;
|
|
(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
|
|
return;
|
|
|
|
case ASYNC_LOOP_RESET:
|
|
case ASYNC_BUS_RESET:
|
|
case ASYNC_TIMEOUT_RESET:
|
|
if (IS_FC(isp)) {
|
|
return; /* we'll be getting an inotify instead */
|
|
}
|
|
evt.ev_bus = bus;
|
|
evt.ev_event = event;
|
|
(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
|
|
break;
|
|
case ASYNC_DEVICE_RESET:
|
|
/*
|
|
* Bus Device Reset resets a specific target, so
|
|
* we pass this as a synthesized message.
|
|
*/
|
|
MEMZERO(&msg, sizeof msg);
|
|
if (IS_FC(isp)) {
|
|
msg.nt_iid =
|
|
((fcparam *)isp->isp_param)->isp_loopid;
|
|
} else {
|
|
msg.nt_iid =
|
|
((sdparam *)isp->isp_param)->isp_initiator_id;
|
|
}
|
|
msg.nt_bus = bus;
|
|
msg.nt_msg[0] = MSG_BUS_DEV_RESET;
|
|
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
|
|
break;
|
|
default:
|
|
PRINTF("%s: isp_target_async: unknown event 0x%x\n",
|
|
isp->isp_name, event);
|
|
break;
|
|
}
|
|
isp_notify_ack(isp, NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Process a received message.
|
|
* The ISP firmware can handle most messages, there are only
|
|
* a few that we need to deal with:
|
|
* - abort: clean up the current command
|
|
* - abort tag and clear queue
|
|
*/
|
|
|
|
static void
|
|
isp_got_msg(isp, bus, inp)
|
|
struct ispsoftc *isp;
|
|
int bus;
|
|
in_entry_t *inp;
|
|
{
|
|
u_int8_t status = inp->in_status & ~QLTM_SVALID;
|
|
|
|
if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) {
|
|
tmd_msg_t msg;
|
|
|
|
MEMZERO(&msg, sizeof (msg));
|
|
msg.nt_bus = bus;
|
|
msg.nt_iid = inp->in_iid;
|
|
msg.nt_tgt = inp->in_tgt;
|
|
msg.nt_lun = inp->in_lun;
|
|
msg.nt_tagtype = inp->in_tag_type;
|
|
msg.nt_tagval = inp->in_tag_val;
|
|
MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN);
|
|
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
|
|
} else {
|
|
PRINTF("%s: unknown immediate notify status 0x%x\n",
|
|
isp->isp_name, inp->in_status);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Synthesize a message from the task management flags in a FCP_CMND_IU.
|
|
*/
|
|
static void
|
|
isp_got_msg_fc(isp, bus, inp)
|
|
struct ispsoftc *isp;
|
|
int bus;
|
|
in_fcentry_t *inp;
|
|
{
|
|
static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n";
|
|
static char *f2 =
|
|
"%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n";
|
|
|
|
if (inp->in_status != IN_MSG_RECEIVED) {
|
|
PRINTF(f2, isp->isp_name, "immediate notify status",
|
|
inp->in_status, inp->in_lun, inp->in_iid,
|
|
inp->in_task_flags, inp->in_seqid);
|
|
} else {
|
|
tmd_msg_t msg;
|
|
|
|
MEMZERO(&msg, sizeof (msg));
|
|
msg.nt_bus = bus;
|
|
msg.nt_iid = inp->in_iid;
|
|
#ifdef ISP2100_SCCLUN
|
|
msg.nt_lun = inp->in_scclun;
|
|
#else
|
|
msg.nt_lun = inp->in_lun;
|
|
#endif
|
|
msg.nt_tagval = inp->in_seqid;
|
|
|
|
if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) {
|
|
PRINTF(f1, isp->isp_name, "ABORT TASK",
|
|
inp->in_iid, inp->in_lun, inp->in_seqid);
|
|
msg.nt_msg[0] = MSG_ABORT_TAG;
|
|
} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) {
|
|
PRINTF(f1, isp->isp_name, "CLEAR TASK SET",
|
|
inp->in_iid, inp->in_lun, inp->in_seqid);
|
|
msg.nt_msg[0] = MSG_CLEAR_QUEUE;
|
|
