0a619128b1
this is a noop on all current freebsd architectures MFC after: 1 month
5466 lines
156 KiB
C
5466 lines
156 KiB
C
/*-
|
|
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <contrib/dev/ath/ah_desc.h>
|
|
#include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
/* unaligned little endian access */
|
|
#define LE_READ_2(p) \
|
|
((u_int16_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
|
|
#define LE_READ_4(p) \
|
|
((u_int32_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
|
|
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
|
|
|
|
enum {
|
|
ATH_LED_TX,
|
|
ATH_LED_RX,
|
|
ATH_LED_POLL,
|
|
};
|
|
|
|
static void ath_init(void *);
|
|
static void ath_stop_locked(struct ifnet *);
|
|
static void ath_stop(struct ifnet *);
|
|
static void ath_start(struct ifnet *);
|
|
static int ath_reset(struct ifnet *);
|
|
static int ath_media_change(struct ifnet *);
|
|
static void ath_watchdog(struct ifnet *);
|
|
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void ath_fatal_proc(void *, int);
|
|
static void ath_rxorn_proc(void *, int);
|
|
static void ath_bmiss_proc(void *, int);
|
|
static void ath_radar_proc(void *, int);
|
|
static int ath_key_alloc(struct ieee80211com *,
|
|
const struct ieee80211_key *,
|
|
ieee80211_keyix *, ieee80211_keyix *);
|
|
static int ath_key_delete(struct ieee80211com *,
|
|
const struct ieee80211_key *);
|
|
static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN]);
|
|
static void ath_key_update_begin(struct ieee80211com *);
|
|
static void ath_key_update_end(struct ieee80211com *);
|
|
static void ath_mode_init(struct ath_softc *);
|
|
static void ath_setslottime(struct ath_softc *);
|
|
static void ath_updateslot(struct ifnet *);
|
|
static int ath_beaconq_setup(struct ath_hal *);
|
|
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
|
|
static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
|
|
static void ath_beacon_proc(void *, int);
|
|
static void ath_bstuck_proc(void *, int);
|
|
static void ath_beacon_free(struct ath_softc *);
|
|
static void ath_beacon_config(struct ath_softc *);
|
|
static void ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *, ath_bufhead *);
|
|
static int ath_desc_alloc(struct ath_softc *);
|
|
static void ath_desc_free(struct ath_softc *);
|
|
static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
|
|
static void ath_node_free(struct ieee80211_node *);
|
|
static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
|
|
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
|
|
static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
|
|
struct ieee80211_node *ni,
|
|
int subtype, int rssi, u_int32_t rstamp);
|
|
static void ath_setdefantenna(struct ath_softc *, u_int);
|
|
static void ath_rx_proc(void *, int);
|
|
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
|
|
static int ath_tx_setup(struct ath_softc *, int, int);
|
|
static int ath_wme_update(struct ieee80211com *);
|
|
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
|
|
static void ath_tx_cleanup(struct ath_softc *);
|
|
static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
|
|
struct ath_buf *, struct mbuf *);
|
|
static void ath_tx_proc_q0(void *, int);
|
|
static void ath_tx_proc_q0123(void *, int);
|
|
static void ath_tx_proc(void *, int);
|
|
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_draintxq(struct ath_softc *);
|
|
static void ath_stoprecv(struct ath_softc *);
|
|
static int ath_startrecv(struct ath_softc *);
|
|
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_next_scan(void *);
|
|
static void ath_calibrate(void *);
|
|
static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
static void ath_setup_stationkey(struct ieee80211_node *);
|
|
static void ath_newassoc(struct ieee80211_node *, int);
|
|
static int ath_getchannels(struct ath_softc *, u_int cc,
|
|
HAL_BOOL outdoor, HAL_BOOL xchanmode);
|
|
static void ath_led_event(struct ath_softc *, int);
|
|
static void ath_update_txpow(struct ath_softc *);
|
|
|
|
static int ath_rate_setup(struct ath_softc *, u_int mode);
|
|
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
|
|
|
|
static void ath_sysctlattach(struct ath_softc *);
|
|
static void ath_bpfattach(struct ath_softc *);
|
|
static void ath_announce(struct ath_softc *);
|
|
|
|
SYSCTL_DECL(_hw_ath);
|
|
|
|
/* XXX validate sysctl values */
|
|
static int ath_dwelltime = 200; /* 5 channels/second */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
|
|
0, "channel dwell time (ms) for AP/station scanning");
|
|
static int ath_calinterval = 30; /* calibrate every 30 secs */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
|
|
0, "chip calibration interval (secs)");
|
|
static int ath_outdoor = AH_TRUE; /* outdoor operation */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
|
|
0, "outdoor operation");
|
|
TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
|
|
static int ath_xchanmode = AH_TRUE; /* extended channel use */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
|
|
0, "extended channel mode");
|
|
TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
|
|
static int ath_countrycode = CTRY_DEFAULT; /* country code */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
|
|
0, "country code");
|
|
TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
|
|
static int ath_regdomain = 0; /* regulatory domain */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
|
|
0, "regulatory domain");
|
|
|
|
static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
|
|
0, "rx buffers allocated");
|
|
TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
|
|
static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
|
|
0, "tx buffers allocated");
|
|
TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
|
|
|
|
#ifdef ATH_DEBUG
|
|
static int ath_debug = 0;
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
|
|
0, "control debugging printfs");
|
|
TUNABLE_INT("hw.ath.debug", &ath_debug);
|
|
enum {
|
|
ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
|
|
ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
|
|
ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
|
|
ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
|
|
ATH_DEBUG_RATE = 0x00000010, /* rate control */
|
|
ATH_DEBUG_RESET = 0x00000020, /* reset processing */
|
|
ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
|
|
ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
|
|
ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
|
|
ATH_DEBUG_INTR = 0x00001000, /* ISR */
|
|
ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
|
|
ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
|
|
ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
|
|
ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
|
|
ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
|
|
ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
|
|
ATH_DEBUG_NODE = 0x00080000, /* node management */
|
|
ATH_DEBUG_LED = 0x00100000, /* led management */
|
|
ATH_DEBUG_FF = 0x00200000, /* fast frames */
|
|
ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
|
|
ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
|
|
ATH_DEBUG_ANY = 0xffffffff
|
|
};
|
|
#define IFF_DUMPPKTS(sc, m) \
|
|
((sc->sc_debug & (m)) || \
|
|
(sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
if (sc->sc_debug & (m)) \
|
|
printf(fmt, __VA_ARGS__); \
|
|
} while (0)
|
|
#define KEYPRINTF(sc, ix, hk, mac) do { \
|
|
if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
|
|
ath_keyprint(__func__, ix, hk, mac); \
|
|
} while (0)
|
|
static void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
|
|
static void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
|
|
#else
|
|
#define IFF_DUMPPKTS(sc, m) \
|
|
((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
(void) sc; \
|
|
} while (0)
|
|
#define KEYPRINTF(sc, k, ix, mac) do { \
|
|
(void) sc; \
|
|
} while (0)
|
|
#endif
|
|
|
|
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
|
|
|
|
int
|
|
ath_attach(u_int16_t devid, struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = NULL;
|
|
HAL_STATUS status;
|
|
int error = 0, i;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc->sc_dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto bad;
|
|
}
|
|
|
|
/* set these up early for if_printf use */
|
|
if_initname(ifp, device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
|
|
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
|
|
if (ah == NULL) {
|
|
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
|
|
status);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
if (ah->ah_abi != HAL_ABI_VERSION) {
|
|
if_printf(ifp, "HAL ABI mismatch detected "
|
|
"(HAL:0x%x != driver:0x%x)\n",
|
|
ah->ah_abi, HAL_ABI_VERSION);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
|
|
|
|
/*
|
|
* Check if the MAC has multi-rate retry support.
|
|
* We do this by trying to setup a fake extended
|
|
* descriptor. MAC's that don't have support will
|
|
* return false w/o doing anything. MAC's that do
|
|
* support it will return true w/o doing anything.
