cdb805690c
This commit, long overdue, contains contributions in the last 2 years from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including: + fixes on monitor ports + the 'ptnet' virtual device driver, and ptnetmap backend, for high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit) + improved emulated netmap mode + more robust error handling + removal of stale code + various fixes to code and documentation (some mixup between RX and TX parameters, and private and public variables) We also include an additional tool, nmreplay, which is functionally equivalent to tcpreplay but operating on netmap ports.
2459 lines
60 KiB
C
2459 lines
60 KiB
C
/*
|
|
* Copyright (C) 2012-2014 Matteo Landi
|
|
* Copyright (C) 2012-2016 Luigi Rizzo
|
|
* Copyright (C) 2012-2016 Giuseppe Lettieri
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef linux
|
|
#include "bsd_glue.h"
|
|
#endif /* linux */
|
|
|
|
#ifdef __APPLE__
|
|
#include "osx_glue.h"
|
|
#endif /* __APPLE__ */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h> /* MALLOC_DEFINE */
|
|
#include <sys/proc.h>
|
|
#include <vm/vm.h> /* vtophys */
|
|
#include <vm/pmap.h> /* vtophys */
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/vnet.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
|
|
/* M_NETMAP only used in here */
|
|
MALLOC_DECLARE(M_NETMAP);
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef _WIN32
|
|
#include <win_glue.h>
|
|
#endif
|
|
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <net/netmap_virt.h>
|
|
#include "netmap_mem2.h"
|
|
|
|
#ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
|
|
#define NETMAP_BUF_MAX_NUM 8*4096 /* if too big takes too much time to allocate */
|
|
#else
|
|
#define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */
|
|
#endif
|
|
|
|
#define NETMAP_POOL_MAX_NAMSZ 32
|
|
|
|
|
|
enum {
|
|
NETMAP_IF_POOL = 0,
|
|
NETMAP_RING_POOL,
|
|
NETMAP_BUF_POOL,
|
|
NETMAP_POOLS_NR
|
|
};
|
|
|
|
|
|
struct netmap_obj_params {
|
|
u_int size;
|
|
u_int num;
|
|
};
|
|
|
|
struct netmap_obj_pool {
|
|
char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */
|
|
|
|
/* ---------------------------------------------------*/
|
|
/* these are only meaningful if the pool is finalized */
|
|
/* (see 'finalized' field in netmap_mem_d) */
|
|
u_int objtotal; /* actual total number of objects. */
|
|
u_int memtotal; /* actual total memory space */
|
|
u_int numclusters; /* actual number of clusters */
|
|
|
|
u_int objfree; /* number of free objects. */
|
|
|
|
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
|
|
uint32_t *bitmap; /* one bit per buffer, 1 means free */
|
|
uint32_t bitmap_slots; /* number of uint32 entries in bitmap */
|
|
/* ---------------------------------------------------*/
|
|
|
|
/* limits */
|
|
u_int objminsize; /* minimum object size */
|
|
u_int objmaxsize; /* maximum object size */
|
|
u_int nummin; /* minimum number of objects */
|
|
u_int nummax; /* maximum number of objects */
|
|
|
|
/* these are changed only by config */
|
|
u_int _objtotal; /* total number of objects */
|
|
u_int _objsize; /* object size */
|
|
u_int _clustsize; /* cluster size */
|
|
u_int _clustentries; /* objects per cluster */
|
|
u_int _numclusters; /* number of clusters */
|
|
|
|
/* requested values */
|
|
u_int r_objtotal;
|
|
u_int r_objsize;
|
|
};
|
|
|
|
#define NMA_LOCK_T NM_MTX_T
|
|
|
|
|
|
struct netmap_mem_ops {
|
|
int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
|
|
int (*nmd_get_info)(struct netmap_mem_d *, u_int *size,
|
|
u_int *memflags, uint16_t *id);
|
|
|
|
vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
|
|
int (*nmd_config)(struct netmap_mem_d *);
|
|
int (*nmd_finalize)(struct netmap_mem_d *);
|
|
void (*nmd_deref)(struct netmap_mem_d *);
|
|
ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
|
|
void (*nmd_delete)(struct netmap_mem_d *);
|
|
|
|
struct netmap_if * (*nmd_if_new)(struct netmap_adapter *);
|
|
void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
|
|
int (*nmd_rings_create)(struct netmap_adapter *);
|
|
void (*nmd_rings_delete)(struct netmap_adapter *);
|
|
};
|
|
|
|
typedef uint16_t nm_memid_t;
|
|
|
|
/*
|
|
* Shared info for netmap allocator
|
|
*
|
|
* Each allocator contains this structur as first netmap_if.
|
|
* In this way, we can share same details about allocator
|
|
* to the VM.
|
|
* Used in ptnetmap.
|
|
*/
|
|
struct netmap_mem_shared_info {
|
|
#ifndef _WIN32
|
|
struct netmap_if up; /* ends with a 0-sized array, which VSC does not like */
|
|
#else /* !_WIN32 */
|
|
char up[sizeof(struct netmap_if)];
|
|
#endif /* !_WIN32 */
|
|
uint64_t features;
|
|
#define NMS_FEAT_BUF_POOL 0x0001
|
|
#define NMS_FEAT_MEMSIZE 0x0002
|
|
|
|
uint32_t buf_pool_offset;
|
|
uint32_t buf_pool_objtotal;
|
|
uint32_t buf_pool_objsize;
|
|
uint32_t totalsize;
|
|
};
|
|
|
|
#define NMS_NAME "nms_info"
|
|
#define NMS_VERSION 1
|
|
static const struct netmap_if nms_if_blueprint = {
|
|
.ni_name = NMS_NAME,
|
|
.ni_version = NMS_VERSION,
|
|
.ni_tx_rings = 0,
|
|
.ni_rx_rings = 0
|
|
};
|
|
|
|
struct netmap_mem_d {
|
|
NMA_LOCK_T nm_mtx; /* protect the allocator */
|
|
u_int nm_totalsize; /* shorthand */
|
|
|
|
u_int flags;
|
|
#define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */
|
|
int lasterr; /* last error for curr config */
|
|
int active; /* active users */
|
|
int refcount;
|
|
/* the three allocators */
|
|
struct netmap_obj_pool pools[NETMAP_POOLS_NR];
|
|
|
|
nm_memid_t nm_id; /* allocator identifier */
|
|
int nm_grp; /* iommu groupd id */
|
|
|
|
/* list of all existing allocators, sorted by nm_id */
|
|
struct netmap_mem_d *prev, *next;
|
|
|
|
struct netmap_mem_ops *ops;
|
|
};
|
|
|
|
/*
|
|
* XXX need to fix the case of t0 == void
|
|
*/
|
|
#define NMD_DEFCB(t0, name) \
|
|
t0 \
|
|
netmap_mem_##name(struct netmap_mem_d *nmd) \
|
|
{ \
|
|
return nmd->ops->nmd_##name(nmd); \
|
|
}
|
|
|
|
#define NMD_DEFCB1(t0, name, t1) \
|
|
t0 \
|
|
netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1) \
|
|
{ \
|
|
return nmd->ops->nmd_##name(nmd, a1); \
|
|
}
|
|
|
|
#define NMD_DEFCB3(t0, name, t1, t2, t3) \
|
|
t0 \
|
|
netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1, t2 a2, t3 a3) \
|
|
{ \
|
|
return nmd->ops->nmd_##name(nmd, a1, a2, a3); \
|
|
}
|
|
|
|
#define NMD_DEFNACB(t0, name) \
|
|
t0 \
|
|
netmap_mem_##name(struct netmap_adapter *na) \
|
|
{ \
|
|
return na->nm_mem->ops->nmd_##name(na); \
|
|
}
|
|
|
|
#define NMD_DEFNACB1(t0, name, t1) \
|
|
t0 \
|
|
netmap_mem_##name(struct netmap_adapter *na, t1 a1) \
|
|
{ \
|
|
return na->nm_mem->ops->nmd_##name(na, a1); \
|
|
}
|
|
|
|
NMD_DEFCB1(int, get_lut, struct netmap_lut *);
|
|
NMD_DEFCB3(int, get_info, u_int *, u_int *, uint16_t *);
|
|
NMD_DEFCB1(vm_paddr_t, ofstophys, vm_ooffset_t);
|
|
static int netmap_mem_config(struct netmap_mem_d *);
|
|
NMD_DEFCB(int, config);
|
|
NMD_DEFCB1(ssize_t, if_offset, const void *);
|
|
NMD_DEFCB(void, delete);
|
|
|
|
NMD_DEFNACB(struct netmap_if *, if_new);
|
|
NMD_DEFNACB1(void, if_delete, struct netmap_if *);
|
|
NMD_DEFNACB(int, rings_create);
|
|
NMD_DEFNACB(void, rings_delete);
|
|
|
|
static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
|
|
static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
|
|
static int nm_mem_assign_group(struct netmap_mem_d *, struct device *);
|
|
|
|
#define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx)
|
|
#define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx)
|
|
#define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx)
|
|
#define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx)
|
|
|
|
#ifdef NM_DEBUG_MEM_PUTGET
|
|
#define NM_DBG_REFC(nmd, func, line) \
|
|
printf("%s:%d mem[%d] -> %d\n", func, line, (nmd)->nm_id, (nmd)->refcount);
|
|
#else
|
|
#define NM_DBG_REFC(nmd, func, line)
|
|
#endif
|
|
|
|
#ifdef NM_DEBUG_MEM_PUTGET
|
|
void __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
|
|
#else
|
|
void netmap_mem_get(struct netmap_mem_d *nmd)
|
|
#endif
|
|
{
|
|
NMA_LOCK(nmd);
|
|
nmd->refcount++;
|
|
NM_DBG_REFC(nmd, func, line);
|
|
NMA_UNLOCK(nmd);
|
|
}
|
|
|
|
#ifdef NM_DEBUG_MEM_PUTGET
|
|
void __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
|
|
#else
|
|
void netmap_mem_put(struct netmap_mem_d *nmd)
|
|
#endif
|
|
{
|
|
int last;
|
|
NMA_LOCK(nmd);
|
|
last = (--nmd->refcount == 0);
|
|
NM_DBG_REFC(nmd, func, line);
|
|
NMA_UNLOCK(nmd);
|
|
if (last)
|
|
netmap_mem_delete(nmd);
|
|
}
|
|
|
|
int
|
|
netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
|
|
{
|
|
if (nm_mem_assign_group(nmd, na->pdev) < 0) {
|
|
return ENOMEM;
|
|
} else {
|
|
NMA_LOCK(nmd);
|
|
nmd->lasterr = nmd->ops->nmd_finalize(nmd);
|
|
NMA_UNLOCK(nmd);
|
|
}
|
|
|
|
if (!nmd->lasterr && na->pdev)
|
|
netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
|
|
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
static int netmap_mem_init_shared_info(struct netmap_mem_d *nmd);
|
|
|
|
void
|
|
netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
|
|
{
|
|
NMA_LOCK(nmd);
|
|
netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
|
|
if (nmd->active == 1) {
|
|
u_int i;
|
|
|
|
/*
|
|
* Reset the allocator when it falls out of use so that any
|
|
* pool resources leaked by unclean application exits are
|
|
* reclaimed.