} else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) {
|
|
PRINTF(f1, isp->isp_name, "TARGET RESET",
|
|
inp->in_iid, inp->in_lun, inp->in_seqid);
|
|
msg.nt_msg[0] = MSG_BUS_DEV_RESET;
|
|
} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) {
|
|
PRINTF(f1, isp->isp_name, "CLEAR ACA",
|
|
inp->in_iid, inp->in_lun, inp->in_seqid);
|
|
/* ???? */
|
|
msg.nt_msg[0] = MSG_REL_RECOVERY;
|
|
} else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) {
|
|
PRINTF(f1, isp->isp_name, "TERMINATE TASK",
|
|
inp->in_iid, inp->in_lun, inp->in_seqid);
|
|
msg.nt_msg[0] = MSG_TERM_IO_PROC;
|
|
} else {
|
|
PRINTF(f2, isp->isp_name, "task flag",
|
|
inp->in_status, inp->in_lun, inp->in_iid,
|
|
inp->in_task_flags, inp->in_seqid);
|
|
}
|
|
if (msg.nt_msg[0]) {
|
|
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_notify_ack(isp, arg)
|
|
struct ispsoftc *isp;
|
|
void *arg;
|
|
{
|
|
char storage[QENTRY_LEN];
|
|
u_int16_t iptr, optr;
|
|
void *outp;
|
|
|
|
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
|
|
PRINTF("%s: Request Queue Overflow For isp_notify_ack\n",
|
|
isp->isp_name);
|
|
return;
|
|
}
|
|
|
|
MEMZERO(storage, QENTRY_LEN);
|
|
|
|
if (IS_FC(isp)) {
|
|
na_fcentry_t *na = (na_fcentry_t *) storage;
|
|
if (arg) {
|
|
in_fcentry_t *inp = arg;
|
|
MEMCPY(storage, arg, sizeof (isphdr_t));
|
|
na->na_iid = inp->in_iid;
|
|
#ifdef ISP2100_SCCLUN
|
|
na->na_lun = inp->in_scclun;
|
|
#else
|
|
na->na_lun = inp->in_lun;
|
|
#endif
|
|
na->na_task_flags = inp->in_task_flags;
|
|
na->na_seqid = inp->in_seqid;
|
|
na->na_flags = NAFC_RCOUNT;
|
|
if (inp->in_status == IN_RESET) {
|
|
na->na_flags |= NAFC_RST_CLRD;
|
|
}
|
|
} else {
|
|
na->na_flags = NAFC_RST_CLRD;
|
|
}
|
|
na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
|
|
na->na_header.rqs_entry_count = 1;
|
|
ISP_SWIZ_NOT_ACK_FC(isp, outp, na);
|
|
} else {
|
|
na_entry_t *na = (na_entry_t *) storage;
|
|
if (arg) {
|
|
in_entry_t *inp = arg;
|
|
MEMCPY(storage, arg, sizeof (isphdr_t));
|
|
na->na_iid = inp->in_iid;
|
|
na->na_lun = inp->in_lun;
|
|
na->na_tgt = inp->in_tgt;
|
|
na->na_seqid = inp->in_seqid;
|
|
if (inp->in_status == IN_RESET) {
|
|
na->na_event = NA_RST_CLRD;
|
|
}
|
|
} else {
|
|
na->na_event = NA_RST_CLRD;
|
|
}
|
|
na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
|
|
na->na_header.rqs_entry_count = 1;
|
|
ISP_SWIZ_NOT_ACK(isp, outp, na);
|
|
}
|
|
ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage);
|
|
ISP_ADD_REQUEST(isp, iptr);
|
|
}
|
|
|
|
static void
|
|
isp_handle_atio(isp, aep)
|
|
struct ispsoftc *isp;
|
|
at_entry_t *aep;
|
|
{
|
|
int lun;
|
|
lun = aep->at_lun;
|
|
/*
|
|
* The firmware status (except for the QLTM_SVALID bit) indicates
|
|
* why this ATIO was sent to us.
|
|
*
|
|
* If QLTM_SVALID is set, the firware has recommended Sense Data.
|
|
*
|
|
* If the DISCONNECTS DISABLED bit is set in the flags field,
|
|
* we're still connected on the SCSI bus - i.e. the initiator
|
|
* did not set DiscPriv in the identify message. We don't care
|
|
* about this so it's ignored.
|
|
*/
|
|
|
|
switch(aep->at_status & ~QLTM_SVALID) {
|
|
case AT_PATH_INVALID:
|
|
/*
|
|
* ATIO rejected by the firmware due to disabled lun.