|
|
*/
|
|
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
|
|
|
|
/*
|
|
* Check if the device has hardware counters for PHY
|
|
* errors. If so we need to enable the MIB interrupt
|
|
* so we can act on stat triggers.
|
|
*/
|
|
if (ath_hal_hwphycounters(ah))
|
|
sc->sc_needmib = 1;
|
|
|
|
/*
|
|
* Get the hardware key cache size.
|
|
*/
|
|
sc->sc_keymax = ath_hal_keycachesize(ah);
|
|
if (sc->sc_keymax > ATH_KEYMAX) {
|
|
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
|
|
ATH_KEYMAX, sc->sc_keymax);
|
|
sc->sc_keymax = ATH_KEYMAX;
|
|
}
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath_hal_keyreset(ah, i);
|
|
/*
|
|
* Mark key cache slots associated with global keys
|
|
* as in use. If we knew TKIP was not to be used we
|
|
* could leave the +32, +64, and +32+64 slots free.
|
|
* XXX only for splitmic.
|
|
*/
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
setbit(sc->sc_keymap, i);
|
|
setbit(sc->sc_keymap, i+32);
|
|
setbit(sc->sc_keymap, i+64);
|
|
setbit(sc->sc_keymap, i+32+64);
|
|
}
|
|
|
|
/*
|
|
* Collect the channel list using the default country
|
|
* code and including outdoor channels. The 802.11 layer
|
|
* is resposible for filtering this list based on settings
|
|
* like the phy mode.
|
|
*/
|
|
error = ath_getchannels(sc, ath_countrycode,
|
|
ath_outdoor, ath_xchanmode);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Setup rate tables for all potential media types.
|
|
*/
|
|
ath_rate_setup(sc, IEEE80211_MODE_11A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11B);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
|
|
/* NB: setup here so ath_rate_update is happy */
|
|
ath_setcurmode(sc, IEEE80211_MODE_11A);
|
|
|
|
/*
|
|
* Allocate tx+rx descriptors and populate the lists.
|
|
*/
|
|
error = ath_desc_alloc(sc);
|
|
if (error != 0) {
|
|
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
|
|
callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
|
|
callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
|
|
|
|
ATH_TXBUF_LOCK_INIT(sc);
|
|
|
|
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &sc->sc_tq);
|
|
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
|
|
"%s taskq", ifp->if_xname);
|
|
|
|
TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
|
|
TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
|
|
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
|
|
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
|
|
TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles reseting
|
|
* these queues at the needed time.
|
|
*
|
|
* XXX PS-Poll
|
|
*/
|
|
sc->sc_bhalq = ath_beaconq_setup(ah);
|
|
if (sc->sc_bhalq == (u_int) -1) {
|
|
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
|
|
if (sc->sc_cabq == NULL) {
|
|
if_printf(ifp, "unable to setup CAB xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
/* NB: insure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
|
|
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
|
|
ieee80211_wme_acnames[WME_AC_BK]);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
|
|
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
|
|
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
|
|
/*
|
|
* Not enough hardware tx queues to properly do WME;
|
|
* just punt and assign them all to the same h/w queue.
|
|
* We could do a better job of this if, for example,
|
|
* we allocate queues when we switch from station to
|
|
* AP mode.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_VI] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
|
|
if (sc->sc_ac2q[WME_AC_BE] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
|
|
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
|
|
}
|
|
|
|
/*
|
|
* Special case certain configurations. Note the
|
|
* CAB queue is handled by these specially so don't
|
|
* include them when checking the txq setup mask.
|
|
*/
|
|
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
|
|
case 0x01:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
|
|
break;
|
|
case 0x0f:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
|
|
break;
|
|
default:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Setup rate control. Some rate control modules
|
|
* call back to change the anntena state so expose
|
|
* the necessary entry points.
|
|
* XXX maybe belongs in struct ath_ratectrl?
|
|
*/
|
|
sc->sc_setdefantenna = ath_setdefantenna;
|
|
sc->sc_rc = ath_rate_attach(sc);
|
|
if (sc->sc_rc == NULL) {
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
sc->sc_blinking = 0;
|
|
sc->sc_ledstate = 1;
|
|
sc->sc_ledon = 0; /* low true */
|
|
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
|
|
callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
|
|
/*
|
|
* Auto-enable soft led processing for IBM cards and for
|
|
* 5211 minipci cards. Users can also manually enable/disable
|
|
* support with a sysctl.
|
|
*/
|
|
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
|
|
if (sc->sc_softled) {
|
|
ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
|
|
ifp->if_start = ath_start;
|
|
ifp->if_watchdog = ath_watchdog;
|
|
ifp->if_ioctl = ath_ioctl;
|
|
ifp->if_init = ath_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_reset = ath_reset;
|
|
ic->ic_newassoc = ath_newassoc;
|
|
ic->ic_updateslot = ath_updateslot;
|
|
ic->ic_wme.wme_update = ath_wme_update;
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps =
|
|
IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
|
|
| IEEE80211_C_HOSTAP /* hostap mode */
|
|
| IEEE80211_C_MONITOR /* monitor mode */
|
|
| IEEE80211_C_AHDEMO /* adhoc demo mode */
|
|
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
|
|
;
|
|
/*
|
|
* Query the hal to figure out h/w crypto support.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
|
|
ic->ic_caps |= IEEE80211_C_WEP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
|
|
ic->ic_caps |= IEEE80211_C_AES;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
|
|
ic->ic_caps |= IEEE80211_C_AES_CCM;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
|
|
ic->ic_caps |= IEEE80211_C_CKIP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
|
|
ic->ic_caps |= IEEE80211_C_TKIP;
|
|
/*
|
|
* Check if h/w does the MIC and/or whether the
|
|
* separate key cache entries are required to
|
|
* handle both tx+rx MIC keys.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
|
|
ic->ic_caps |= IEEE80211_C_TKIPMIC;
|
|
if (ath_hal_tkipsplit(ah))
|
|
sc->sc_splitmic = 1;
|
|
}
|
|
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
|
|
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
|
|
/*
|
|
* TPC support can be done either with a global cap or
|
|
* per-packet support. The latter is not available on
|
|
* all parts. We're a bit pedantic here as all parts
|
|
* support a global cap.
|
|
*/
|
|
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
|
|
ic->ic_caps |= IEEE80211_C_TXPMGT;
|
|
|
|
/*
|
|
* Mark WME capability only if we have sufficient
|
|
* hardware queues to do proper priority scheduling.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
|
|
ic->ic_caps |= IEEE80211_C_WME;
|
|
/*
|
|
* Check for misc other capabilities.
|
|
*/
|
|
if (ath_hal_hasbursting(ah))
|
|
ic->ic_caps |= IEEE80211_C_BURST;
|
|
|
|
/*
|
|
* Indicate we need the 802.11 header padded to a
|
|
* 32-bit boundary for 4-address and QoS frames.
|
|
*/
|
|
ic->ic_flags |= IEEE80211_F_DATAPAD;
|
|
|
|
/*
|
|
* Query the hal about antenna support.
|
|
*/
|
|
sc->sc_defant = ath_hal_getdefantenna(ah);
|
|
|
|
/*
|
|
* Not all chips have the VEOL support we want to
|
|
* use with IBSS beacons; check here for it.