|
|
*/
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p;
|
|
u_int j;
|
|
|
|
p = &nmd->pools[i];
|
|
p->objfree = p->objtotal;
|
|
/*
|
|
* Reproduce the net effect of the M_ZERO malloc()
|
|
* and marking of free entries in the bitmap that
|
|
* occur in finalize_obj_allocator()
|
|
*/
|
|
memset(p->bitmap,
|
|
'\0',
|
|
sizeof(uint32_t) * ((p->objtotal + 31) / 32));
|
|
|
|
/*
|
|
* Set all the bits in the bitmap that have
|
|
* corresponding buffers to 1 to indicate they are
|
|
* free.
|
|
*/
|
|
for (j = 0; j < p->objtotal; j++) {
|
|
if (p->lut[j].vaddr != NULL) {
|
|
p->bitmap[ (j>>5) ] |= ( 1 << (j & 31) );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Per netmap_mem_finalize_all(),
|
|
* buffers 0 and 1 are reserved
|
|
*/
|
|
nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
|
|
if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
|
|
/* XXX This check is a workaround that prevents a
|
|
* NULL pointer crash which currently happens only
|
|
* with ptnetmap guests. Also,
|
|
* netmap_mem_init_shared_info must not be called
|
|
* by ptnetmap guest. */
|
|
nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
|
|
|
|
/* expose info to the ptnetmap guest */
|
|
netmap_mem_init_shared_info(nmd);
|
|
}
|
|
}
|
|
nmd->ops->nmd_deref(nmd);
|
|
|
|
NMA_UNLOCK(nmd);
|
|
}
|
|
|
|
|
|
/* accessor functions */
|
|
static int
|
|
netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
|
|
{
|
|
lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
|
|
lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
|
|
lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct netmap_obj_params netmap_params[NETMAP_POOLS_NR] = {
|
|
[NETMAP_IF_POOL] = {
|
|
.size = 1024,
|
|
.num = 100,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.size = 9*PAGE_SIZE,
|
|
.num = 200,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.size = 2048,
|
|
.num = NETMAP_BUF_MAX_NUM,
|
|
},
|
|
};
|
|
|
|
static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
|
|
[NETMAP_IF_POOL] = {
|
|
.size = 1024,
|
|
.num = 2,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.size = 5*PAGE_SIZE,
|
|
.num = 4,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.size = 2048,
|
|
.num = 4098,
|
|
},
|
|
};
|
|
|
|
|
|
/*
|
|
* nm_mem is the memory allocator used for all physical interfaces
|
|
* running in netmap mode.
|
|
* Virtual (VALE) ports will have each its own allocator.
|
|
*/
|
|
extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
|
|
struct netmap_mem_d nm_mem = { /* Our memory allocator. */
|
|
.pools = {
|
|
[NETMAP_IF_POOL] = {
|
|
.name = "netmap_if",
|
|
.objminsize = sizeof(struct netmap_if),
|
|
.objmaxsize = 4096,
|
|
.nummin = 10, /* don't be stingy */
|
|
.nummax = 10000, /* XXX very large */
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.name = "netmap_ring",
|
|
.objminsize = sizeof(struct netmap_ring),
|
|
.objmaxsize = 32*PAGE_SIZE,
|
|
.nummin = 2,
|
|
.nummax = 1024,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.name = "netmap_buf",
|
|
.objminsize = 64,
|
|
.objmaxsize = 65536,
|
|
.nummin = 4,
|
|
.nummax = 1000000, /* one million! */
|
|
},
|
|
},
|
|
|
|
.nm_id = 1,
|
|
.nm_grp = -1,
|
|
|
|
.prev = &nm_mem,
|
|
.next = &nm_mem,
|
|
|
|
.ops = &netmap_mem_global_ops
|
|
};
|
|
|
|
|
|
static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
|
|
|
|
/* blueprint for the private memory allocators */
|
|
extern struct netmap_mem_ops netmap_mem_private_ops; /* forward */
|
|
/* XXX clang is not happy about using name as a print format */
|
|
static const struct netmap_mem_d nm_blueprint = {
|
|
.pools = {
|
|
[NETMAP_IF_POOL] = {
|
|
.name = "%s_if",
|
|
.objminsize = sizeof(struct netmap_if),
|
|
.objmaxsize = 4096,
|
|
.nummin = 1,
|
|
.nummax = 100,
|
|
},
|
|
[NETMAP_RING_POOL] = {
|
|
.name = "%s_ring",
|
|
.objminsize = sizeof(struct netmap_ring),
|
|
.objmaxsize = 32*PAGE_SIZE,
|
|
.nummin = 2,
|
|
.nummax = 1024,
|
|
},
|
|
[NETMAP_BUF_POOL] = {
|
|
.name = "%s_buf",
|
|
.objminsize = 64,
|
|
.objmaxsize = 65536,
|
|
.nummin = 4,
|
|
.nummax = 1000000, /* one million! */
|
|
},
|
|
},
|
|
|
|
.flags = NETMAP_MEM_PRIVATE,
|
|
|
|
.ops = &netmap_mem_private_ops
|
|
};
|
|
|
|
/* memory allocator related sysctls */
|
|
|
|
#define STRINGIFY(x) #x
|
|
|
|
|
|
#define DECLARE_SYSCTLS(id, name) \
|
|
SYSBEGIN(mem2_ ## name); \
|
|
SYSCTL_DECL(_dev_netmap); /* leave it here, easier for porting */ \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
|
|
CTLFLAG_RW, &netmap_params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
|
|
CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
|
|
CTLFLAG_RW, &netmap_params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
|
|
CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
|
|
CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
|
|
"Default size of private netmap " STRINGIFY(name) "s"); \
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
|
|
CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
|
|
"Default number of private netmap " STRINGIFY(name) "s"); \
|
|
SYSEND
|
|
|
|
DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
|
|
DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
|
|
DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
|
|
|
|
/* call with NMA_LOCK(&nm_mem) held */
|
|
static int
|
|
nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
|
|
{
|
|
nm_memid_t id;
|
|
struct netmap_mem_d *scan = netmap_last_mem_d;
|
|
int error = ENOMEM;
|
|
|
|
do {
|
|
/* we rely on unsigned wrap around */
|
|
id = scan->nm_id + 1;
|
|
if (id == 0) /* reserve 0 as error value */
|
|
id = 1;
|
|
scan = scan->next;
|
|
if (id != scan->nm_id) {
|
|
nmd->nm_id = id;
|
|
nmd->prev = scan->prev;
|
|
nmd->next = scan;
|
|
scan->prev->next = nmd;
|
|
scan->prev = nmd;
|
|
netmap_last_mem_d = nmd;
|
|
error = 0;
|
|
break;
|
|
}
|
|
} while (scan != netmap_last_mem_d);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* call with NMA_LOCK(&nm_mem) *not* held */
|
|
static int
|
|
nm_mem_assign_id(struct netmap_mem_d *nmd)
|
|
{
|
|
int ret;
|
|
|
|
NMA_LOCK(&nm_mem);
|
|
ret = nm_mem_assign_id_locked(nmd);
|
|
NMA_UNLOCK(&nm_mem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nm_mem_release_id(struct netmap_mem_d *nmd)
|
|
{
|
|
NMA_LOCK(&nm_mem);
|
|
|
|
nmd->prev->next = nmd->next;
|
|
nmd->next->prev = nmd->prev;
|
|
|
|
if (netmap_last_mem_d == nmd)
|
|
netmap_last_mem_d = nmd->prev;
|
|
|
|
nmd->prev = nmd->next = NULL;
|
|
|
|
NMA_UNLOCK(&nm_mem);
|
|
}
|
|
|
|
static int
|
|
nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev)
|
|
{
|
|
int err = 0, id;
|
|
id = nm_iommu_group_id(dev);
|
|
if (netmap_verbose)
|
|
D("iommu_group %d", id);
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
if (nmd->nm_grp < 0)
|
|
nmd->nm_grp = id;
|
|
|
|
if (nmd->nm_grp != id)
|
|
nmd->lasterr = err = ENOMEM;
|
|
|
|
NMA_UNLOCK(nmd);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* First, find the allocator that contains the requested offset,
|
|
* then locate the cluster through a lookup table.
