freebsd-skq/sys/vm/vm_mmap.c
David Greenman 24a1cce34f NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!

Much needed overhaul of the VM system. Included in this first round of
changes:

1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
   haspage, and sync operations are supported. The haspage interface now
   provides information about clusterability. All pager routines now take
   struct vm_object's instead of "pagers".

2) Improved data structures. In the previous paradigm, there is constant
   confusion caused by pagers being both a data structure ("allocate a
   pager") and a collection of routines. The idea of a pager structure has
   escentially been eliminated. Objects now have types, and this type is
   used to index the appropriate pager. In most cases, items in the pager
   structure were duplicated in the object data structure and thus were
   unnecessary. In the few cases that remained, a un_pager structure union
   was created in the object to contain these items.

3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
   be removed. For instance, vm_object_enter(), vm_object_lookup(),
   vm_object_remove(), and the associated object hash list were some of the
   things that were removed.

4) simple_lock's removed. Discussion with several people reveals that the
   SMP locking primitives used in the VM system aren't likely the mechanism
   that we'll be adopting. Even if it were, the locking that was in the code
   was very inadequate and would have to be mostly re-done anyway. The
   locking in a uni-processor kernel was a no-op but went a long way toward
   making the code difficult to read and debug.

5) Places that attempted to kludge-up the fact that we don't have kernel
   thread support have been fixed to reflect the reality that we are really
   dealing with processes, not threads. The VM system didn't have complete
   thread support, so the comments and mis-named routines were just wrong.
   We now use tsleep and wakeup directly in the lock routines, for instance.

6) Where appropriate, the pagers have been improved, especially in the
   pager_alloc routines. Most of the pager_allocs have been rewritten and
   are now faster and easier to maintain.

7) The pagedaemon pageout clustering algorithm has been rewritten and
   now tries harder to output an even number of pages before and after
   the requested page. This is sort of the reverse of the ideal pagein
   algorithm and should provide better overall performance.

8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
   have been removed. Some other unnecessary casts have also been removed.

9) Some almost useless debugging code removed.

10) Terminology of shadow objects vs. backing objects straightened out.
    The fact that the vm_object data structure escentially had this
    backwards really confused things. The use of "shadow" and "backing
    object" throughout the code is now internally consistent and correct
    in the Mach terminology.

11) Several minor bug fixes, including one in the vm daemon that caused
    0 RSS objects to not get purged as intended.

12) A "default pager" has now been created which cleans up the transition
    of objects to the "swap" type. The previous checks throughout the code
    for swp->pg_data != NULL were really ugly. This change also provides
    the rudiments for future backing of "anonymous" memory by something
    other than the swap pager (via the vnode pager, for example), and it
    allows the decision about which of these pagers to use to be made
    dynamically (although will need some additional decision code to do
    this, of course).

13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
    object" code has been removed. MAP_COPY was undocumented and non-
    standard. It was furthermore broken in several ways which caused its
    behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
    continue to work correctly, but via the slightly different semantics
    of MAP_PRIVATE.

14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
    threads design can be worked around in other ways. Both #12 and #13
    were done to simplify the code and improve readability and maintain-
    ability. (As were most all of these changes)

TODO:

1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
   this will reduce the vnode pager to a mere fraction of its current size.

2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
   information provided by the new haspage pager interface. This will
   substantially reduce the overhead by eliminating a large number of
   VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
   improved to provide both a "behind" and "ahead" indication of
   contiguousness.

3) Implement the extended features of pager_haspage in swap_pager_haspage().
   It currently just says 0 pages ahead/behind.

4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
   via a much more general mechanism that could also be used for disk
   striping of regular filesystems.