|
|
*/
|
|
sc->sc_hasveol = ath_hal_hasveol(ah);
|
|
|
|
/* get mac address from hardware */
|
|
ath_hal_getmac(ah, ic->ic_myaddr);
|
|
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ic);
|
|
sc->sc_opmode = ic->ic_opmode;
|
|
/* override default methods */
|
|
ic->ic_node_alloc = ath_node_alloc;
|
|
sc->sc_node_free = ic->ic_node_free;
|
|
ic->ic_node_free = ath_node_free;
|
|
ic->ic_node_getrssi = ath_node_getrssi;
|
|
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
|
|
ic->ic_recv_mgmt = ath_recv_mgmt;
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = ath_newstate;
|
|
ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
|
|
ic->ic_crypto.cs_key_alloc = ath_key_alloc;
|
|
ic->ic_crypto.cs_key_delete = ath_key_delete;
|
|
ic->ic_crypto.cs_key_set = ath_key_set;
|
|
ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
|
|
ic->ic_crypto.cs_key_update_end = ath_key_update_end;
|
|
/* complete initialization */
|
|
ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
|
|
|
|
ath_bpfattach(sc);
|
|
/*
|
|
* Setup dynamic sysctl's now that country code and
|
|
* regdomain are available from the hal.
|
|
*/
|
|
ath_sysctlattach(sc);
|
|
|
|
if (bootverbose)
|
|
ieee80211_announce(ic);
|
|
ath_announce(sc);
|
|
return 0;
|
|
bad2:
|
|
ath_tx_cleanup(sc);
|
|
ath_desc_free(sc);
|
|
bad:
|
|
if (ah)
|
|
ath_hal_detach(ah);
|
|
if (ifp != NULL)
|
|
if_free(ifp);
|
|
sc->sc_invalid = 1;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ath_detach(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ath_stop(ifp);
|
|
bpfdetach(ifp);
|
|
/*
|
|
* NB: the order of these is important:
|
|
* o call the 802.11 layer before detaching the hal to
|
|
* insure callbacks into the driver to delete global
|
|
* key cache entries can be handled
|
|
* o reclaim the tx queue data structures after calling
|
|
* the 802.11 layer as we'll get called back to reclaim
|
|
* node state and potentially want to use them
|
|
* o to cleanup the tx queues the hal is called, so detach
|
|
* it last
|
|
* Other than that, it's straightforward...
|
|
*/
|
|
ieee80211_ifdetach(&sc->sc_ic);
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->detach(sc->sc_tx99);
|
|
#endif
|
|
taskqueue_free(sc->sc_tq);
|
|
ath_rate_detach(sc->sc_rc);
|
|
ath_desc_free(sc);
|
|
ath_tx_cleanup(sc);
|
|
ath_hal_detach(sc->sc_ah);
|
|
if_free(ifp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_suspend(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ath_stop(ifp);
|
|
}
|
|
|
|
void
|
|
ath_resume(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
ath_init(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
ath_start(ifp);
|
|
}
|
|
if (sc->sc_softled) {
|
|
ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_shutdown(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ath_stop(ifp);
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler. Most of the actual processing is deferred.
|
|
*/
|
|
void
|
|
ath_intr(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_INT status;
|
|
|
|
if (sc->sc_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
|
|
return;
|
|
}
|
|
if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
|
|
return;
|
|
if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
|
|
IFF_DRV_RUNNING))) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags);
|
|
ath_hal_getisr(ah, &status); /* clear ISR */
|
|
ath_hal_intrset(ah, 0); /* disable further intr's */
|
|
return;
|
|
}
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
|
|
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
|
|
status &= sc->sc_imask; /* discard unasked for bits */
|
|
if (status & HAL_INT_FATAL) {
|
|
sc->sc_stats.ast_hardware++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
ath_fatal_proc(sc, 0);
|
|
} else if (status & HAL_INT_RXORN) {
|
|
sc->sc_stats.ast_rxorn++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
|
|
} else {
|
|
if (status & HAL_INT_SWBA) {
|
|
/*
|
|
* Software beacon alert--time to send a beacon.
|
|
* Handle beacon transmission directly; deferring
|
|
* this is too slow to meet timing constraints
|
|
* under load.
|
|
*/
|
|
ath_beacon_proc(sc, 0);
|
|
}
|
|
if (status & HAL_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work at
|
|
* least on older hardware revs.
|
|
*/
|
|
sc->sc_stats.ast_rxeol++;
|
|
sc->sc_rxlink = NULL;
|
|
}
|
|
if (status & HAL_INT_TXURN) {
|
|
sc->sc_stats.ast_txurn++;
|
|
/* bump tx trigger level */
|
|
ath_hal_updatetxtriglevel(ah, AH_TRUE);
|
|
}
|
|
if (status & HAL_INT_RX)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
if (status & HAL_INT_TX)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
|
|
if (status & HAL_INT_BMISS) {
|
|
sc->sc_stats.ast_bmiss++;
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
|
|
}
|
|
if (status & HAL_INT_MIB) {
|
|
sc->sc_stats.ast_mib++;
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to fire.
|
|
*/
|
|
ath_hal_intrset(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume it will
|
|
* clear whatever condition caused the interrupt.
|
|
*/
|
|
ath_hal_mibevent(ah, &sc->sc_halstats);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_fatal_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t *state;
|
|
u_int32_t len;
|
|
|
|
if_printf(ifp, "hardware error; resetting\n");
|
|
/*
|
|
* Fatal errors are unrecoverable. Typically these
|
|
* are caused by DMA errors. Collect h/w state from
|
|
* the hal so we can diagnose what's going on.
|
|
*/
|
|
if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
|
|
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
|
|
if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
|
|
state[0], state[1] , state[2], state[3],
|
|
state[4], state[5]);
|
|
}
|
|
ath_reset(ifp);
|
|
}
|
|
|
|
static void
|
|
ath_rxorn_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
if_printf(ifp, "rx FIFO overrun; resetting\n");
|
|
ath_reset(ifp);
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
|
|
KASSERT(ic->ic_opmode == IEEE80211_M_STA,
|
|
("unexpect operating mode %u", ic->ic_opmode));
|
|
if (ic->ic_state == IEEE80211_S_RUN) {
|
|
u_int64_t lastrx = sc->sc_lastrx;
|
|
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
|
|
u_int bmisstimeout =
|
|
ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
|
|
__func__, (unsigned long long) tsf,
|
|
(unsigned long long)(tsf - lastrx),
|
|
(unsigned long long) lastrx, bmisstimeout);
|
|
/*
|
|
* Workaround phantom bmiss interrupts by sanity-checking
|
|
* the time of our last rx'd frame. If it is within the
|
|
* beacon miss interval then ignore the interrupt. If it's
|
|
* truly a bmiss we'll get another interrupt soon and that'll
|
|
* be dispatched up for processing.
|
|
*/
|
|
if (tsf - lastrx > bmisstimeout) {
|
|
NET_LOCK_GIANT();
|
|
ieee80211_beacon_miss(ic);
|
|
NET_UNLOCK_GIANT();
|
|
} else
|
|
sc->sc_stats.ast_bmiss_phantom++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_radar_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_CHANNEL hchan;
|
|
|
|
if (ath_hal_procdfs(ah, &hchan)) {
|
|
if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
|
|
hchan.channel, hchan.channelFlags, hchan.privFlags);
|
|
/*
|
|
* Initiate channel change.
|
|
*/
|
|
/* XXX not yet */
|
|
}
|
|
}
|
|
|
|
static u_int
|
|
ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
|
|
{
|
|
#define N(a) (sizeof(a) / sizeof(a[0]))
|
|
static const u_int modeflags[] = {
|
|
0, /* IEEE80211_MODE_AUTO */
|
|
CHANNEL_A, /* IEEE80211_MODE_11A */
|
|
CHANNEL_B, /* IEEE80211_MODE_11B */
|
|
CHANNEL_PUREG, /* IEEE80211_MODE_11G */
|
|
0, /* IEEE80211_MODE_FH */
|
|
CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
|
|
CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
|
|
};
|
|
enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
|
|
|
|
KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
|
|
KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
|
|
return modeflags[mode];
|
|
#undef N
|
|
}
|
|
|
|
static void
|
|
ath_init(void *arg)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Stop anything previously setup. This is safe
|
|
* whether this is the first time through or not.