|
|
*/
|
|
static vm_paddr_t
|
|
netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
|
|
{
|
|
int i;
|
|
vm_ooffset_t o = offset;
|
|
vm_paddr_t pa;
|
|
struct netmap_obj_pool *p;
|
|
|
|
NMA_LOCK(nmd);
|
|
p = nmd->pools;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
|
|
if (offset >= p[i].memtotal)
|
|
continue;
|
|
// now lookup the cluster's address
|
|
#ifndef _WIN32
|
|
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
|
|
offset % p[i]._objsize;
|
|
#else
|
|
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
|
|
pa.QuadPart += offset % p[i]._objsize;
|
|
#endif
|
|
NMA_UNLOCK(nmd);
|
|
return pa;
|
|
}
|
|
/* this is only in case of errors */
|
|
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
|
|
p[NETMAP_IF_POOL].memtotal,
|
|
p[NETMAP_IF_POOL].memtotal
|
|
+ p[NETMAP_RING_POOL].memtotal,
|
|
p[NETMAP_IF_POOL].memtotal
|
|
+ p[NETMAP_RING_POOL].memtotal
|
|
+ p[NETMAP_BUF_POOL].memtotal);
|
|
NMA_UNLOCK(nmd);
|
|
#ifndef _WIN32
|
|
return 0; // XXX bad address
|
|
#else
|
|
vm_paddr_t res;
|
|
res.QuadPart = 0;
|
|
return res;
|
|
#endif
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
/*
|
|
* win32_build_virtual_memory_for_userspace
|
|
*
|
|
* This function get all the object making part of the pools and maps
|
|
* a contiguous virtual memory space for the userspace
|
|
* It works this way
|
|
* 1 - allocate a Memory Descriptor List wide as the sum
|
|
* of the memory needed for the pools
|
|
* 2 - cycle all the objects in every pool and for every object do
|
|
*
|
|
* 2a - cycle all the objects in every pool, get the list
|
|
* of the physical address descriptors
|
|
* 2b - calculate the offset in the array of pages desciptor in the
|
|
* main MDL
|
|
* 2c - copy the descriptors of the object in the main MDL
|
|
*
|
|
* 3 - return the resulting MDL that needs to be mapped in userland
|
|
*
|
|
* In this way we will have an MDL that describes all the memory for the
|
|
* objects in a single object
|
|
*/
|
|
|
|
PMDL
|
|
win32_build_user_vm_map(struct netmap_mem_d* nmd)
|
|
{
|
|
int i, j;
|
|
u_int memsize, memflags, ofs = 0;
|
|
PMDL mainMdl, tempMdl;
|
|
|
|
if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
|
|
D("memory not finalised yet");
|
|
return NULL;
|
|
}
|
|
|
|
mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
|
|
if (mainMdl == NULL) {
|
|
D("failed to allocate mdl");
|
|
return NULL;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = &nmd->pools[i];
|
|
int clsz = p->_clustsize;
|
|
int clobjs = p->_clustentries; /* objects per cluster */
|
|
int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
|
|
PPFN_NUMBER pSrc, pDst;
|
|
|
|
/* each pool has a different cluster size so we need to reallocate */
|
|
tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
|
|
if (tempMdl == NULL) {
|
|
NMA_UNLOCK(nmd);
|
|
D("fail to allocate tempMdl");
|
|
IoFreeMdl(mainMdl);
|
|
return NULL;
|
|
}
|
|
pSrc = MmGetMdlPfnArray(tempMdl);
|
|
/* create one entry per cluster, the lut[] has one entry per object */
|
|
for (j = 0; j < p->numclusters; j++, ofs += clsz) {
|
|
pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
|
|
MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
|
|
MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
|
|
RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
|
|
mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
|
|
}
|
|
IoFreeMdl(tempMdl);
|
|
}
|
|
NMA_UNLOCK(nmd);
|
|
return mainMdl;
|
|
}
|
|
|
|
#endif /* _WIN32 */
|
|
|
|
/*
|
|
* helper function for OS-specific mmap routines (currently only windows).
|
|
* Given an nmd and a pool index, returns the cluster size and number of clusters.
|
|
* Returns 0 if memory is finalised and the pool is valid, otherwise 1.
|
|
* It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
|
|
*/
|
|
|
|
int
|
|
netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
|
|
{
|
|
if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
|
|
return 1; /* invalid arguments */
|
|
// NMA_LOCK_ASSERT(nmd);
|
|
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
*clustsize = *numclusters = 0;
|
|
return 1; /* not ready yet */
|
|
}
|
|
*clustsize = nmd->pools[pool]._clustsize;
|
|
*numclusters = nmd->pools[pool].numclusters;
|
|
return 0; /* success */
|
|
}
|
|
|
|
static int
|
|
netmap_mem2_get_info(struct netmap_mem_d* nmd, u_int* size, u_int *memflags,
|
|
nm_memid_t *id)
|
|
{
|
|
int error = 0;
|
|
NMA_LOCK(nmd);
|
|
error = netmap_mem_config(nmd);
|
|
if (error)
|
|
goto out;
|
|
if (size) {
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED) {
|
|
*size = nmd->nm_totalsize;
|
|
} else {
|
|
int i;
|
|
*size = 0;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
struct netmap_obj_pool *p = nmd->pools + i;
|
|
*size += (p->_numclusters * p->_clustsize);
|
|
}
|
|
}
|
|
}
|
|
if (memflags)
|
|
*memflags = nmd->flags;
|
|
if (id)
|
|
*id = nmd->nm_id;
|
|
out:
|
|
NMA_UNLOCK(nmd);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* we store objects by kernel address, need to find the offset
|
|
* within the pool to export the value to userspace.
|
|
* Algorithm: scan until we find the cluster, then add the
|
|
* actual offset in the cluster
|
|
*/
|
|
static ssize_t
|
|
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
|
|
{
|
|
int i, k = p->_clustentries, n = p->objtotal;
|
|
ssize_t ofs = 0;
|
|
|
|
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
|
|
const char *base = p->lut[i].vaddr;
|
|
ssize_t relofs = (const char *) vaddr - base;
|
|
|
|
if (relofs < 0 || relofs >= p->_clustsize)
|
|
continue;
|
|
|
|
ofs = ofs + relofs;
|
|
ND("%s: return offset %d (cluster %d) for pointer %p",
|
|
p->name, ofs, i, vaddr);
|
|
return ofs;
|
|
}
|
|
D("address %p is not contained inside any cluster (%s)",
|
|
vaddr, p->name);
|
|
return 0; /* An error occurred */
|
|
}
|
|
|
|
/* Helper functions which convert virtual addresses to offsets */
|
|
#define netmap_if_offset(n, v) \
|
|
netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
|
|
|
|
#define netmap_ring_offset(n, v) \
|
|
((n)->pools[NETMAP_IF_POOL].memtotal + \
|
|
netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
|
|
|
|
static ssize_t
|
|
netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
|
|
{
|
|
ssize_t v;
|
|
NMA_LOCK(nmd);
|
|
v = netmap_if_offset(nmd, addr);
|
|
NMA_UNLOCK(nmd);
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* report the index, and use start position as a hint,
|
|
* otherwise buffer allocation becomes terribly expensive.
|
|
*/
|
|
static void *
|
|
netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
|
|
{
|
|
uint32_t i = 0; /* index in the bitmap */
|
|
uint32_t mask, j = 0; /* slot counter */
|
|
void *vaddr = NULL;
|
|
|
|
if (len > p->_objsize) {
|
|
D("%s request size %d too large", p->name, len);
|
|
// XXX cannot reduce the size
|
|
return NULL;
|
|
}
|
|
|
|
if (p->objfree == 0) {
|
|
D("no more %s objects", p->name);
|
|
return NULL;
|
|
}
|
|
if (start)
|
|
i = *start;
|
|
|
|
/* termination is guaranteed by p->free, but better check bounds on i */
|
|
while (vaddr == NULL && i < p->bitmap_slots) {
|
|
uint32_t cur = p->bitmap[i];
|
|
if (cur == 0) { /* bitmask is fully used */
|
|
i++;
|
|
continue;
|
|
}
|
|
/* locate a slot */
|
|
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
|
|
;
|
|
|
|
p->bitmap[i] &= ~mask; /* mark object as in use */
|
|
p->objfree--;
|
|
|
|
vaddr = p->lut[i * 32 + j].vaddr;
|
|
if (index)
|
|
*index = i * 32 + j;
|
|
}
|
|
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
|
|
|
|
if (start)
|
|
*start = i;
|
|
return vaddr;
|
|
}
|
|
|
|
|
|
/*
|
|
* free by index, not by address.
|
|
* XXX should we also cleanup the content ?