5) Do something to improve the architecture of vm_object_collapse(). The
   fact that it makes calls into the swap pager and knows too much about
   how the swap pager operates really bothers me. It also doesn't allow
   for collapsing of non-swap pager objects ("unnamed" objects backed by
   other pagers).
1995-07-13 08:48:48 +00:00

712 lines
16 KiB
C

/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$
*
* @(#)vm_mmap.c 8.4 (Berkeley) 1/12/94
* $Id: vm_mmap.c,v 1.25 1995/07/09 06:58:01 davidg Exp $
*/
/*
* Mapped file (mmap) interface to VM
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/conf.h>
#include <miscfs/specfs/specdev.h>
#include <vm/vm.h>
#include <vm/vm_pager.h>
#include <vm/vm_pageout.h>
#include <vm/vm_prot.h>
void pmap_object_init_pt();
struct sbrk_args {
int incr;
};
/* ARGSUSED */
int
sbrk(p, uap, retval)
struct proc *p;
struct sbrk_args *uap;
int *retval;
{
/* Not yet implemented */
return (EOPNOTSUPP);
}
struct sstk_args {
int incr;
};
/* ARGSUSED */
int
sstk(p, uap, retval)
struct proc *p;
struct sstk_args *uap;
int *retval;
{
/* Not yet implemented */
return (EOPNOTSUPP);
}
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
struct getpagesize_args {
int dummy;
};
/* ARGSUSED */
int
ogetpagesize(p, uap, retval)
struct proc *p;
struct getpagesize_args *uap;
int *retval;
{
*retval = PAGE_SIZE;
return (0);
}
#endif /* COMPAT_43 || COMPAT_SUNOS */
struct mmap_args {
caddr_t addr;
size_t len;
int prot;
int flags;
int fd;
long pad;
off_t pos;
};
int
mmap(p, uap, retval)
struct proc *p;
register struct mmap_args *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
register struct file *fp;
struct vnode *vp;
vm_offset_t addr;
vm_size_t size;
vm_prot_t prot, maxprot;
caddr_t handle;
int flags, error;
prot = uap->prot & VM_PROT_ALL;
flags = uap->flags;
/*
* Address (if FIXED) must be page aligned. Size is implicitly rounded
* to a page boundary.
*/
addr = (vm_offset_t) uap->addr;
if (((flags & MAP_FIXED) && (addr & PAGE_MASK)) ||
(ssize_t) uap->len < 0 || ((flags & MAP_ANON) && uap->fd != -1))
return (EINVAL);
size = (vm_size_t) round_page(uap->len);
/*
* Check for illegal addresses. Watch out for address wrap... Note
* that VM_*_ADDRESS are not constants due to casts (argh).
*/
if (flags & MAP_FIXED) {
if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
return (EINVAL);
#ifndef i386
if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
return (EINVAL);
#endif
if (addr + size < addr)
return (EINVAL);
}
/*
* XXX if no hint provided for a non-fixed mapping place it after the
* end of the largest possible heap.
*
* There should really be a pmap call to determine a reasonable location.
*/
if (addr == 0 && (flags & MAP_FIXED) == 0)
addr = round_page(p->p_vmspace->vm_daddr + MAXDSIZ);
if (flags & MAP_ANON) {
/*
* Mapping blank space is trivial.
*/
handle = NULL;
maxprot = VM_PROT_ALL;
} else {
/*
* Mapping file, get fp for validation. Obtain vnode and make
* sure it is of appropriate type.
*/
if (((unsigned) uap->fd) >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[uap->fd]) == NULL)
return (EBADF);
if (fp->f_type != DTYPE_VNODE)
return (EINVAL);
vp = (struct vnode *) fp->f_data;
if (vp->v_type != VREG && vp->v_type != VCHR)
return (EINVAL);
/*
* XXX hack to handle use of /dev/zero to map anon memory (ala
* SunOS).
*/
if (vp->v_type == VCHR && iszerodev(vp->v_rdev)) {
handle = NULL;
maxprot = VM_PROT_ALL;
flags |= MAP_ANON;
} else {
/*
* Ensure that file and memory protections are