|
|
*/
|
|
ath_stop_locked(ifp);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
|
|
sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
|
|
if_printf(ifp, "unable to reset hardware; hal status %u\n",
|
|
status);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* This is needed only to setup initial state
|
|
* but it's best done after a reset.
|
|
*/
|
|
ath_update_txpow(sc);
|
|
/*
|
|
* Likewise this is set during reset so update
|
|
* state cached in the driver.
|
|
*/
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
sc->sc_calinterval = 1;
|
|
sc->sc_caltries = 0;
|
|
|
|
/*
|
|
* Setup the hardware after reset: the key cache
|
|
* is filled as needed and the receive engine is
|
|
* set going. Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(ifp, "unable to start recv logic\n");
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
|
|
| HAL_INT_RXEOL | HAL_INT_RXORN
|
|
| HAL_INT_FATAL | HAL_INT_GLOBAL;
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
|
|
sc->sc_imask |= HAL_INT_MIB;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/*
|
|
* The hardware should be ready to go now so it's safe
|
|
* to kick the 802.11 state machine as it's likely to
|
|
* immediately call back to us to send mgmt frames.
|
|
*/
|
|
ath_chan_change(sc, ic->ic_curchan);
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->start(sc->sc_tx99);
|
|
else
|
|
#endif
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
} else
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
done:
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
ath_stop_locked(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
|
|
__func__, sc->sc_invalid, ifp->if_flags);
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* reset 802.11 state machine
|
|
* turn off timers
|
|
* disable interrupts
|
|
* turn off the radio
|
|
* clear transmit machinery
|
|
* clear receive machinery
|
|
* drain and release tx queues
|
|
* reclaim beacon resources
|
|
* power down hardware
|
|
*
|
|
* Note that some of this work is not possible if the
|
|
* hardware is gone (invalid).
|
|
*/
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->stop(sc->sc_tx99);
|
|
#endif
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
ifp->if_timer = 0;
|
|
if (!sc->sc_invalid) {
|
|
if (sc->sc_softled) {
|
|
callout_stop(&sc->sc_ledtimer);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
sc->sc_blinking = 0;
|
|
}
|
|
ath_hal_intrset(ah, 0);
|
|
}
|
|
ath_draintxq(sc);
|
|
if (!sc->sc_invalid) {
|
|
ath_stoprecv(sc);
|
|
ath_hal_phydisable(ah);
|
|
} else
|
|
sc->sc_rxlink = NULL;
|
|
IFQ_DRV_PURGE(&ifp->if_snd);
|
|
ath_beacon_free(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_stop(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_stop_locked(ifp);
|
|
if (!sc->sc_invalid) {
|
|
/*
|
|
* Set the chip in full sleep mode. Note that we are
|
|
* careful to do this only when bringing the interface
|
|
* completely to a stop. When the chip is in this state
|
|
* it must be carefully woken up or references to
|
|
* registers in the PCI clock domain may freeze the bus
|
|
* (and system). This varies by chip and is mostly an
|
|
* issue with newer parts that go to sleep more quickly.
|
|
*/
|
|
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware w/o losing operational state. This is
|
|
* basically a more efficient way of doing ath_stop, ath_init,
|
|
* followed by state transitions to the current 802.11
|
|
* operational state. Used to recover from various errors and
|
|
* to reset or reload hardware state.
|
|
*/
|
|
static int
|
|
ath_reset(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_channel *c;
|
|
HAL_STATUS status;
|
|
|
|
/*
|
|
* Convert to a HAL channel description with the flags
|
|
* constrained to reflect the current operating mode.
|
|
*/
|
|
c = ic->ic_curchan;
|
|
sc->sc_curchan.channel = c->ic_freq;
|
|
sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
|
|
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* stop xmit side */
|
|
ath_stoprecv(sc); /* stop recv side */
|
|
/* NB: indicate channel change so we do a full reset */
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
|
|
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
|
|
__func__, status);
|
|
ath_update_txpow(sc); /* update tx power state */
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
sc->sc_calinterval = 1;
|
|
sc->sc_caltries = 0;
|
|
/*
|
|
* We may be doing a reset in response to an ioctl
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_chan_change(sc, c);
|
|
if (ath_startrecv(sc) != 0) /* restart recv */
|
|
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
|
|
if (ic->ic_state == IEEE80211_S_RUN)
|
|
ath_beacon_config(sc); /* restart beacons */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ath_start(ifp); /* restart xmit */
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_start(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh;
|
|
struct ether_header *eh;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
for (;;) {
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
bf = STAILQ_FIRST(&sc->sc_txbuf);
|
|
if (bf != NULL)
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
if (bf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
|
|
__func__);
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
/*
|
|
* Poll the management queue for frames; they
|
|
* have priority over normal data frames.
|
|
*/
|
|
IF_DEQUEUE(&ic->ic_mgtq, m);
|
|
if (m == NULL) {
|
|
/*
|
|
* No data frames go out unless we're associated.
|
|
*/
|
|
if (ic->ic_state != IEEE80211_S_RUN) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: discard data packet, state %s\n",
|
|
__func__,
|
|
ieee80211_state_name[ic->ic_state]);
|
|
sc->sc_stats.ast_tx_discard++;
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
|
|
if (m == NULL) {
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
break;
|
|
}
|
|
/*
|
|
* Find the node for the destination so we can do
|
|
* things like power save and fast frames aggregation.
|
|
*/
|
|
if (m->m_len < sizeof(struct ether_header) &&
|
|
(m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
|
|
ic->ic_stats.is_tx_nobuf++; /* XXX */
|
|
ni = NULL;
|
|
goto bad;
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
|
|
if (ni == NULL) {
|
|
/* NB: ieee80211_find_txnode does stat+msg */
|
|
m_freem(m);
|
|
goto bad;
|
|
}
|
|
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
|
|
(m->m_flags & M_PWR_SAV) == 0) {
|
|
/*
|
|
* Station in power save mode; pass the frame
|
|
* to the 802.11 layer and continue. We'll get
|
|
* the frame back when the time is right.
|
|
*/
|
|
ieee80211_pwrsave(ic, ni, m);
|
|
goto reclaim;
|
|
}
|
|
/* calculate priority so we can find the tx queue */
|
|
if (ieee80211_classify(ic, m, ni)) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: discard, classification failure\n",
|
|
__func__);
|
|
m_freem(m);
|
|
goto bad;
|
|
}
|
|
ifp->if_opackets++;
|
|
BPF_MTAP(ifp, m);
|
|
/*
|
|
* Encapsulate the packet in prep for transmission.
|
|
*/
|
|
m = ieee80211_encap(ic, m, ni);
|
|
if (m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: encapsulation failure\n",
|
|
__func__);
|
|
sc->sc_stats.ast_tx_encap++;
|
|
goto bad;
|
|
}
|
|
} else {
|
|
/*
|
|
* Hack! The referenced node pointer is in the
|
|
* rcvif field of the packet header. This is
|
|
* placed there by ieee80211_mgmt_output because
|
|
* we need to hold the reference with the frame
|
|
* and there's no other way (other than packet
|
|
* tags which we consider too expensive to use)
|
|
* to pass it along.
|
|
*/
|
|
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
|
|
/* fill time stamp */
|
|
u_int64_t tsf;
|
|
u_int32_t *tstamp;
|
|
|
|
tsf = ath_hal_gettsf64(ah);
|
|
/* XXX: adjust 100us delay to xmit */
|
|
tsf += 100;
|
|
tstamp = (u_int32_t *)&wh[1];
|
|
tstamp[0] = htole32(tsf & 0xffffffff);
|
|
tstamp[1] = htole32(tsf >> 32);
|
|
}
|
|
sc->sc_stats.ast_tx_mgmt++;
|
|
}
|
|
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
bad:
|
|
ifp->if_oerrors++;
|
|
reclaim:
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
if (ni != NULL)
|
|
ieee80211_free_node(ni);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_media_change(struct ifnet *ifp)
|
|
{
|
|
#define IS_UP(ifp) \
|
|
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error == ENETRESET) {
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
|
|
/*
|
|
* Adhoc demo mode is just ibss mode w/o beacons
|
|
* (mostly). The hal knows nothing about it;
|
|
* tell it we're operating in ibss mode.