|
|
*/
|
|
static int
|
|
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
|
|
{
|
|
uint32_t *ptr, mask;
|
|
|
|
if (j >= p->objtotal) {
|
|
D("invalid index %u, max %u", j, p->objtotal);
|
|
return 1;
|
|
}
|
|
ptr = &p->bitmap[j / 32];
|
|
mask = (1 << (j % 32));
|
|
if (*ptr & mask) {
|
|
D("ouch, double free on buffer %d", j);
|
|
return 1;
|
|
} else {
|
|
*ptr |= mask;
|
|
p->objfree++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free by address. This is slow but is only used for a few
|
|
* objects (rings, nifp)
|
|
*/
|
|
static void
|
|
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
|
|
{
|
|
u_int i, j, n = p->numclusters;
|
|
|
|
for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
|
|
void *base = p->lut[i * p->_clustentries].vaddr;
|
|
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
|
|
|
|
/* Given address, is out of the scope of the current cluster.*/
|
|
if (vaddr < base || relofs >= p->_clustsize)
|
|
continue;
|
|
|
|
j = j + relofs / p->_objsize;
|
|
/* KASSERT(j != 0, ("Cannot free object 0")); */
|
|
netmap_obj_free(p, j);
|
|
return;
|
|
}
|
|
D("address %p is not contained inside any cluster (%s)",
|
|
vaddr, p->name);
|
|
}
|
|
|
|
#define netmap_mem_bufsize(n) \
|
|
((n)->pools[NETMAP_BUF_POOL]._objsize)
|
|
|
|
#define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
|
|
#define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
|
|
#define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
|
|
#define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
|
|
#define netmap_buf_malloc(n, _pos, _index) \
|
|
netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
|
|
|
|
|
|
#if 0 // XXX unused
|
|
/* Return the index associated to the given packet buffer */
|
|
#define netmap_buf_index(n, v) \
|
|
(netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
|
|
#endif
|
|
|
|
/*
|
|
* allocate extra buffers in a linked list.
|
|
* returns the actual number.
|
|
*/
|
|
uint32_t
|
|
netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
|
|
{
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
*head = 0; /* default, 'null' index ie empty list */
|
|
for (i = 0 ; i < n; i++) {
|
|
uint32_t cur = *head; /* save current head */
|
|
uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
|
|
if (p == NULL) {
|
|
D("no more buffers after %d of %d", i, n);
|
|
*head = cur; /* restore */
|
|
break;
|
|
}
|
|
ND(5, "allocate buffer %d -> %d", *head, cur);
|
|
*p = cur; /* link to previous head */
|
|
}
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return i;
|
|
}
|
|
|
|
static void
|
|
netmap_extra_free(struct netmap_adapter *na, uint32_t head)
|
|
{
|
|
struct lut_entry *lut = na->na_lut.lut;
|
|
struct netmap_mem_d *nmd = na->nm_mem;
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
uint32_t i, cur, *buf;
|
|
|
|
ND("freeing the extra list");
|
|
for (i = 0; head >=2 && head < p->objtotal; i++) {
|
|
cur = head;
|
|
buf = lut[head].vaddr;
|
|
head = *buf;
|
|
*buf = 0;
|
|
if (netmap_obj_free(p, cur))
|
|
break;
|
|
}
|
|
if (head != 0)
|
|
D("breaking with head %d", head);
|
|
if (netmap_verbose)
|
|
D("freed %d buffers", i);
|
|
}
|
|
|
|
|
|
/* Return nonzero on error */
|
|
static int
|
|
netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
u_int i = 0; /* slot counter */
|
|
uint32_t pos = 0; /* slot in p->bitmap */
|
|
uint32_t index = 0; /* buffer index */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
|
|
if (vaddr == NULL) {
|
|
D("no more buffers after %d of %d", i, n);
|
|
goto cleanup;
|
|
}
|
|
slot[i].buf_idx = index;
|
|
slot[i].len = p->_objsize;
|
|
slot[i].flags = 0;
|
|
}
|
|
|
|
ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos);
|
|
return (0);
|
|
|
|
cleanup:
|
|
while (i > 0) {
|
|
i--;
|
|
netmap_obj_free(p, slot[i].buf_idx);
|
|
}
|
|
bzero(slot, n * sizeof(slot[0]));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
u_int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
slot[i].buf_idx = index;
|
|
slot[i].len = p->_objsize;
|
|
slot[i].flags = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
|
|
{
|
|
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
|
|
|
|
if (i < 2 || i >= p->objtotal) {
|
|
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
|
|
return;
|
|
}
|
|
netmap_obj_free(p, i);
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
|
|
{
|
|
u_int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (slot[i].buf_idx > 2)
|
|
netmap_free_buf(nmd, slot[i].buf_idx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
netmap_reset_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
|
|
if (p == NULL)
|
|
return;
|
|
if (p->bitmap)
|
|
free(p->bitmap, M_NETMAP);
|
|
p->bitmap = NULL;
|
|
if (p->lut) {
|
|
u_int i;
|
|
|
|
/*
|
|
* Free each cluster allocated in
|
|
* netmap_finalize_obj_allocator(). The cluster start
|
|
* addresses are stored at multiples of p->_clusterentries
|
|
* in the lut.
|
|
*/
|
|
for (i = 0; i < p->objtotal; i += p->_clustentries) {
|
|
if (p->lut[i].vaddr)
|
|
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
|
|
}
|
|
bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
|
|
#ifdef linux
|
|
vfree(p->lut);
|
|
#else
|
|
free(p->lut, M_NETMAP);
|
|
#endif
|
|
}
|
|
p->lut = NULL;
|
|
p->objtotal = 0;
|
|
p->memtotal = 0;
|
|
p->numclusters = 0;
|
|
p->objfree = 0;
|
|
}
|
|
|
|
/*
|
|
* Free all resources related to an allocator.
|
|
*/
|
|
static void
|
|
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
if (p == NULL)
|
|
return;
|
|
netmap_reset_obj_allocator(p);
|
|
}
|
|
|
|
/*
|
|
* We receive a request for objtotal objects, of size objsize each.
|
|
* Internally we may round up both numbers, as we allocate objects
|
|
* in small clusters multiple of the page size.
|
|
* We need to keep track of objtotal and clustentries,
|
|
* as they are needed when freeing memory.
|
|
*
|
|
* XXX note -- userspace needs the buffers to be contiguous,
|
|
* so we cannot afford gaps at the end of a cluster.
|
|
*/
|
|
|
|
|
|
/* call with NMA_LOCK held */
|
|
static int
|
|
netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
|
|
{
|
|
int i;
|
|
u_int clustsize; /* the cluster size, multiple of page size */
|
|
u_int clustentries; /* how many objects per entry */
|
|
|
|
/* we store the current request, so we can
|
|
* detect configuration changes later */
|
|
p->r_objtotal = objtotal;
|
|
p->r_objsize = objsize;
|
|
|
|
#define MAX_CLUSTSIZE (1<<22) // 4 MB
|
|
#define LINE_ROUND NM_CACHE_ALIGN // 64
|
|
if (objsize >= MAX_CLUSTSIZE) {
|
|
/* we could do it but there is no point */
|
|
D("unsupported allocation for %d bytes", objsize);
|
|
return EINVAL;
|
|
}
|
|
/* make sure objsize is a multiple of LINE_ROUND */
|
|
i = (objsize & (LINE_ROUND - 1));
|
|
if (i) {
|
|
D("XXX aligning object by %d bytes", LINE_ROUND - i);
|
|
objsize += LINE_ROUND - i;
|
|
}
|
|
if (objsize < p->objminsize || objsize > p->objmaxsize) {
|
|
D("requested objsize %d out of range [%d, %d]",
|
|
objsize, p->objminsize, p->objmaxsize);
|
|
return EINVAL;
|
|
}
|
|
if (objtotal < p->nummin || objtotal > p->nummax) {
|
|
D("requested objtotal %d out of range [%d, %d]",
|
|
objtotal, p->nummin, p->nummax);
|
|
return EINVAL;
|
|
}
|
|
/*
|
|
* Compute number of objects using a brute-force approach:
|
|
* given a max cluster size,
|
|
* we try to fill it with objects keeping track of the
|
|
* wasted space to the next page boundary.