|
|
*/
|
|
PRINTF("%s: rejected ATIO for disabled lun %d\n",
|
|
isp->isp_name, lun);
|
|
break;
|
|
case AT_NOCAP:
|
|
/*
|
|
* Requested Capability not available
|
|
* We sent an ATIO that overflowed the firmware's
|
|
* command resource count.
|
|
*/
|
|
PRINTF("%s: rejected ATIO for lun %d because of command count"
|
|
" overflow\n", isp->isp_name, lun);
|
|
break;
|
|
|
|
case AT_BDR_MSG:
|
|
/*
|
|
* If we send an ATIO to the firmware to increment
|
|
* its command resource count, and the firmware is
|
|
* recovering from a Bus Device Reset, it returns
|
|
* the ATIO with this status. We set the command
|
|
* resource count in the Enable Lun entry and no
|
|
* not increment it. Therefore we should never get
|
|
* this status here.
|
|
*/
|
|
PRINTF("%s: ATIO returned for lun %d because it was in the "
|
|
" middle of coping with a Bus Device Reset\n",
|
|
isp->isp_name, lun);
|
|
break;
|
|
|
|
case AT_CDB: /* Got a CDB */
|
|
case AT_PHASE_ERROR: /* Bus Phase Sequence Error */
|
|
/*
|
|
* Punt to platform specific layer.
|
|
*/
|
|
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
|
|
break;
|
|
|
|
case AT_RESET:
|
|
/*
|
|
* A bus reset came along an blew away this command. Why
|
|
* they do this in addition the async event code stuff,
|
|
* I dunno.
|
|
*
|
|
* Ignore it because the async event will clear things
|
|
* up for us.
|
|
*/
|
|
PRINTF("%s: ATIO returned for lun %d from initiator %d because"
|
|
" a Bus Reset occurred\n", isp->isp_name, lun,
|
|
aep->at_iid);
|
|
break;
|
|
|
|
|
|
default:
|
|
PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun"
|
|
" %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
|
|
(void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt,
|
|
lun, aep->at_tag_type, aep->at_tag_val);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_handle_atio2(isp, aep)
|
|
struct ispsoftc *isp;
|
|
at2_entry_t *aep;
|
|
{
|
|
int lun;
|
|
#ifdef ISP2100_SCCLUN
|
|
lun = aep->at_scclun;
|
|
#else
|
|
lun = aep->at_lun;
|
|
#endif
|
|
/*
|
|
* The firmware status (except for the QLTM_SVALID bit) indicates
|
|
* why this ATIO was sent to us.
|
|
*
|
|
* If QLTM_SVALID is set, the firware has recommended Sense Data.
|
|
*
|
|
* If the DISCONNECTS DISABLED bit is set in the flags field,
|
|
* we're still connected on the SCSI bus - i.e. the initiator
|
|
* did not set DiscPriv in the identify message. We don't care
|
|
* about this so it's ignored.
|
|
*/
|
|
|
|
switch(aep->at_status & ~QLTM_SVALID) {
|
|
case AT_PATH_INVALID:
|
|
/*
|
|
* ATIO rejected by the firmware due to disabled lun.
|
|
*/
|
|
PRINTF("%s: rejected ATIO2 for disabled lun %d\n",
|
|
isp->isp_name, lun);
|
|
break;
|
|
case AT_NOCAP:
|
|
/*
|
|
* Requested Capability not available
|
|
* We sent an ATIO that overflowed the firmware's
|
|
* command resource count.
|
|
*/
|
|
PRINTF("%s: rejected ATIO2 for lun %d because of command count"
|
|
" overflow\n", isp->isp_name, lun);
|
|
break;
|
|
|
|
case AT_BDR_MSG:
|
|
/*
|
|
* If we send an ATIO to the firmware to increment
|
|
* its command resource count, and the firmware is
|
|
* recovering from a Bus Device Reset, it returns
|
|
* the ATIO with this status. We set the command
|
|
* resource count in the Enable Lun entry and no
|
|
* not increment it. Therefore we should never get
|
|
* this status here.
|
|
*/
|
|
PRINTF("%s: ATIO2 returned for lun %d because it was in the "
|
|
" middle of coping with a Bus Device Reset\n",
|
|
isp->isp_name, lun);
|
|
break;
|
|
|
|
case AT_CDB: /* Got a CDB */
|
|
/*
|
|
* Punt to platform specific layer.