|
|
*/
|
|
sc->sc_opmode = HAL_M_IBSS;
|
|
} else
|
|
sc->sc_opmode = ic->ic_opmode;
|
|
if (IS_UP(ifp))
|
|
ath_init(ifp->if_softc); /* XXX lose error */
|
|
error = 0;
|
|
}
|
|
return error;
|
|
#undef IS_UP
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
static void
|
|
ath_keyprint(const char *tag, u_int ix,
|
|
const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
static const char *ciphers[] = {
|
|
"WEP",
|
|
"AES-OCB",
|
|
"AES-CCM",
|
|
"CKIP",
|
|
"TKIP",
|
|
"CLR",
|
|
};
|
|
int i, n;
|
|
|
|
printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
|
|
for (i = 0, n = hk->kv_len; i < n; i++)
|
|
printf("%02x", hk->kv_val[i]);
|
|
printf(" mac %s", ether_sprintf(mac));
|
|
if (hk->kv_type == HAL_CIPHER_TKIP) {
|
|
printf(" mic ");
|
|
for (i = 0; i < sizeof(hk->kv_mic); i++)
|
|
printf("%02x", hk->kv_mic[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set a TKIP key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP.
|
|
*/
|
|
static int
|
|
ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
|
|
HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
#define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
|
|
static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
|
|
("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
|
|
KASSERT(sc->sc_splitmic, ("key cache !split"));
|
|
if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
|
|
/*
|
|
* TX key goes at first index, RX key at the rx index.
|
|
* The hal handles the MIC keys at index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
|
|
if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
|
|
return 0;
|
|
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
|
|
/* XXX delete tx key on failure? */
|
|
return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
|
|
} else if (k->wk_flags & IEEE80211_KEY_XR) {
|
|
/*
|
|
* TX/RX key goes at first index.
|
|
* The hal handles the MIC keys are index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
|
|
k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
}
|
|
return 0;
|
|
#undef IEEE80211_KEY_XR
|
|
}
|
|
|
|
/*
|
|
* Set a net80211 key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP with hardware MIC support.
|
|
*/
|
|
static int
|
|
ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
|
|
const u_int8_t mac0[IEEE80211_ADDR_LEN],
|
|
struct ieee80211_node *bss)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
static const u_int8_t ciphermap[] = {
|
|
HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
|
|
HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
|
|
HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
|
|
HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
|
|
(u_int8_t) -1, /* 4 is not allocated */
|
|
HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
|
|
HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
|
|
};
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int8_t gmac[IEEE80211_ADDR_LEN];
|
|
const u_int8_t *mac;
|
|
HAL_KEYVAL hk;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
/*
|
|
* Software crypto uses a "clear key" so non-crypto
|
|
* state kept in the key cache are maintained and
|
|
* so that rx frames have an entry to match.
|
|
*/
|
|
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
|
|
KASSERT(cip->ic_cipher < N(ciphermap),
|
|
("invalid cipher type %u", cip->ic_cipher));
|
|
hk.kv_type = ciphermap[cip->ic_cipher];
|
|
hk.kv_len = k->wk_keylen;
|
|
memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
|
|
} else
|
|
hk.kv_type = HAL_CIPHER_CLR;
|
|
|
|
if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
|
|
/*
|
|
* Group keys on hardware that supports multicast frame
|
|
* key search use a mac that is the sender's address with
|
|
* the high bit set instead of the app-specified address.
|
|
*/
|
|
IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
|
|
gmac[0] |= 0x80;
|
|
mac = gmac;
|
|
} else
|
|
mac = mac0;
|
|
|
|
if (hk.kv_type == HAL_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
|
|
sc->sc_splitmic) {
|
|
return ath_keyset_tkip(sc, k, &hk, mac);
|
|
} else {
|
|
KEYPRINTF(sc, k->wk_keyix, &hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
|
|
}
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate tx/rx key slots for TKIP. We allocate two slots for
|
|
* each key, one for decrypt/encrypt and the other for the MIC.
|
|
*/
|
|
static u_int16_t
|
|
key_alloc_2pair(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
KASSERT(sc->sc_splitmic, ("key cache !split"));
|
|
/* XXX could optimize */
|
|
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots in this byte are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1) {
|
|
again:
|
|
keyix++;
|
|
b >>= 1;
|
|
}
|
|
/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
|
|
if (isset(sc->sc_keymap, keyix+32) ||
|
|
isset(sc->sc_keymap, keyix+64) ||
|
|
isset(sc->sc_keymap, keyix+32+64)) {
|
|
/* full pair unavailable */
|
|
/* XXX statistic */
|
|
if (keyix == (i+1)*NBBY) {
|
|
/* no slots were appropriate, advance */
|
|
continue;
|
|
}
|
|
goto again;
|
|
}
|
|
setbit(sc->sc_keymap, keyix);
|
|
setbit(sc->sc_keymap, keyix+64);
|
|
setbit(sc->sc_keymap, keyix+32);
|
|
setbit(sc->sc_keymap, keyix+32+64);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: key pair %u,%u %u,%u\n",
|
|
__func__, keyix, keyix+64,
|
|
keyix+32, keyix+32+64);
|
|
*txkeyix = keyix;
|
|
*rxkeyix = keyix+32;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate a single key cache slot.
|
|
*/
|
|
static int
|
|
key_alloc_single(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
|
|
for (i = 0; i < N(sc->sc_keymap); i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1)
|
|
keyix++, b >>= 1;
|
|
setbit(sc->sc_keymap, keyix);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
|
|
__func__, keyix);
|
|
*txkeyix = *rxkeyix = keyix;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate one or more key cache slots for a uniacst key. The
|
|
* key itself is needed only to identify the cipher. For hardware
|
|
* TKIP with split cipher+MIC keys we allocate two key cache slot
|
|
* pairs so that we can setup separate TX and RX MIC keys. Note
|
|
* that the MIC key for a TKIP key at slot i is assumed by the
|
|
* hardware to be at slot i+64. This limits TKIP keys to the first
|
|
* 64 entries.
|
|
*/
|
|
static int
|
|
ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
|
|
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
/*
|
|
* Group key allocation must be handled specially for
|
|
* parts that do not support multicast key cache search
|
|
* functionality. For those parts the key id must match
|
|
* the h/w key index so lookups find the right key. On
|
|
* parts w/ the key search facility we install the sender's
|
|
* mac address (with the high bit set) and let the hardware
|
|
* find the key w/o using the key id. This is preferred as
|
|
* it permits us to support multiple users for adhoc and/or
|
|
* multi-station operation.
|
|
*/
|
|
if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
|
|
if (!(&ic->ic_nw_keys[0] <= k &&
|
|
k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
|
|
/* should not happen */
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: bogus group key\n", __func__);
|
|
return 0;
|
|
}
|
|
/*
|
|
* XXX we pre-allocate the global keys so
|
|
* have no way to check if they've already been allocated.
|
|
*/
|
|
*keyix = *rxkeyix = k - ic->ic_nw_keys;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We allocate two pair for TKIP when using the h/w to do
|
|
* the MIC. For everything else, including software crypto,
|
|
* we allocate a single entry. Note that s/w crypto requires
|
|
* a pass-through slot on the 5211 and 5212. The 5210 does
|
|
* not support pass-through cache entries and we map all
|
|
* those requests to slot 0.
|
|
*/
|
|
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
|
|
return key_alloc_2pair(sc, keyix, rxkeyix);
|
|
} else {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete an entry in the key cache allocated by ath_key_alloc.