|
|
*/
|
|
for (clustentries = 0, i = 1;; i++) {
|
|
u_int delta, used = i * objsize;
|
|
if (used > MAX_CLUSTSIZE)
|
|
break;
|
|
delta = used % PAGE_SIZE;
|
|
if (delta == 0) { // exact solution
|
|
clustentries = i;
|
|
break;
|
|
}
|
|
}
|
|
/* exact solution not found */
|
|
if (clustentries == 0) {
|
|
D("unsupported allocation for %d bytes", objsize);
|
|
return EINVAL;
|
|
}
|
|
/* compute clustsize */
|
|
clustsize = clustentries * objsize;
|
|
if (netmap_verbose)
|
|
D("objsize %d clustsize %d objects %d",
|
|
objsize, clustsize, clustentries);
|
|
|
|
/*
|
|
* The number of clusters is n = ceil(objtotal/clustentries)
|
|
* objtotal' = n * clustentries
|
|
*/
|
|
p->_clustentries = clustentries;
|
|
p->_clustsize = clustsize;
|
|
p->_numclusters = (objtotal + clustentries - 1) / clustentries;
|
|
|
|
/* actual values (may be larger than requested) */
|
|
p->_objsize = objsize;
|
|
p->_objtotal = p->_numclusters * clustentries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct lut_entry *
|
|
nm_alloc_lut(u_int nobj)
|
|
{
|
|
size_t n = sizeof(struct lut_entry) * nobj;
|
|
struct lut_entry *lut;
|
|
#ifdef linux
|
|
lut = vmalloc(n);
|
|
#else
|
|
lut = malloc(n, M_NETMAP, M_NOWAIT | M_ZERO);
|
|
#endif
|
|
return lut;
|
|
}
|
|
|
|
/* call with NMA_LOCK held */
|
|
static int
|
|
netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
|
|
{
|
|
int i; /* must be signed */
|
|
size_t n;
|
|
|
|
/* optimistically assume we have enough memory */
|
|
p->numclusters = p->_numclusters;
|
|
p->objtotal = p->_objtotal;
|
|
|
|
p->lut = nm_alloc_lut(p->objtotal);
|
|
if (p->lut == NULL) {
|
|
D("Unable to create lookup table for '%s'", p->name);
|
|
goto clean;
|
|
}
|
|
|
|
/* Allocate the bitmap */
|
|
n = (p->objtotal + 31) / 32;
|
|
p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_NOWAIT | M_ZERO);
|
|
if (p->bitmap == NULL) {
|
|
D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
|
|
p->name);
|
|
goto clean;
|
|
}
|
|
p->bitmap_slots = n;
|
|
|
|
/*
|
|
* Allocate clusters, init pointers and bitmap
|
|
*/
|
|
|
|
n = p->_clustsize;
|
|
for (i = 0; i < (int)p->objtotal;) {
|
|
int lim = i + p->_clustentries;
|
|
char *clust;
|
|
|
|
/*
|
|
* XXX Note, we only need contigmalloc() for buffers attached
|
|
* to native interfaces. In all other cases (nifp, netmap rings
|
|
* and even buffers for VALE ports or emulated interfaces) we
|
|
* can live with standard malloc, because the hardware will not
|
|
* access the pages directly.
|
|
*/
|
|
clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
|
|
(size_t)0, -1UL, PAGE_SIZE, 0);
|
|
if (clust == NULL) {
|
|
/*
|
|
* If we get here, there is a severe memory shortage,
|
|
* so halve the allocated memory to reclaim some.
|
|
*/
|
|
D("Unable to create cluster at %d for '%s' allocator",
|
|
i, p->name);
|
|
if (i < 2) /* nothing to halve */
|
|
goto out;
|
|
lim = i / 2;
|
|
for (i--; i >= lim; i--) {
|
|
p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
|
|
if (i % p->_clustentries == 0 && p->lut[i].vaddr)
|
|
contigfree(p->lut[i].vaddr,
|
|
n, M_NETMAP);
|
|
p->lut[i].vaddr = NULL;
|
|
}
|
|
out:
|
|
p->objtotal = i;
|
|
/* we may have stopped in the middle of a cluster */
|
|
p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
|
|
break;
|
|
}
|
|
/*
|
|
* Set bitmap and lut state for all buffers in the current
|
|
* cluster.
|
|
*
|
|
* [i, lim) is the set of buffer indexes that cover the
|
|
* current cluster.
|
|
*
|
|
* 'clust' is really the address of the current buffer in
|
|
* the current cluster as we index through it with a stride
|
|
* of p->_objsize.
|
|
*/
|
|
for (; i < lim; i++, clust += p->_objsize) {
|
|
p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
|
|
p->lut[i].vaddr = clust;
|
|
p->lut[i].paddr = vtophys(clust);
|
|
}
|
|
}
|
|
p->objfree = p->objtotal;
|
|
p->memtotal = p->numclusters * p->_clustsize;
|
|
if (p->objfree == 0)
|
|
goto clean;
|
|
if (netmap_verbose)
|
|
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
|
|
p->numclusters, p->_clustsize >> 10,
|
|
p->memtotal >> 10, p->name);
|
|
|
|
return 0;
|
|
|
|
clean:
|
|
netmap_reset_obj_allocator(p);
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* call with lock held */
|
|
static int
|
|
netmap_memory_config_changed(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
if (nmd->pools[i].r_objsize != netmap_params[i].size ||
|
|
nmd->pools[i].r_objtotal != netmap_params[i].num)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_reset_all(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
if (netmap_verbose)
|
|
D("resetting %p", nmd);
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_reset_obj_allocator(&nmd->pools[i]);
|
|
}
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
|
|
{
|
|
int i, lim = p->_objtotal;
|
|
|
|
if (na->pdev == NULL)
|
|
return 0;
|
|
|
|
#if defined(__FreeBSD__)
|
|
(void)i;
|
|
(void)lim;
|
|
D("unsupported on FreeBSD");
|
|
|
|
#elif defined(_WIN32)
|
|
(void)i;
|
|
(void)lim;
|
|
D("unsupported on Windows"); //XXX_ale, really?
|
|
#else /* linux */
|
|
for (i = 2; i < lim; i++) {
|
|
netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr);
|
|
}
|
|
#endif /* linux */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
|
|
{
|
|
#if defined(__FreeBSD__)
|
|
D("unsupported on FreeBSD");
|
|
#elif defined(_WIN32)
|
|
D("unsupported on Windows"); //XXX_ale, really?
|
|
#else /* linux */
|
|
int i, lim = p->_objtotal;
|
|
|
|
if (na->pdev == NULL)
|
|
return 0;
|
|
|
|
for (i = 2; i < lim; i++) {
|
|
netmap_load_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr,
|
|
p->lut[i].vaddr);
|
|
}
|
|
#endif /* linux */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_init_shared_info(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_shared_info *nms_info;
|
|
ssize_t base;
|
|
|
|
/* Use the first slot in IF_POOL */
|
|
nms_info = netmap_if_malloc(nmd, sizeof(*nms_info));
|
|
if (nms_info == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
base = netmap_if_offset(nmd, nms_info);
|
|
|
|
memcpy(&nms_info->up, &nms_if_blueprint, sizeof(nms_if_blueprint));
|
|
nms_info->buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal + nmd->pools[NETMAP_RING_POOL].memtotal;
|
|
nms_info->buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
|
|
nms_info->buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
|
|
nms_info->totalsize = nmd->nm_totalsize;
|
|
nms_info->features = NMS_FEAT_BUF_POOL | NMS_FEAT_MEMSIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_finalize_all(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED)
|
|
return 0;
|
|
nmd->lasterr = 0;
|
|
nmd->nm_totalsize = 0;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
|
|
if (nmd->lasterr)
|
|
goto error;
|
|
nmd->nm_totalsize += nmd->pools[i].memtotal;
|
|
}
|
|
/* buffers 0 and 1 are reserved */
|
|
nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
|
|
nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3;
|
|
nmd->flags |= NETMAP_MEM_FINALIZED;
|
|
|
|
/* expose info to the ptnetmap guest */
|
|
nmd->lasterr = netmap_mem_init_shared_info(nmd);
|
|
if (nmd->lasterr)
|
|
goto error;
|
|
|
|
if (netmap_verbose)
|
|
D("interfaces %d KB, rings %d KB, buffers %d MB",
|
|
nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
|
|
nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
|
|
nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
|
|
|
|
if (netmap_verbose)
|
|
D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
|
|
|
|
|
|
return 0;
|
|
error:
|
|
netmap_mem_reset_all(nmd);
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
netmap_mem_private_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
if (nmd == NULL)
|
|
return;
|
|
if (netmap_verbose)
|
|
D("deleting %p", nmd);
|
|
if (nmd->active > 0)
|
|
D("bug: deleting mem allocator with active=%d!", nmd->active);
|
|
nm_mem_release_id(nmd);
|
|
if (netmap_verbose)
|
|
D("done deleting %p", nmd);
|
|
NMA_LOCK_DESTROY(nmd);
|
|
free(nmd, M_DEVBUF);
|
|
}
|
|
|
|
static int
|
|
netmap_mem_private_config(struct netmap_mem_d *nmd)
|
|
{
|
|
/* nothing to do, we are configured on creation
|
|
* and configuration never changes thereafter
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_private_finalize(struct netmap_mem_d *nmd)
|
|
{
|
|
int err;
|
|
err = netmap_mem_finalize_all(nmd);
|
|
if (!err)
|
|
nmd->active++;
|
|
return err;
|
|
|
|
}
|
|
|
|
static void
|
|
netmap_mem_private_deref(struct netmap_mem_d *nmd)
|
|
{
|
|
if (--nmd->active <= 0)
|
|
netmap_mem_reset_all(nmd);
|
|
}
|
|
|
|
|
|
/*
|
|
* allocator for private memory
|
|
*/
|
|
struct netmap_mem_d *
|
|
netmap_mem_private_new(const char *name, u_int txr, u_int txd,
|
|
u_int rxr, u_int rxd, u_int extra_bufs, u_int npipes, int *perr)
|
|
{
|
|
struct netmap_mem_d *d = NULL;
|
|
struct netmap_obj_params p[NETMAP_POOLS_NR];
|
|
int i, err;
|
|
u_int v, maxd;
|
|
|
|
d = malloc(sizeof(struct netmap_mem_d),
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (d == NULL) {
|
|
err = ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
*d = nm_blueprint;
|
|
|
|
err = nm_mem_assign_id(d);
|
|
if (err)
|
|
goto error;
|
|
|
|
/* account for the fake host rings */
|
|
txr++;
|
|
rxr++;
|
|
|
|
/* copy the min values */
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
p[i] = netmap_min_priv_params[i];
|
|
}
|
|
|
|
/* possibly increase them to fit user request */
|
|
v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
|
|
if (p[NETMAP_IF_POOL].size < v)
|
|
p[NETMAP_IF_POOL].size = v;
|
|
v = 2 + 4 * npipes;
|
|
if (p[NETMAP_IF_POOL].num < v)
|
|
p[NETMAP_IF_POOL].num = v;
|
|
maxd = (txd > rxd) ? txd : rxd;
|
|
v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
|
|
if (p[NETMAP_RING_POOL].size < v)
|
|
p[NETMAP_RING_POOL].size = v;
|
|
/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
|
|
* and two rx rings (again, 1 normal and 1 fake host)
|
|
*/
|
|
v = txr + rxr + 8 * npipes;
|
|
if (p[NETMAP_RING_POOL].num < v)
|
|
p[NETMAP_RING_POOL].num = v;
|
|
/* for each pipe we only need the buffers for the 4 "real" rings.