|
|
*/
|
|
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
|
|
break;
|
|
|
|
case AT_RESET:
|
|
/*
|
|
* A bus reset came along an blew away this command. Why
|
|
* they do this in addition the async event code stuff,
|
|
* I dunno.
|
|
*
|
|
* Ignore it because the async event will clear things
|
|
* up for us.
|
|
*/
|
|
PRINTF("%s: ATIO2 returned for lun %d from initiator %d because"
|
|
" a Bus Reset occurred\n", isp->isp_name, lun,
|
|
aep->at_iid);
|
|
break;
|
|
|
|
|
|
default:
|
|
PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun"
|
|
" %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
|
|
(void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_handle_ctio(isp, ct)
|
|
struct ispsoftc *isp;
|
|
ct_entry_t *ct;
|
|
{
|
|
ISP_SCSI_XFER_T *xs;
|
|
int pl = 0;
|
|
char *fmsg = NULL;
|
|
|
|
if (ct->ct_reserved) {
|
|
xs = isp_find_xs(isp, ct->ct_reserved);
|
|
if (xs == NULL)
|
|
pl = 0;
|
|
} else {
|
|
pl = 2;
|
|
xs = NULL;
|
|
}
|
|
|
|
switch(ct->ct_status & ~QLTM_SVALID) {
|
|
case CT_OK:
|
|
/*
|
|
* There are generally 3 possibilities as to why we'd get
|
|
* this condition:
|
|
* We disconnected after receiving a CDB.
|
|
* We sent or received data.
|
|
* We sent status & command complete.
|
|
*/
|
|
|
|
if (ct->ct_flags & CT_SENDSTATUS) {
|
|
break;
|
|
} else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) {
|
|
/*
|
|
* Nothing to do in this case.
|
|
*/
|
|
IDPRINTF(pl, ("%s:CTIO- iid %d disconnected OK\n",
|
|
isp->isp_name, ct->ct_iid));
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case CT_BDR_MSG:
|
|
/*
|
|
* Bus Device Reset message received or the SCSI Bus has
|
|
* been Reset; the firmware has gone to Bus Free.
|
|
*
|
|
* The firmware generates an async mailbox interupt to
|
|
* notify us of this and returns outstanding CTIOs with this
|
|
* status. These CTIOs are handled in that same way as
|
|
* CT_ABORTED ones, so just fall through here.
|
|
*/
|
|
fmsg = "Bus Device Reset";
|
|
/*FALLTHROUGH*/
|
|
case CT_RESET:
|
|
if (fmsg == NULL)
|
|
fmsg = "Bus Reset";
|
|
/*FALLTHROUGH*/
|
|
case CT_ABORTED:
|
|
/*
|
|
* When an Abort message is received the firmware goes to
|
|
* Bus Free and returns all outstanding CTIOs with the status
|
|
* set, then sends us an Immediate Notify entry.
|
|
*/
|
|
if (fmsg == NULL)
|
|
fmsg = "ABORT TASK sent by Initiator";
|
|
|
|
PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg);
|
|
break;
|
|
|
|
case CT_INVAL:
|
|
/*
|
|
* CTIO rejected by the firmware due to disabled lun.
|
|
* "Cannot Happen".
|
|
*/
|
|
PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n",
|
|
isp->isp_name, ct->ct_lun);
|
|
break;
|
|
|
|
case CT_NOPATH:
|
|
/*
|
|
* CTIO rejected by the firmware due "no path for the
|
|
* nondisconnecting nexus specified". This means that
|
|
* we tried to access the bus while a non-disconnecting
|
|
* command is in process.
|
|
*/
|
|
PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n",
|
|
isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun);
|
|
break;
|
|
|
|
case CT_RSELTMO:
|
|
fmsg = "Reselection";
|
|
/*FALLTHROUGH*/
|
|
case CT_TIMEOUT:
|
|
if (fmsg == NULL)
|
|
fmsg = "Command";
|
|
PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
|
|
break;
|
|
|
|
case CT_ERR:
|
|
fmsg = "Completed with Error";
|
|
/*FALLTHROUGH*/
|
|
case CT_PHASE_ERROR:
|
|
if (fmsg == NULL)
|
|
fmsg = "Phase Sequence Error";
|
|
/*FALLTHROUGH*/
|
|
case CT_TERMINATED:
|
|
if (fmsg == NULL)
|
|
fmsg = "terminated by TERMINATE TRANSFER";
|
|
/*FALLTHROUGH*/
|
|
case CT_NOACK:
|
|
if (fmsg == NULL)
|
|
fmsg = "unacknowledged Immediate Notify pending";
|
|
|
|
PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
|
|
#if 0
|
|
if (status & SENSEVALID) {
|
|
bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
|
|
(caddr_t) &cdp->cd_sensedata,
|
|
sizeof(scsi_sense_t));
|
|
cdp->cd_flags |= CDF_SENSEVALID;
|
|
}
|
|
#endif
|
|
break;
|
|
default:
|
|
PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
|
|
ct->ct_status & ~QLTM_SVALID);
|
|
break;
|
|
}
|
|
|
|
if (xs == NULL) {
|
|
/*
|
|
* There may be more than one CTIO for a data transfer,
|
|
* or this may be a status CTIO we're not monitoring.