|
|
*/
|
|
static int
|
|
ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int keyix = k->wk_keyix;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
|
|
|
|
ath_hal_keyreset(ah, keyix);
|
|
/*
|
|
* Handle split tx/rx keying required for TKIP with h/w MIC.
|
|
*/
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
|
|
ath_hal_keyreset(ah, keyix+32); /* RX key */
|
|
if (keyix >= IEEE80211_WEP_NKID) {
|
|
/*
|
|
* Don't touch keymap entries for global keys so
|
|
* they are never considered for dynamic allocation.
|
|
*/
|
|
clrbit(sc->sc_keymap, keyix);
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
|
|
sc->sc_splitmic) {
|
|
clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
|
|
clrbit(sc->sc_keymap, keyix+32); /* RX key */
|
|
clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set the key cache contents for the specified key. Key cache
|
|
* slot(s) must already have been allocated by ath_key_alloc.
|
|
*/
|
|
static int
|
|
ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
return ath_keyset(sc, k, mac, ic->ic_bss);
|
|
}
|
|
|
|
/*
|
|
* Block/unblock tx+rx processing while a key change is done.
|
|
* We assume the caller serializes key management operations
|
|
* so we only need to worry about synchronization with other
|
|
* uses that originate in the driver.
|
|
*/
|
|
static void
|
|
ath_key_update_begin(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
#if 0
|
|
tasklet_disable(&sc->sc_rxtq);
|
|
#endif
|
|
IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
|
|
}
|
|
|
|
static void
|
|
ath_key_update_end(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
IF_UNLOCK(&ifp->if_snd);
|
|
#if 0
|
|
tasklet_enable(&sc->sc_rxtq);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o maintain current state of phy error reception (the hal
|
|
* may enable phy error frames for noise immunity work)
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, or monitor modes
|
|
* o enable promiscuous mode according to the interface state
|
|
* o accept beacons:
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when scanning
|
|
*/
|
|
static u_int32_t
|
|
ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
|
|
{
|
|
#define RX_FILTER_PRESERVE (HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t rfilt;
|
|
|
|
rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
|
|
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
|
|
(ifp->if_flags & IFF_PROMISC))
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS ||
|
|
state == IEEE80211_S_SCAN)
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
return rfilt;
|
|
#undef RX_FILTER_PRESERVE
|
|
}
|
|
|
|
static void
|
|
ath_mode_init(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t rfilt, mfilt[2], val;
|
|
u_int8_t pos;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc, ic->ic_state);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* configure operational mode */
|
|
ath_hal_setopmode(ah);
|
|
|
|
/*
|
|
* Handle any link-level address change. Note that we only
|
|
* need to force ic_myaddr; any other addresses are handled
|
|
* as a byproduct of the ifnet code marking the interface
|
|
* down then up.
|
|
*
|
|
* XXX should get from lladdr instead of arpcom but that's more work
|
|
*/
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
|
|
ath_hal_setmac(ah, ic->ic_myaddr);
|
|
|
|
/* calculate and install multicast filter */
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
mfilt[0] = mfilt[1] = 0;
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
caddr_t dl;
|
|
|
|
/* calculate XOR of eight 6bit values */
|
|
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
|
|
val = LE_READ_4(dl + 0);
|
|
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
val = LE_READ_4(dl + 3);
|
|
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
pos &= 0x3f;
|
|
mfilt[pos / 32] |= (1 << (pos % 32));
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
} else {
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
}
|
|
ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
|
|
__func__, rfilt, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
/*
|
|
* Set the slot time based on the current setting.
|
|
*/
|
|
static void
|
|
ath_setslottime(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
|
|
else
|
|
ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
|
|
sc->sc_updateslot = OK;
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update the
|
|
* slot time based on the current setting.
|
|
*/
|
|
static void
|
|
ath_updateslot(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
/*
|
|
* When not coordinating the BSS, change the hardware
|
|
* immediately. For other operation we defer the change
|
|
* until beacon updates have propagated to the stations.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
sc->sc_updateslot = UPDATE;
|
|
else
|
|
ath_setslottime(sc);
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue for beacons.
|
|
*/
|
|
static int
|
|
ath_beaconq_setup(struct ath_hal *ah)
|
|
{
|
|
HAL_TXQ_INFO qi;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
|
|
/* NB: for dynamic turbo, don't enable any other interrupts */
|
|
qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
|
|
return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
|
|
}
|
|
|
|
/*
|
|
* Setup the transmit queue parameters for the beacon queue.
|
|
*/
|
|
static int
|
|
ath_beaconq_config(struct ath_softc *sc)
|
|
{
|
|
#define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
|
|
ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
/*
|
|
* Always burst out beacon and CAB traffic.
|
|
*/
|
|
qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
|
|
qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
|
|
qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
|
|
} else {
|
|
struct wmeParams *wmep =
|
|
&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
|
|
/*
|
|
* Adhoc mode; important thing is to use 2x cwmin.
|
|
*/
|
|
qi.tqi_aifs = wmep->wmep_aifsn;
|
|
qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
|
|
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
|
|
}
|
|
|
|
if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
|
|
device_printf(sc->sc_dev, "unable to update parameters for "
|
|
"beacon hardware queue!\n");
|
|
return 0;
|
|
} else {
|
|
ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
|
|
return 1;
|
|
}
|
|
#undef ATH_EXPONENT_TO_VALUE
|
|
}
|
|
|
|
/*
|
|
* Allocate and setup an initial beacon frame.
|
|
*/
|
|
static int
|
|
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
bf = STAILQ_FIRST(&sc->sc_bbuf);
|
|
if (bf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
|
|
sc->sc_stats.ast_be_nombuf++; /* XXX */
|
|
return ENOMEM; /* XXX */
|
|
}
|
|
/*
|
|
* NB: the beacon data buffer must be 32-bit aligned;
|
|
* we assume the mbuf routines will return us something
|
|
* with this alignment (perhaps should assert).
|
|
*/
|
|
m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
|
|
if (m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
|
|
__func__);
|
|
sc->sc_stats.ast_be_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == 0) {
|
|
bf->bf_m = m;
|
|
bf->bf_node = ieee80211_ref_node(ni);
|
|
} else {
|
|
m_freem(m);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Setup the beacon frame for transmit.
|
|
*/
|
|
static void
|
|
ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
#define USE_SHPREAMBLE(_ic) \
|
|
(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
|
|
== IEEE80211_F_SHPREAMBLE)
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct mbuf *m = bf->bf_m;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
int flags, antenna;
|
|
const HAL_RATE_TABLE *rt;
|
|
u_int8_t rix, rate;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
|
|
__func__, m, m->m_len);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
|
|
flags = HAL_TXDESC_NOACK;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
|
|
ds->ds_link = bf->bf_daddr; /* self-linked */
|
|
flags |= HAL_TXDESC_VEOL;
|
|
/*
|
|
* Let hardware handle antenna switching.
|
|
*/
|
|
antenna = sc->sc_txantenna;
|
|
} else {
|
|
ds->ds_link = 0;
|
|
/*
|
|
* Switch antenna every 4 beacons.
|
|
* XXX assumes two antenna
|
|
*/
|
|
antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
|
|
: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
|
|
}
|
|
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("multi-segment beacon frame; nseg %u", bf->bf_nseg));
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
/*
|
|
* Calculate rate code.