|
|
* On the other end, the pipe ring dimension may be different from
|
|
* the parent port ring dimension. As a compromise, we allocate twice the
|
|
* space actually needed if the pipe rings were the same size as the parent rings
|
|
*/
|
|
v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
|
|
/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
|
|
if (p[NETMAP_BUF_POOL].num < v)
|
|
p[NETMAP_BUF_POOL].num = v;
|
|
|
|
if (netmap_verbose)
|
|
D("req if %d*%d ring %d*%d buf %d*%d",
|
|
p[NETMAP_IF_POOL].num,
|
|
p[NETMAP_IF_POOL].size,
|
|
p[NETMAP_RING_POOL].num,
|
|
p[NETMAP_RING_POOL].size,
|
|
p[NETMAP_BUF_POOL].num,
|
|
p[NETMAP_BUF_POOL].size);
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
|
|
nm_blueprint.pools[i].name,
|
|
name);
|
|
err = netmap_config_obj_allocator(&d->pools[i],
|
|
p[i].num, p[i].size);
|
|
if (err)
|
|
goto error;
|
|
}
|
|
|
|
d->flags &= ~NETMAP_MEM_FINALIZED;
|
|
|
|
NMA_LOCK_INIT(d);
|
|
|
|
return d;
|
|
error:
|
|
netmap_mem_private_delete(d);
|
|
if (perr)
|
|
*perr = err;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* call with lock held */
|
|
static int
|
|
netmap_mem_global_config(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
if (nmd->active)
|
|
/* already in use, we cannot change the configuration */
|
|
goto out;
|
|
|
|
if (!netmap_memory_config_changed(nmd))
|
|
goto out;
|
|
|
|
ND("reconfiguring");
|
|
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED) {
|
|
/* reset previous allocation */
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_reset_obj_allocator(&nmd->pools[i]);
|
|
}
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
}
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
|
|
netmap_params[i].num, netmap_params[i].size);
|
|
if (nmd->lasterr)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
|
|
return nmd->lasterr;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_global_finalize(struct netmap_mem_d *nmd)
|
|
{
|
|
int err;
|
|
|
|
/* update configuration if changed */
|
|
if (netmap_mem_global_config(nmd))
|
|
return nmd->lasterr;
|
|
|
|
nmd->active++;
|
|
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED) {
|
|
/* may happen if config is not changed */
|
|
ND("nothing to do");
|
|
goto out;
|
|
}
|
|
|
|
if (netmap_mem_finalize_all(nmd))
|
|
goto out;
|
|
|
|
nmd->lasterr = 0;
|
|
|
|
out:
|
|
if (nmd->lasterr)
|
|
nmd->active--;
|
|
err = nmd->lasterr;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
static void
|
|
netmap_mem_global_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) {
|
|
netmap_destroy_obj_allocator(&nm_mem.pools[i]);
|
|
}
|
|
|
|
NMA_LOCK_DESTROY(&nm_mem);
|
|
}
|
|
|
|
int
|
|
netmap_mem_init(void)
|
|
{
|
|
NMA_LOCK_INIT(&nm_mem);
|
|
netmap_mem_get(&nm_mem);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
netmap_mem_fini(void)
|
|
{
|
|
netmap_mem_put(&nm_mem);
|
|
}
|
|
|
|
static void
|
|
netmap_free_rings(struct netmap_adapter *na)
|
|
{
|
|
enum txrx t;
|
|
|
|
for_rx_tx(t) {
|
|
u_int i;
|
|
for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
|
|
struct netmap_kring *kring = &NMR(na, t)[i];
|
|
struct netmap_ring *ring = kring->ring;
|
|
|
|
if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
|
|
ND("skipping ring %s (ring %p, users %d)",
|
|
kring->name, ring, kring->users);
|
|
continue;
|
|
}
|
|
if (i != nma_get_nrings(na, t) || na->na_flags & NAF_HOST_RINGS)
|
|
netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
|
|
netmap_ring_free(na->nm_mem, ring);
|
|
kring->ring = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* call with NMA_LOCK held *
|
|
*
|
|
* Allocate netmap rings and buffers for this card
|
|
* The rings are contiguous, but have variable size.
|
|
* The kring array must follow the layout described
|
|
* in netmap_krings_create().
|
|
*/
|
|
static int
|
|
netmap_mem2_rings_create(struct netmap_adapter *na)
|
|
{
|
|
enum txrx t;
|
|
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
for_rx_tx(t) {
|
|
u_int i;
|
|
|
|
for (i = 0; i <= nma_get_nrings(na, t); i++) {
|
|
struct netmap_kring *kring = &NMR(na, t)[i];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int len, ndesc;
|
|
|
|
if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
|
|
/* uneeded, or already created by somebody else */
|
|
ND("skipping ring %s", kring->name);
|
|
continue;
|
|
}
|
|
ndesc = kring->nkr_num_slots;
|
|
len = sizeof(struct netmap_ring) +
|
|
ndesc * sizeof(struct netmap_slot);
|
|
ring = netmap_ring_malloc(na->nm_mem, len);
|
|
if (ring == NULL) {
|
|
D("Cannot allocate %s_ring", nm_txrx2str(t));
|
|
goto cleanup;
|
|
}
|
|
ND("txring at %p", ring);
|
|
kring->ring = ring;
|
|
*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
|
|
*(int64_t *)(uintptr_t)&ring->buf_ofs =
|
|
(na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
|
|
na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
|
|
netmap_ring_offset(na->nm_mem, ring);
|
|
|
|
/* copy values from kring */
|
|
ring->head = kring->rhead;
|
|
ring->cur = kring->rcur;
|
|
ring->tail = kring->rtail;
|
|
*(uint16_t *)(uintptr_t)&ring->nr_buf_size =
|
|
netmap_mem_bufsize(na->nm_mem);
|
|
ND("%s h %d c %d t %d", kring->name,
|
|
ring->head, ring->cur, ring->tail);
|
|
ND("initializing slots for %s_ring", nm_txrx2str(txrx));
|
|
if (i != nma_get_nrings(na, t) || (na->na_flags & NAF_HOST_RINGS)) {
|
|
/* this is a real ring */
|
|
if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
|
|
D("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
|
|
goto cleanup;
|
|
}
|
|
} else {
|
|
/* this is a fake ring, set all indices to 0 */
|
|
netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
|
|
}
|
|
/* ring info */
|
|
*(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
|
|
*(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
|
|
}
|
|
}
|
|
|
|
NMA_UNLOCK(na->nm_mem);
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
netmap_free_rings(na);
|
|
|
|
NMA_UNLOCK(na->nm_mem);
|
|
|
|
return ENOMEM;
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_rings_delete(struct netmap_adapter *na)
|
|
{
|
|
/* last instance, release bufs and rings */
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
netmap_free_rings(na);
|
|
|
|
NMA_UNLOCK(na->nm_mem);
|
|
}
|
|
|
|
|
|
/* call with NMA_LOCK held */
|
|
/*
|
|
* Allocate the per-fd structure netmap_if.
|
|
*
|
|
* We assume that the configuration stored in na
|
|
* (number of tx/rx rings and descs) does not change while
|
|
* the interface is in netmap mode.
|
|
*/
|
|
static struct netmap_if *
|
|
netmap_mem2_if_new(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_if *nifp;
|
|
ssize_t base; /* handy for relative offsets between rings and nifp */
|
|
u_int i, len, n[NR_TXRX], ntot;
|
|
enum txrx t;
|
|
|
|
ntot = 0;
|
|
for_rx_tx(t) {
|
|
/* account for the (eventually fake) host rings */
|
|
n[t] = nma_get_nrings(na, t) + 1;
|
|
ntot += n[t];
|
|
}
|
|
/*
|
|
* the descriptor is followed inline by an array of offsets
|
|
* to the tx and rx rings in the shared memory region.
|
|
*/
|
|
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
|
|
nifp = netmap_if_malloc(na->nm_mem, len);
|
|
if (nifp == NULL) {
|
|
NMA_UNLOCK(na->nm_mem);
|
|
return NULL;
|
|
}
|
|
|
|
/* initialize base fields -- override const */
|
|
*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
|
|
*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
|
|
strncpy(nifp->ni_name, na->name, (size_t)IFNAMSIZ);
|
|
|
|
/*
|
|
* fill the slots for the rx and tx rings. They contain the offset
|
|
* between the ring and nifp, so the information is usable in
|
|
* userspace to reach the ring from the nifp.
|
|
*/
|
|
base = netmap_if_offset(na->nm_mem, nifp);
|
|
for (i = 0; i < n[NR_TX]; i++) {
|
|
if (na->tx_rings[i].ring == NULL) {
|
|
// XXX maybe use the offset of an error ring,
|
|
// like we do for buffers?