|
|
*
|
|
* The assumption is that they'll all be returned in the
|
|
* order we got them.
|
|
*/
|
|
if (ct->ct_reserved == 0) {
|
|
if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
|
|
IDPRINTF(pl,
|
|
("%s: intermediate CTIO completed ok\n",
|
|
isp->isp_name));
|
|
} else {
|
|
IDPRINTF(pl,
|
|
("%s: unmonitored CTIO completed ok\n",
|
|
isp->isp_name));
|
|
}
|
|
} else {
|
|
IDPRINTF(pl,
|
|
("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
|
|
isp->isp_name, ct->ct_reserved,
|
|
ct->ct_status & ~QLTM_SVALID));
|
|
}
|
|
} else {
|
|
if (ct->ct_flags & CT_SENDSTATUS) {
|
|
/*
|
|
* Sent status and command complete.
|
|
*
|
|
* We're now really done with this command, so we
|
|
* punt to the platform dependent layers because
|
|
* only there can we do the appropriate command
|
|
* complete thread synchronization.
|
|
*/
|
|
IDPRINTF(pl,
|
|
("%s:status CTIO complete\n", isp->isp_name));
|
|
} else {
|
|
/*
|
|
* Final CTIO completed. Release DMA resources and
|
|
* notify platform dependent layers.
|
|
*/
|
|
IDPRINTF(pl,
|
|
("%s: data CTIO complete\n", isp->isp_name));
|
|
ISP_DMAFREE(isp, xs, ct->ct_reserved);
|
|
}
|
|
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
|
|
/*
|
|
* The platform layer will destroy the handle if appropriate.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_handle_ctio2(isp, ct)
|
|
struct ispsoftc *isp;
|
|
ct2_entry_t *ct;
|
|
{
|
|
ISP_SCSI_XFER_T *xs;
|
|
int pl = 3;
|
|
char *fmsg = NULL;
|
|
|
|
if (ct->ct_reserved) {
|
|
xs = isp_find_xs(isp, ct->ct_reserved);
|
|
if (xs == NULL)
|
|
pl = 0;
|
|
} else {
|
|
pl = 2;
|
|
xs = NULL;
|
|
}
|
|
|
|
switch(ct->ct_status & ~QLTM_SVALID) {
|
|
case CT_OK:
|
|
/*
|
|
* There are generally 2 possibilities as to why we'd get
|
|
* this condition:
|
|
* We sent or received data.
|
|
* We sent status & command complete.
|
|
*/
|
|
|
|
break;
|
|
|
|
case CT_BDR_MSG:
|
|
/*
|
|
* Bus Device Reset message received or the SCSI Bus has
|
|
* been Reset; the firmware has gone to Bus Free.
|
|
*
|
|
* The firmware generates an async mailbox interupt to
|
|
* notify us of this and returns outstanding CTIOs with this
|
|
* status. These CTIOs are handled in that same way as
|
|
* CT_ABORTED ones, so just fall through here.
|
|
*/
|
|
fmsg = "Bus Device Reset";
|
|
/*FALLTHROUGH*/
|
|
case CT_RESET:
|
|
if (fmsg == NULL)
|
|
fmsg = "Bus Reset";
|
|
/*FALLTHROUGH*/
|
|
case CT_ABORTED:
|
|
/*
|
|
* When an Abort message is received the firmware goes to
|
|
* Bus Free and returns all outstanding CTIOs with the status
|
|
* set, then sends us an Immediate Notify entry.
|
|
*/
|
|
if (fmsg == NULL)
|
|
fmsg = "ABORT TASK sent by Initiator";
|
|
|
|
PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg);
|
|
break;
|
|
|
|
case CT_INVAL:
|
|
/*
|
|
* CTIO rejected by the firmware - invalid data direction.