|
|
* XXX everything at min xmit rate
|
|
*/
|
|
rix = sc->sc_minrateix;
|
|
rt = sc->sc_currates;
|
|
rate = rt->info[rix].rateCode;
|
|
if (USE_SHPREAMBLE(ic))
|
|
rate |= rt->info[rix].shortPreamble;
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, m->m_len + IEEE80211_CRC_LEN /* frame length */
|
|
, sizeof(struct ieee80211_frame)/* header length */
|
|
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
|
|
, ni->ni_txpower /* txpower XXX */
|
|
, rate, 1 /* series 0 rate/tries */
|
|
, HAL_TXKEYIX_INVALID /* no encryption */
|
|
, antenna /* antenna mode */
|
|
, flags /* no ack, veol for beacons */
|
|
, 0 /* rts/cts rate */
|
|
, 0 /* rts/cts duration */
|
|
);
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
ath_hal_filltxdesc(ah, ds
|
|
, roundup(m->m_len, 4) /* buffer length */
|
|
, AH_TRUE /* first segment */
|
|
, AH_TRUE /* last segment */
|
|
, ds /* first descriptor */
|
|
);
|
|
#undef USE_SHPREAMBLE
|
|
}
|
|
|
|
/*
|
|
* Transmit a beacon frame at SWBA. Dynamic updates to the
|
|
* frame contents are done as needed and the slot time is
|
|
* also adjusted based on current state.
|
|
*/
|
|
static void
|
|
ath_beacon_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct mbuf *m;
|
|
int ncabq, error, otherant;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
|
|
__func__, pending);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_opmode == IEEE80211_M_MONITOR ||
|
|
bf == NULL || bf->bf_m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
|
|
__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
|
|
return;
|
|
}
|
|
/*
|
|
* Check if the previous beacon has gone out. If
|
|
* not don't try to post another, skip this period
|
|
* and wait for the next. Missed beacons indicate
|
|
* a problem and should not occur. If we miss too
|
|
* many consecutive beacons reset the device.
|
|
*/
|
|
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
|
|
sc->sc_bmisscount++;
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
|
|
return;
|
|
}
|
|
if (sc->sc_bmisscount != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
sc->sc_bmisscount = 0;
|
|
}
|
|
|
|
/*
|
|
* Update dynamic beacon contents. If this returns
|
|
* non-zero then we need to remap the memory because
|
|
* the beacon frame changed size (probably because
|
|
* of the TIM bitmap).
|
|
*/
|
|
m = bf->bf_m;
|
|
ncabq = sc->sc_cabq->axq_depth;
|
|
if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
|
|
/* XXX too conservative? */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
if_printf(ic->ic_ifp,
|
|
"%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
|
|
__func__, error);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle slot time change when a non-ERP station joins/leaves
|
|
* an 11g network. The 802.11 layer notifies us via callback,
|
|
* we mark updateslot, then wait one beacon before effecting
|
|
* the change. This gives associated stations at least one
|
|
* beacon interval to note the state change.
|
|
*/
|
|
/* XXX locking */
|
|
if (sc->sc_updateslot == UPDATE)
|
|
sc->sc_updateslot = COMMIT; /* commit next beacon */
|
|
else if (sc->sc_updateslot == COMMIT)
|
|
ath_setslottime(sc); /* commit change to h/w */
|
|
|
|
/*
|
|
* Check recent per-antenna transmit statistics and flip
|
|
* the default antenna if noticeably more frames went out
|
|
* on the non-default antenna.
|
|
* XXX assumes 2 anntenae
|
|
*/
|
|
otherant = sc->sc_defant & 1 ? 2 : 1;
|
|
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
|
|
ath_setdefantenna(sc, otherant);
|
|
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
|
|
|
|
/*
|
|
* Construct tx descriptor.
|
|
*/
|
|
ath_beacon_setup(sc, bf);
|
|
|
|
/*
|
|
* Stop any current dma and put the new frame on the queue.
|
|
* This should never fail since we check above that no frames
|
|
* are still pending on the queue.
|
|
*/
|
|
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Enable the CAB queue before the beacon queue to
|
|
* insure cab frames are triggered by this beacon.
|
|
*/
|
|
if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
|
|
ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
|
|
"%s: TXDP[%u] = %p (%p)\n", __func__,
|
|
sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
|
|
|
|
sc->sc_stats.ast_be_xmit++;
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware after detecting beacons have stopped.
|
|
*/
|
|
static void
|
|
ath_bstuck_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
|
|
sc->sc_bmisscount);
|
|
ath_reset(ifp);
|
|
}
|
|
|
|
/*
|
|
* Reclaim beacon resources.
|
|
*/
|
|
static void
|
|
ath_beacon_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_node != NULL) {
|
|
ieee80211_free_node(bf->bf_node);
|
|
bf->bf_node = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*
|
|
* When operating as an AP this resets the TSF and sets
|
|
* up the hardware to notify us when we need to issue beacons.
|
|
*
|
|
* When operating in station mode this sets up the beacon
|
|
* timers according to the timestamp of the last received
|
|
* beacon and the current TSF, configures PCF and DTIM
|
|
* handling, programs the sleep registers so the hardware
|
|
* will wakeup in time to receive beacons, and configures
|
|
* the beacon miss handling so we'll receive a BMISS
|
|
* interrupt when we stop seeing beacons from the AP
|
|
* we've associated with.
|
|
*/
|
|
static void
|
|
ath_beacon_config(struct ath_softc *sc)
|
|
{
|
|
#define TSF_TO_TU(_h,_l) \
|
|
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
|
|
#define FUDGE 2
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
u_int32_t nexttbtt, intval, tsftu;
|
|
u_int64_t tsf;
|
|
|
|
/* extract tstamp from last beacon and convert to TU */
|
|
nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
|
|
LE_READ_4(ni->ni_tstamp.data));
|
|
/* NB: the beacon interval is kept internally in TU's */
|
|
intval = ni->ni_intval & HAL_BEACON_PERIOD;
|
|
if (nexttbtt == 0) /* e.g. for ap mode */
|
|
nexttbtt = intval;
|
|
else if (intval) /* NB: can be 0 for monitor mode */
|
|
nexttbtt = roundup(nexttbtt, intval);
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
|
|
__func__, nexttbtt, intval, ni->ni_intval);
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
HAL_BEACON_STATE bs;
|
|
int dtimperiod, dtimcount;
|
|
int cfpperiod, cfpcount;
|
|
|
|
/*
|
|
* Setup dtim and cfp parameters according to
|
|
* last beacon we received (which may be none).
|
|
*/
|
|
dtimperiod = ni->ni_dtim_period;
|
|
if (dtimperiod <= 0) /* NB: 0 if not known */
|
|
dtimperiod = 1;
|
|
dtimcount = ni->ni_dtim_count;
|
|
if (dtimcount >= dtimperiod) /* NB: sanity check */
|
|
dtimcount = 0; /* XXX? */
|
|
cfpperiod = 1; /* NB: no PCF support yet */
|
|
cfpcount = 0;
|
|
/*
|
|
* Pull nexttbtt forward to reflect the current
|
|
* TSF and calculate dtim+cfp state for the result.
|
|
*/
|
|
tsf = ath_hal_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
if (--dtimcount < 0) {
|
|
dtimcount = dtimperiod - 1;
|
|
if (--cfpcount < 0)
|
|
cfpcount = cfpperiod - 1;
|
|
}
|
|
} while (nexttbtt < tsftu);
|
|
memset(&bs, 0, sizeof(bs));
|
|
bs.bs_intval = intval;
|
|
bs.bs_nexttbtt = nexttbtt;
|
|
bs.bs_dtimperiod = dtimperiod*intval;
|
|
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
|
|
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
|
|
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
|
|
bs.bs_cfpmaxduration = 0;
|
|
#if 0
|
|
/*
|
|
* The 802.11 layer records the offset to the DTIM
|
|
* bitmap while receiving beacons; use it here to
|
|
* enable h/w detection of our AID being marked in
|
|
* the bitmap vector (to indicate frames for us are
|
|
* pending at the AP).
|
|
* XXX do DTIM handling in s/w to WAR old h/w bugs
|
|
* XXX enable based on h/w rev for newer chips
|
|
*/
|
|
bs.bs_timoffset = ni->ni_timoff;
|
|
#endif
|
|
/*
|
|
* Calculate the number of consecutive beacons to miss
|
|
* before taking a BMISS interrupt. The configuration
|
|
* is specified in ms, so we need to convert that to
|
|
* TU's and then calculate based on the beacon interval.