* compatible. Note that we only worry about
* writability if mapping is shared; in this case,
* current and max prot are dictated by the open file.
* XXX use the vnode instead? Problem is: what
* credentials do we use for determination? What if
* proc does a setuid?
*/
maxprot = VM_PROT_EXECUTE; /* ??? */
if (fp->f_flag & FREAD)
maxprot |= VM_PROT_READ;
else if (prot & PROT_READ)
return (EACCES);
if (flags & MAP_SHARED) {
if (fp->f_flag & FWRITE)
maxprot |= VM_PROT_WRITE;
else if (prot & PROT_WRITE)
return (EACCES);
} else
maxprot |= VM_PROT_WRITE;
handle = (caddr_t) vp;
}
}
error = vm_mmap(&p->p_vmspace->vm_map, &addr, size, prot, maxprot,
flags, handle, (vm_offset_t) uap->pos);
if (error == 0)
*retval = (int) addr;
return (error);
}
#ifdef COMPAT_43
struct ommap_args {
caddr_t addr;
int len;
int prot;
int flags;
int fd;
long pos;
};
int
ommap(p, uap, retval)
struct proc *p;
register struct ommap_args *uap;
int *retval;
{
struct mmap_args nargs;
static const char cvtbsdprot[8] = {
0,
PROT_EXEC,
PROT_WRITE,
PROT_EXEC | PROT_WRITE,
PROT_READ,
PROT_EXEC | PROT_READ,
PROT_WRITE | PROT_READ,
PROT_EXEC | PROT_WRITE | PROT_READ,
};
#define OMAP_ANON 0x0002
#define OMAP_COPY 0x0020
#define OMAP_SHARED 0x0010
#define OMAP_FIXED 0x0100
#define OMAP_INHERIT 0x0800
nargs.addr = uap->addr;
nargs.len = uap->len;
nargs.prot = cvtbsdprot[uap->prot & 0x7];
nargs.flags = 0;
if (uap->flags & OMAP_ANON)
nargs.flags |= MAP_ANON;
if (uap->flags & OMAP_COPY)
nargs.flags |= MAP_COPY;
if (uap->flags & OMAP_SHARED)
nargs.flags |= MAP_SHARED;
else
nargs.flags |= MAP_PRIVATE;
if (uap->flags & OMAP_FIXED)
nargs.flags |= MAP_FIXED;
if (uap->flags & OMAP_INHERIT)
nargs.flags |= MAP_INHERIT;
nargs.fd = uap->fd;
nargs.pos = uap->pos;
return (mmap(p, &nargs, retval));
}
#endif /* COMPAT_43 */
struct msync_args {
caddr_t addr;
int len;
int flags;
};
int
msync(p, uap, retval)
struct proc *p;
struct msync_args *uap;
int *retval;
{
vm_offset_t addr;
vm_size_t size;
int flags;
vm_map_t map;
int rv;
map = &p->p_vmspace->vm_map;
addr = (vm_offset_t) uap->addr;
size = (vm_size_t) uap->len;
flags = uap->flags;
if (((int) addr & PAGE_MASK) || addr + size < addr ||
(flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE))
return (EINVAL);
/*
* XXX Gak! If size is zero we are supposed to sync "all modified
* pages with the region containing addr". Unfortunately, we don't
* really keep track of individual mmaps so we approximate by flushing
* the range of the map entry containing addr. This can be incorrect
* if the region splits or is coalesced with a neighbor.
*/
if (size == 0) {
vm_map_entry_t entry;
vm_map_lock_read(map);
rv = vm_map_lookup_entry(map, addr, &entry);
vm_map_unlock_read(map);
if (rv == FALSE)
return (EINVAL);
addr = entry->start;
size = entry->end - entry->start;
}
/*
* Clean the pages and interpret the return value.
*/
rv = vm_map_clean(map, addr, addr + size, (flags & MS_ASYNC) == 0,
(flags & MS_INVALIDATE) != 0);
switch (rv) {
case KERN_SUCCESS:
break;
case KERN_INVALID_ADDRESS:
return (EINVAL); /* Sun returns ENOMEM? */
case KERN_FAILURE:
return (EIO);
default:
return (EINVAL);
}
return (0);
}
struct munmap_args {
caddr_t addr;
int len;
};
int
munmap(p, uap, retval)
register struct proc *p;
register struct munmap_args *uap;
int *retval;
{
vm_offset_t addr;
vm_size_t size;
vm_map_t map;
addr = (vm_offset_t) uap->addr;
if ((addr & PAGE_MASK) || uap->len < 0)
return (EINVAL);
size = (vm_size_t) round_page(uap->len);
if (size == 0)
return (0);
/*