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 0;
|
|
continue;
|
|
}
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
|
|
netmap_ring_offset(na->nm_mem, na->tx_rings[i].ring) - base;
|
|
}
|
|
for (i = 0; i < n[NR_RX]; i++) {
|
|
if (na->rx_rings[i].ring == NULL) {
|
|
// XXX maybe use the offset of an error ring,
|
|
// like we do for buffers?
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = 0;
|
|
continue;
|
|
}
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] =
|
|
netmap_ring_offset(na->nm_mem, na->rx_rings[i].ring) - base;
|
|
}
|
|
|
|
NMA_UNLOCK(na->nm_mem);
|
|
|
|
return (nifp);
|
|
}
|
|
|
|
static void
|
|
netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
|
|
{
|
|
if (nifp == NULL)
|
|
/* nothing to do */
|
|
return;
|
|
NMA_LOCK(na->nm_mem);
|
|
if (nifp->ni_bufs_head)
|
|
netmap_extra_free(na, nifp->ni_bufs_head);
|
|
netmap_if_free(na->nm_mem, nifp);
|
|
|
|
NMA_UNLOCK(na->nm_mem);
|
|
}
|
|
|
|
static void
|
|
netmap_mem_global_deref(struct netmap_mem_d *nmd)
|
|
{
|
|
|
|
nmd->active--;
|
|
if (!nmd->active)
|
|
nmd->nm_grp = -1;
|
|
if (netmap_verbose)
|
|
D("active = %d", nmd->active);
|
|
|
|
}
|
|
|
|
struct netmap_mem_ops netmap_mem_global_ops = {
|
|
.nmd_get_lut = netmap_mem2_get_lut,
|
|
.nmd_get_info = netmap_mem2_get_info,
|
|
.nmd_ofstophys = netmap_mem2_ofstophys,
|
|
.nmd_config = netmap_mem_global_config,
|
|
.nmd_finalize = netmap_mem_global_finalize,
|
|
.nmd_deref = netmap_mem_global_deref,
|
|
.nmd_delete = netmap_mem_global_delete,
|
|
.nmd_if_offset = netmap_mem2_if_offset,
|
|
.nmd_if_new = netmap_mem2_if_new,
|
|
.nmd_if_delete = netmap_mem2_if_delete,
|
|
.nmd_rings_create = netmap_mem2_rings_create,
|
|
.nmd_rings_delete = netmap_mem2_rings_delete
|
|
};
|
|
struct netmap_mem_ops netmap_mem_private_ops = {
|
|
.nmd_get_lut = netmap_mem2_get_lut,
|
|
.nmd_get_info = netmap_mem2_get_info,
|
|
.nmd_ofstophys = netmap_mem2_ofstophys,
|
|
.nmd_config = netmap_mem_private_config,
|
|
.nmd_finalize = netmap_mem_private_finalize,
|
|
.nmd_deref = netmap_mem_private_deref,
|
|
.nmd_if_offset = netmap_mem2_if_offset,
|
|
.nmd_delete = netmap_mem_private_delete,
|
|
.nmd_if_new = netmap_mem2_if_new,
|
|
.nmd_if_delete = netmap_mem2_if_delete,
|
|
.nmd_rings_create = netmap_mem2_rings_create,
|
|
.nmd_rings_delete = netmap_mem2_rings_delete
|
|
};
|
|
|
|
#ifdef WITH_PTNETMAP_GUEST
|
|
struct mem_pt_if {
|
|
struct mem_pt_if *next;
|
|
struct ifnet *ifp;
|
|
unsigned int nifp_offset;
|
|
nm_pt_guest_ptctl_t ptctl;
|
|
};
|
|
|
|
/* Netmap allocator for ptnetmap guests. */
|
|
struct netmap_mem_ptg {
|
|
struct netmap_mem_d up;
|
|
|
|
vm_paddr_t nm_paddr; /* physical address in the guest */
|
|
void *nm_addr; /* virtual address in the guest */
|
|
struct netmap_lut buf_lut; /* lookup table for BUF pool in the guest */
|
|
nm_memid_t nm_host_id; /* allocator identifier in the host */
|
|
struct ptnetmap_memdev *ptn_dev;
|
|
struct mem_pt_if *pt_ifs; /* list of interfaces in passthrough */
|
|
};
|
|
|
|
/* Link a passthrough interface to a passthrough netmap allocator. */
|
|
static int
|
|
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
|
|
unsigned int nifp_offset,
|
|
nm_pt_guest_ptctl_t ptctl)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *ptif = malloc(sizeof(*ptif), M_NETMAP,
|
|
M_NOWAIT | M_ZERO);
|
|
|
|
if (!ptif) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
ptif->ifp = ifp;
|
|
ptif->nifp_offset = nifp_offset;
|
|
ptif->ptctl = ptctl;
|
|
|
|
if (ptnmd->pt_ifs) {
|
|
ptif->next = ptnmd->pt_ifs;
|
|
}
|
|
ptnmd->pt_ifs = ptif;
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
D("added (ifp=%p,nifp_offset=%u)", ptif->ifp, ptif->nifp_offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with NMA_LOCK(nmd) held. */
|
|
static struct mem_pt_if *
|
|
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *curr;
|
|
|
|
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
|
|
if (curr->ifp == ifp) {
|
|
return curr;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Unlink a passthrough interface from a passthrough netmap allocator. */
|
|
int
|
|
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct mem_pt_if *prev = NULL;
|
|
struct mem_pt_if *curr;
|
|
int ret = -1;
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
|
|
if (curr->ifp == ifp) {
|
|
if (prev) {
|
|
prev->next = curr->next;
|
|
} else {
|
|
ptnmd->pt_ifs = curr->next;
|
|
}
|
|
D("removed (ifp=%p,nifp_offset=%u)",
|
|
curr->ifp, curr->nifp_offset);
|
|
free(curr, M_NETMAP);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
prev = curr;
|
|
}
|
|
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Read allocator info from the first netmap_if (only on finalize) */
|
|
static int
|
|
netmap_mem_pt_guest_read_shared_info(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
struct netmap_mem_shared_info *nms_info;
|
|
uint32_t bufsize;
|
|
uint32_t nbuffers;
|
|
char *vaddr;
|
|
vm_paddr_t paddr;
|
|
int i;
|
|
|
|
nms_info = (struct netmap_mem_shared_info *)ptnmd->nm_addr;
|
|
if (strncmp(nms_info->up.ni_name, NMS_NAME, sizeof(NMS_NAME)) != 0) {
|
|
D("error, the first slot does not contain shared info");
|
|
return EINVAL;
|
|
}
|
|
/* check features mem_shared info */
|
|
if ((nms_info->features & (NMS_FEAT_BUF_POOL | NMS_FEAT_MEMSIZE)) !=
|
|
(NMS_FEAT_BUF_POOL | NMS_FEAT_MEMSIZE)) {
|
|
D("error, the shared info does not contain BUF_POOL and MEMSIZE");
|
|
return EINVAL;
|
|
}
|
|
|
|
bufsize = nms_info->buf_pool_objsize;
|
|
nbuffers = nms_info->buf_pool_objtotal;
|
|
|
|
/* allocate the lut */
|
|
if (ptnmd->buf_lut.lut == NULL) {
|
|
D("allocating lut");
|
|
ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
|
|
if (ptnmd->buf_lut.lut == NULL) {
|
|
D("lut allocation failed");
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* we have physically contiguous memory mapped through PCI BAR */
|
|
vaddr = (char *)(ptnmd->nm_addr) + nms_info->buf_pool_offset;
|
|
paddr = ptnmd->nm_paddr + nms_info->buf_pool_offset;
|
|
|
|
for (i = 0; i < nbuffers; i++) {
|
|
ptnmd->buf_lut.lut[i].vaddr = vaddr;
|
|
ptnmd->buf_lut.lut[i].paddr = paddr;
|
|
vaddr += bufsize;
|
|
paddr += bufsize;
|
|
}
|
|
|
|
ptnmd->buf_lut.objtotal = nbuffers;
|
|
ptnmd->buf_lut.objsize = bufsize;
|
|
|
|
nmd->nm_totalsize = nms_info->totalsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*lut = ptnmd->buf_lut;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, u_int *size,
|
|
u_int *memflags, uint16_t *id)
|
|
{
|
|
int error = 0;
|
|
|
|
NMA_LOCK(nmd);
|
|
|
|
error = nmd->ops->nmd_config(nmd);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (size)
|
|
*size = nmd->nm_totalsize;
|
|
if (memflags)
|
|
*memflags = nmd->flags;
|
|
if (id)
|
|
*id = nmd->nm_id;
|
|
|
|
out:
|
|
NMA_UNLOCK(nmd);
|
|
|
|
return error;
|
|
}
|
|
|
|
static vm_paddr_t
|
|
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
vm_paddr_t paddr;
|
|
/* if the offset is valid, just return csb->base_addr + off */
|
|
paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
|
|
ND("off %lx padr %lx", off, (unsigned long)paddr);
|
|
return paddr;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
|
|
{
|
|
/* nothing to do, we are configured on creation
|
|
* and configuration never changes thereafter
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
int error = 0;
|
|
|
|
nmd->active++;
|
|
|
|
if (nmd->flags & NETMAP_MEM_FINALIZED)
|
|