|
|
*/
|
|
PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name);
|
|
break;
|
|
|
|
case CT_NOPATH:
|
|
/*
|
|
* CTIO rejected by the firmware due "no path for the
|
|
* nondisconnecting nexus specified". This means that
|
|
* we tried to access the bus while a non-disconnecting
|
|
* command is in process.
|
|
*/
|
|
PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n",
|
|
isp->isp_name, ct->ct_iid, ct->ct_lun);
|
|
break;
|
|
|
|
case CT_RSELTMO:
|
|
fmsg = "Reselection";
|
|
/*FALLTHROUGH*/
|
|
case CT_TIMEOUT:
|
|
if (fmsg == NULL)
|
|
fmsg = "Command";
|
|
PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
|
|
break;
|
|
|
|
case CT_ERR:
|
|
fmsg = "Completed with Error";
|
|
/*FALLTHROUGH*/
|
|
case CT_PHASE_ERROR: /* Bus phase sequence error */
|
|
if (fmsg == NULL)
|
|
fmsg = "Phase Sequence Error";
|
|
/*FALLTHROUGH*/
|
|
case CT_TERMINATED:
|
|
if (fmsg == NULL)
|
|
fmsg = "terminated by TERMINATE TRANSFER";
|
|
/*FALLTHROUGH*/
|
|
case CT_LOGOUT:
|
|
if (fmsg == NULL)
|
|
fmsg = "Port Logout";
|
|
/*FALLTHROUGH*/
|
|
case CT_PORTNOTAVAIL:
|
|
if (fmsg == NULL)
|
|
fmsg = "Port not available";
|
|
case CT_NOACK:
|
|
if (fmsg == NULL)
|
|
fmsg = "unacknowledged Immediate Notify pending";
|
|
|
|
PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
|
|
#if 0
|
|
if (status & SENSEVALID) {
|
|
bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
|
|
(caddr_t) &cdp->cd_sensedata,
|
|
sizeof(scsi_sense_t));
|
|
cdp->cd_flags |= CDF_SENSEVALID;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case CT_INVRXID:
|
|
/*
|
|
* CTIO rejected by the firmware because an invalid RX_ID.
|
|
* Just print a message.
|
|
*/
|
|
PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n",
|
|
isp->isp_name, ct->ct_rxid);
|
|
break;
|
|
|
|
default:
|
|
IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
|
|
ct->ct_status & ~QLTM_SVALID));
|
|
break;
|
|
}
|
|
|
|
if (xs == NULL) {
|
|
/*
|
|
* There may be more than one CTIO for a data transfer,
|
|
* or this may be a status CTIO we're not monitoring.
|
|
*
|
|
* The assumption is that they'll all be returned in the
|
|
* order we got them.
|
|
*/
|
|
if (ct->ct_reserved == 0) {
|
|
if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
|
|
IDPRINTF(pl,
|
|
("%s: intermediate CTIO completed ok\n",
|
|
isp->isp_name));
|
|
} else {
|
|
IDPRINTF(pl,
|
|
("%s: unmonitored CTIO completed ok\n",
|
|
isp->isp_name));
|
|
}
|
|
} else {
|
|
IDPRINTF(pl,
|
|
("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
|
|
isp->isp_name, ct->ct_reserved,
|
|
ct->ct_status & ~QLTM_SVALID));
|
|
}
|
|
} else {
|
|
if (ct->ct_flags & CT_SENDSTATUS) {
|
|
/*
|
|
* Sent status and command complete.
|
|
*
|
|
* We're now really done with this command, so we
|
|
* punt to the platform dependent layers because
|
|
* only there can we do the appropriate command
|
|
* complete thread synchronization.
|
|
*/
|
|
IDPRINTF(pl,
|
|
("%s: status CTIO complete\n", isp->isp_name));
|
|
} else {
|
|
/*
|
|
* Final CTIO completed. Release DMA resources and
|
|
* notify platform dependent layers.
|
|
*/
|
|
IDPRINTF(pl,
|
|
("%s: data CTIO complete\n", isp->isp_name));
|
|
ISP_DMAFREE(isp, xs, ct->ct_reserved);
|
|
}
|
|
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
|
|
/*
|
|
* The platform layer will destroy the handle if appropriate.
|
|
*/
|
|
}
|
|
}
|
|
#endif
|