* Check for illegal addresses. Watch out for address wrap... Note
* that VM_*_ADDRESS are not constants due to casts (argh).
*/
if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
return (EINVAL);
#ifndef i386
if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
return (EINVAL);
#endif
if (addr + size < addr)
return (EINVAL);
map = &p->p_vmspace->vm_map;
/*
* Make sure entire range is allocated.
*/
if (!vm_map_check_protection(map, addr, addr + size, VM_PROT_NONE))
return (EINVAL);
/* returns nothing but KERN_SUCCESS anyway */
(void) vm_map_remove(map, addr, addr + size);
return (0);
}
void
munmapfd(p, fd)
struct proc *p;
int fd;
{
/*
* XXX should unmap any regions mapped to this file
*/
p->p_fd->fd_ofileflags[fd] &= ~UF_MAPPED;
}
struct mprotect_args {
caddr_t addr;
int len;
int prot;
};
int
mprotect(p, uap, retval)
struct proc *p;
struct mprotect_args *uap;
int *retval;
{
vm_offset_t addr;
vm_size_t size;
register vm_prot_t prot;
addr = (vm_offset_t) uap->addr;
if ((addr & PAGE_MASK) || uap->len < 0)
return (EINVAL);
size = (vm_size_t) uap->len;
prot = uap->prot & VM_PROT_ALL;
switch (vm_map_protect(&p->p_vmspace->vm_map, addr, addr + size, prot,
FALSE)) {
case KERN_SUCCESS:
return (0);
case KERN_PROTECTION_FAILURE:
return (EACCES);
}
return (EINVAL);
}
struct madvise_args {
caddr_t addr;
int len;
int behav;
};
/* ARGSUSED */
int
madvise(p, uap, retval)
struct proc *p;
struct madvise_args *uap;
int *retval;
{
/* Not yet implemented */
return (EOPNOTSUPP);
}
struct mincore_args {
caddr_t addr;
int len;
char *vec;
};
/* ARGSUSED */
int
mincore(p, uap, retval)
struct proc *p;
struct mincore_args *uap;
int *retval;
{
/* Not yet implemented */
return (EOPNOTSUPP);
}
struct mlock_args {
caddr_t addr;
size_t len;
};
int
mlock(p, uap, retval)
struct proc *p;
struct mlock_args *uap;
int *retval;
{
vm_offset_t addr;
vm_size_t size;
int error;
addr = (vm_offset_t) uap->addr;
if ((addr & PAGE_MASK) || uap->addr + uap->len < uap->addr)
return (EINVAL);
size = round_page((vm_size_t) uap->len);
if (atop(size) + cnt.v_wire_count > vm_page_max_wired)
return (EAGAIN);
#ifdef pmap_wired_count
if (size + ptoa(pmap_wired_count(vm_map_pmap(&p->p_vmspace->vm_map))) >
p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur)
return (EAGAIN);
#else
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
#endif
error = vm_map_pageable(&p->p_vmspace->vm_map, addr, addr + size, FALSE);
return (error == KERN_SUCCESS ? 0 : ENOMEM);
}
struct munlock_args {
caddr_t addr;
size_t len;
};
int
munlock(p, uap, retval)
struct proc *p;
struct munlock_args *uap;
int *retval;
{
vm_offset_t addr;
vm_size_t size;
int error;
addr = (vm_offset_t) uap->addr;
if ((addr & PAGE_MASK) || uap->addr + uap->len < uap->addr)
return (EINVAL);
#ifndef pmap_wired_count
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
#endif
size = round_page((vm_size_t) uap->len);
error = vm_map_pageable(&p->p_vmspace->vm_map, addr, addr + size, TRUE);
return (error == KERN_SUCCESS ? 0 : ENOMEM);
}
/*
* Internal version of mmap.
* Currently used by mmap, exec, and sys5 shared memory.
* Handle is either a vnode pointer or NULL for MAP_ANON.
*/
int
vm_mmap(map, addr, size, prot, maxprot, flags, handle, foff)
register vm_map_t map;
register vm_offset_t *addr;
register vm_size_t size;
vm_prot_t prot, maxprot;
register int flags;
caddr_t handle; /* XXX should be vp */
vm_offset_t foff;
{
boolean_t fitit;
vm_object_t object;
struct vnode *vp = NULL;
objtype_t type;
int rv = KERN_SUCCESS;