goto out;
|
|
|
|
if (ptnmd->ptn_dev == NULL) {
|
|
D("ptnetmap memdev not attached");
|
|
error = ENOMEM;
|
|
goto err;
|
|
}
|
|
/* map memory through ptnetmap-memdev BAR */
|
|
error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
|
|
&ptnmd->nm_addr);
|
|
if (error)
|
|
goto err;
|
|
|
|
/* read allcator info and create lut */
|
|
error = netmap_mem_pt_guest_read_shared_info(nmd);
|
|
if (error)
|
|
goto err;
|
|
|
|
nmd->flags |= NETMAP_MEM_FINALIZED;
|
|
out:
|
|
return 0;
|
|
err:
|
|
nmd->active--;
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
nmd->active--;
|
|
if (nmd->active <= 0 &&
|
|
(nmd->flags & NETMAP_MEM_FINALIZED)) {
|
|
nmd->flags &= ~NETMAP_MEM_FINALIZED;
|
|
/* unmap ptnetmap-memdev memory */
|
|
if (ptnmd->ptn_dev) {
|
|
nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
|
|
}
|
|
ptnmd->nm_addr = 0;
|
|
ptnmd->nm_paddr = 0;
|
|
}
|
|
}
|
|
|
|
static ssize_t
|
|
netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
|
|
return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
|
|
{
|
|
if (nmd == NULL)
|
|
return;
|
|
if (netmap_verbose)
|
|
D("deleting %p", nmd);
|
|
if (nmd->active > 0)
|
|
D("bug: deleting mem allocator with active=%d!", nmd->active);
|
|
nm_mem_release_id(nmd);
|
|
if (netmap_verbose)
|
|
D("done deleting %p", nmd);
|
|
NMA_LOCK_DESTROY(nmd);
|
|
free(nmd, M_DEVBUF);
|
|
}
|
|
|
|
static struct netmap_if *
|
|
netmap_mem_pt_guest_if_new(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
|
|
struct mem_pt_if *ptif;
|
|
struct netmap_if *nifp = NULL;
|
|
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
goto out;
|
|
}
|
|
|
|
nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
|
|
ptif->nifp_offset);
|
|
NMA_UNLOCK(na->nm_mem);
|
|
out:
|
|
return nifp;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
|
|
{
|
|
struct mem_pt_if *ptif;
|
|
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
goto out;
|
|
}
|
|
|
|
ptif->ptctl(na->ifp, PTNETMAP_PTCTL_IFDELETE);
|
|
out:
|
|
NMA_UNLOCK(na->nm_mem);
|
|
}
|
|
|
|
static int
|
|
netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
|
|
struct mem_pt_if *ptif;
|
|
struct netmap_if *nifp;
|
|
int i, error = -1;
|
|
|
|
NMA_LOCK(na->nm_mem);
|
|
|
|
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
|
|
if (ptif == NULL) {
|
|
D("Error: interface %p is not in passthrough", na->ifp);
|
|
goto out;
|
|
}
|
|
|
|
|
|
/* point each kring to the corresponding backend ring */
|
|
nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
|
|
for (i = 0; i <= na->num_tx_rings; i++) {
|
|
struct netmap_kring *kring = na->tx_rings + i;
|
|
if (kring->ring)
|
|
continue;
|
|
kring->ring = (struct netmap_ring *)
|
|
((char *)nifp + nifp->ring_ofs[i]);
|
|
}
|
|
for (i = 0; i <= na->num_rx_rings; i++) {
|
|
struct netmap_kring *kring = na->rx_rings + i;
|
|
if (kring->ring)
|
|
continue;
|
|
kring->ring = (struct netmap_ring *)
|
|
((char *)nifp +
|
|
nifp->ring_ofs[i + na->num_tx_rings + 1]);
|
|
}
|
|
|
|
//error = ptif->ptctl->nm_ptctl(ifp, PTNETMAP_PTCTL_RINGSCREATE);
|
|
error = 0;
|
|
out:
|
|
NMA_UNLOCK(na->nm_mem);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
|
|
{
|
|
/* TODO: remove?? */
|
|
#if 0
|
|
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
|
|
struct mem_pt_if *ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem,
|
|
na->ifp);
|
|
#endif
|
|
}
|
|
|
|
static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
|
|
.nmd_get_lut = netmap_mem_pt_guest_get_lut,
|
|
.nmd_get_info = netmap_mem_pt_guest_get_info,
|
|
.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
|
|
.nmd_config = netmap_mem_pt_guest_config,
|
|
.nmd_finalize = netmap_mem_pt_guest_finalize,
|
|
.nmd_deref = netmap_mem_pt_guest_deref,
|
|
.nmd_if_offset = netmap_mem_pt_guest_if_offset,
|
|
.nmd_delete = netmap_mem_pt_guest_delete,
|
|
.nmd_if_new = netmap_mem_pt_guest_if_new,
|
|
.nmd_if_delete = netmap_mem_pt_guest_if_delete,
|
|
.nmd_rings_create = netmap_mem_pt_guest_rings_create,
|
|
.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
|
|
};
|
|
|
|
/* Called with NMA_LOCK(&nm_mem) held. */
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_find_hostid(nm_memid_t host_id)
|
|
{
|
|
struct netmap_mem_d *mem = NULL;
|
|
struct netmap_mem_d *scan = netmap_last_mem_d;
|
|
|
|
do {
|
|
/* find ptnetmap allocator through host ID */
|
|
if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
|
|
((struct netmap_mem_ptg *)(scan))->nm_host_id == host_id) {
|
|
mem = scan;
|
|
break;
|
|
}
|
|
scan = scan->next;
|
|
} while (scan != netmap_last_mem_d);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/* Called with NMA_LOCK(&nm_mem) held. */
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_create(nm_memid_t host_id)
|
|
{
|
|
struct netmap_mem_ptg *ptnmd;
|
|
int err = 0;
|
|
|
|
ptnmd = malloc(sizeof(struct netmap_mem_ptg),
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (ptnmd == NULL) {
|
|
err = ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ptnmd->up.ops = &netmap_mem_pt_guest_ops;
|
|
ptnmd->nm_host_id = host_id;
|
|
ptnmd->pt_ifs = NULL;
|
|
|
|
/* Assign new id in the guest (We have the lock) */
|
|
err = nm_mem_assign_id_locked(&ptnmd->up);
|
|
if (err)
|
|
goto error;
|
|
|
|
ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
|
|
ptnmd->up.flags |= NETMAP_MEM_IO;
|
|
|
|
NMA_LOCK_INIT(&ptnmd->up);
|
|
|
|
return &ptnmd->up;
|
|
error:
|
|
netmap_mem_pt_guest_delete(&ptnmd->up);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find host id in guest allocators and create guest allocator
|
|
* if it is not there
|
|
*/
|
|
static struct netmap_mem_d *
|
|
netmap_mem_pt_guest_get(nm_memid_t host_id)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
|
|
NMA_LOCK(&nm_mem);
|
|
nmd = netmap_mem_pt_guest_find_hostid(host_id);
|
|
if (nmd == NULL) {
|
|
nmd = netmap_mem_pt_guest_create(host_id);
|
|
}
|
|
NMA_UNLOCK(&nm_mem);
|
|
|
|
return nmd;
|
|
}
|
|
|
|
/*
|
|
* The guest allocator can be created by ptnetmap_memdev (during the device
|
|
* attach) or by ptnetmap device (e1000/virtio), during the netmap_attach.
|
|
*
|
|
* The order is not important (we have different order in LINUX and FreeBSD).
|
|
* The first one, creates the device, and the second one simply attaches it.
|
|
*/
|
|
|
|
/* Called when ptnetmap_memdev is attaching, to attach a new allocator in
|
|
* the guest */
|
|
struct netmap_mem_d *
|
|
netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t host_id)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
struct netmap_mem_ptg *ptnmd;
|
|
|
|
nmd = netmap_mem_pt_guest_get(host_id);
|
|
|
|
/* assign this device to the guest allocator */
|
|
if (nmd) {
|
|
ptnmd = (struct netmap_mem_ptg *)nmd;
|
|
ptnmd->ptn_dev = ptn_dev;
|
|
}
|
|
|
|
return nmd;
|
|
}
|
|
|
|
/* Called when ptnetmap device (virtio/e1000) is attaching */
|
|
struct netmap_mem_d *
|
|
netmap_mem_pt_guest_new(struct ifnet *ifp,
|
|
unsigned int nifp_offset,
|
|
nm_pt_guest_ptctl_t ptctl)
|
|
{
|
|
struct netmap_mem_d *nmd;
|
|
nm_memid_t host_id;
|
|
|
|
if (ifp == NULL || ptctl == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Get the host id allocator. */
|
|
host_id = ptctl(ifp, PTNETMAP_PTCTL_HOSTMEMID);
|
|
|
|
nmd = netmap_mem_pt_guest_get(host_id);
|
|
|
|
if (nmd) {
|
|
netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset,
|
|
ptctl);
|
|
}
|
|
|
|
return nmd;
|
|
}
|
|
|
|
#endif /* WITH_PTNETMAP_GUEST */
|