vm_size_t objsize;
struct proc *p = curproc;
if (size == 0)
return (0);
objsize = size = round_page(size);
/*
* We currently can only deal with page aligned file offsets.
* The check is here rather than in the syscall because the
* kernel calls this function internally for other mmaping
* operations (such as in exec) and non-aligned offsets will
* cause pmap inconsistencies...so we want to be sure to
* disallow this in all cases.
*/
if (foff & PAGE_MASK)
return (EINVAL);
if ((flags & MAP_FIXED) == 0) {
fitit = TRUE;
*addr = round_page(*addr);
} else {
if (*addr != trunc_page(*addr))
return (EINVAL);
fitit = FALSE;
(void) vm_map_remove(map, *addr, *addr + size);
}
/*
* Lookup/allocate object.
*/
if (flags & MAP_ANON) {
type = OBJT_SWAP;
/*
* Unnamed anonymous regions always start at 0.
*/
if (handle == 0)
foff = 0;
} else {
vp = (struct vnode *) handle;
if (vp->v_type == VCHR) {
type = OBJT_DEVICE;
handle = (caddr_t) vp->v_rdev;
} else {
struct vattr vat;
int error;
error = VOP_GETATTR(vp, &vat, p->p_ucred, p);
if (error)
return (error);
objsize = vat.va_size;
type = OBJT_VNODE;
}
}
object = vm_pager_allocate(type, handle, objsize, prot, foff);
if (object == NULL)
return (type == OBJT_DEVICE ? EINVAL : ENOMEM);
/*
* Anonymous memory, shared file, or character special file.
*/
if ((flags & (MAP_ANON|MAP_SHARED)) || (type == OBJT_DEVICE)) {
rv = vm_map_find(map, object, foff, addr, size, fitit);
if (rv != KERN_SUCCESS) {
/*
* Lose the object reference. Will destroy the
* object if it's an unnamed anonymous mapping
* or named anonymous without other references.
*/
vm_object_deallocate(object);
goto out;
}
}
/*
* mmap a COW regular file
*/
else {
vm_map_entry_t entry;
vm_object_t private_object;
/*
* Create a new object and make the original object
* the backing object. NOTE: the object reference gained
* above is now changed into the reference held by
* private_object. Since we don't map 'object', we want
* only this one reference.
*/
private_object = vm_object_allocate(OBJT_DEFAULT, object->size);
private_object->backing_object = object;
TAILQ_INSERT_TAIL(&object->shadow_head,
private_object, shadow_list);
rv = vm_map_find(map, private_object, foff, addr, size, fitit);
if (rv != KERN_SUCCESS) {
vm_object_deallocate(private_object);
goto out;
}
if (!vm_map_lookup_entry(map, *addr, &entry)) {
panic("vm_mmap: missing map entry!!!");
}
entry->copy_on_write = TRUE;
/*
* set pages COW and protect for read access only
*/
vm_object_pmap_copy(object, foff, foff + size);
}
/*
* "Pre-fault" resident pages.
*/
if ((type == OBJT_VNODE) && (map->pmap != NULL)) {
pmap_object_init_pt(map->pmap, *addr, object, foff, size);
}
/*
* Correct protection (default is VM_PROT_ALL). If maxprot is
* different than prot, we must set both explicitly.
*/
rv = KERN_SUCCESS;
if (maxprot != VM_PROT_ALL)
rv = vm_map_protect(map, *addr, *addr + size, maxprot, TRUE);
if (rv == KERN_SUCCESS && prot != maxprot)
rv = vm_map_protect(map, *addr, *addr + size, prot, FALSE);
if (rv != KERN_SUCCESS) {
(void) vm_map_remove(map, *addr, *addr + size);
goto out;
}
/*
* Shared memory is also shared with children.
*/
if (flags & MAP_SHARED) {
rv = vm_map_inherit(map, *addr, *addr + size, VM_INHERIT_SHARE);
if (rv != KERN_SUCCESS) {
(void) vm_map_remove(map, *addr, *addr + size);
goto out;
}
}
out:
switch (rv) {
case KERN_SUCCESS:
return (0);
case KERN_INVALID_ADDRESS:
case KERN_NO_SPACE:
return (ENOMEM);
case KERN_PROTECTION_FAILURE:
return (EACCES);
default:
return (EINVAL);
}
}