|
|
* Note that we clamp the result to at most 10 beacons.
|
|
*/
|
|
bs.bs_bmissthreshold = ic->ic_bmissthreshold;
|
|
if (bs.bs_bmissthreshold > 10)
|
|
bs.bs_bmissthreshold = 10;
|
|
else if (bs.bs_bmissthreshold <= 0)
|
|
bs.bs_bmissthreshold = 1;
|
|
|
|
/*
|
|
* Calculate sleep duration. The configuration is
|
|
* given in ms. We insure a multiple of the beacon
|
|
* period is used. Also, if the sleep duration is
|
|
* greater than the DTIM period then it makes senses
|
|
* to make it a multiple of that.
|
|
*
|
|
* XXX fixed at 100ms
|
|
*/
|
|
bs.bs_sleepduration =
|
|
roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
|
|
if (bs.bs_sleepduration > bs.bs_dtimperiod)
|
|
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
|
|
, __func__
|
|
, tsf, tsftu
|
|
, bs.bs_intval
|
|
, bs.bs_nexttbtt
|
|
, bs.bs_dtimperiod
|
|
, bs.bs_nextdtim
|
|
, bs.bs_bmissthreshold
|
|
, bs.bs_sleepduration
|
|
, bs.bs_cfpperiod
|
|
, bs.bs_cfpmaxduration
|
|
, bs.bs_cfpnext
|
|
, bs.bs_timoffset
|
|
);
|
|
ath_hal_intrset(ah, 0);
|
|
ath_hal_beacontimers(ah, &bs);
|
|
sc->sc_imask |= HAL_INT_BMISS;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
} else {
|
|
ath_hal_intrset(ah, 0);
|
|
if (nexttbtt == intval)
|
|
intval |= HAL_BEACON_RESET_TSF;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
/*
|
|
* In IBSS mode enable the beacon timers but only
|
|
* enable SWBA interrupts if we need to manually
|
|
* prepare beacon frames. Otherwise we use a
|
|
* self-linked tx descriptor and let the hardware
|
|
* deal with things.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
if (!sc->sc_hasveol)
|
|
sc->sc_imask |= HAL_INT_SWBA;
|
|
if ((intval & HAL_BEACON_RESET_TSF) == 0) {
|
|
/*
|
|
* Pull nexttbtt forward to reflect
|
|
* the current TSF.
|
|
*/
|
|
tsf = ath_hal_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
} while (nexttbtt < tsftu);
|
|
}
|
|
ath_beaconq_config(sc);
|
|
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
/*
|
|
* In AP mode we enable the beacon timers and
|
|
* SWBA interrupts to prepare beacon frames.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
|
|
ath_beaconq_config(sc);
|
|
}
|
|
ath_hal_beaconinit(ah, nexttbtt, intval);
|
|
sc->sc_bmisscount = 0;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
/*
|
|
* When using a self-linked beacon descriptor in
|
|
* ibss mode load it once here.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
|
|
ath_beacon_proc(sc, 0);
|
|
}
|
|
sc->sc_syncbeacon = 0;
|
|
#undef FUDGE
|
|
#undef TSF_TO_TU
|
|
}
|
|
|
|
static void
|
|
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
bus_addr_t *paddr = (bus_addr_t*) arg;
|
|
KASSERT(error == 0, ("error %u on bus_dma callback", error));
|
|
*paddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
ath_descdma_setup(struct ath_softc *sc,
|
|
struct ath_descdma *dd, ath_bufhead *head,
|
|
const char *name, int nbuf, int ndesc)
|
|
{
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int i, bsize, error;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
|
|
__func__, name, nbuf, ndesc);
|
|
|
|
dd->dd_name = name;
|
|
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
|
|
|
|
/*
|
|
* Setup DMA descriptor area.
|
|
*/
|
|
error = bus_dma_tag_create(NULL, /* parent */
|
|
PAGE_SIZE, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
dd->dd_desc_len, /* maxsize */
|
|
1, /* nsegments */
|
|
dd->dd_desc_len, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dd->dd_dmat);
|
|
if (error != 0) {
|
|
if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
|
|
return error;
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to create dmamap for %s descriptors, "
|
|
"error %u\n", dd->dd_name, error);
|
|
goto fail0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
|
|
BUS_DMA_NOWAIT, &dd->dd_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
|
|
"error %u\n", nbuf * ndesc, dd->dd_name, error);
|
|
goto fail1;
|
|
}
|
|
|
|
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
|
|
dd->dd_desc, dd->dd_desc_len,
|
|
ath_load_cb, &dd->dd_desc_paddr,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to map %s descriptors, error %u\n",
|
|
dd->dd_name, error);
|
|
goto fail2;
|
|
}
|
|
|
|
ds = dd->dd_desc;
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
|
|
__func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
|
|
(caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
|
|
|
|
/* allocate rx buffers */
|
|
bsize = sizeof(struct ath_buf) * nbuf;
|
|
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL) {
|
|
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
|
|
dd->dd_name, bsize);
|
|
goto fail3;
|
|
}
|
|
dd->dd_bufptr = bf;
|
|
|
|
STAILQ_INIT(head);
|
|
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to create dmamap for %s "
|
|
"buffer %u, error %u\n", dd->dd_name, i, error);
|
|
ath_descdma_cleanup(sc, dd, head);
|
|
return error;
|
|
}
|
|
STAILQ_INSERT_TAIL(head, bf, bf_list);
|
|
}
|
|
return 0;
|
|
fail3:
|
|
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
|
|
fail2:
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
fail1:
|
|
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
|
|
fail0:
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
#undef DS2PHYS
|
|
}
|
|
|
|
static void
|
|
ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *dd, ath_bufhead *head)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ieee80211_node *ni;
|
|
|
|
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
|
|
STAILQ_FOREACH(bf, head, bf_list) {
|
|
if (bf->bf_m) {
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_dmamap = NULL;
|
|
}
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
}
|
|
|
|
STAILQ_INIT(head);
|
|
free(dd->dd_bufptr, M_ATHDEV);
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
static int
|
|
ath_desc_alloc(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
|
|
"rx", ath_rxbuf, 1);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
|
|
"tx", ath_txbuf, ATH_TXDESC);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
return error;
|
|
}
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
|
|
"beacon", 1, 1);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_desc_free(struct ath_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_bdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
|
|
if (sc->sc_txdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
if (sc->sc_rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
ath_node_alloc(struct ieee80211_node_table *nt)
|
|
{
|
|
struct ieee80211com *ic = nt->nt_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
|
|
struct ath_node *an;
|
|
|
|
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
|
|
if (an == NULL) {
|
|
/* XXX stat+msg */
|
|
return NULL;
|
|
}
|
|
an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
ath_rate_node_init(sc, an);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
|
|
return &an->an_node;
|
|
}
|
|
|
|
static void
|
|
ath_node_free(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
|
|
|
|
ath_rate_node_cleanup(sc, ATH_NODE(ni));
|
|
sc->sc_node_free(ni);
|
|
}
|
|
|
|
static u_int8_t
|
|
ath_node_getrssi(const struct ieee80211_node *ni)
|
|
{
|
|
#define HAL_EP_RND(x, mul) \
|
|
((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
|
|
u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
|
|
int32_t rssi;
|
|
|
|
/*
|
|
* When only one frame is received there will be no state in
|
|
* avgrssi so fallback on the value recorded by the 802.11 layer.
|
|
*/
|
|
if (avgrssi != ATH_RSSI_DUMMY_MARKER)
|
|
rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
|
|
else
|
|
rssi = ni->ni_rssi;
|
|
return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
|
|
#undef HAL_EP_RND
|
|
}
|
|
|
|
static int
|
|
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error;
|
|
struct mbuf *m;
|
|
struct ath_desc *ds;
|
|
|
|
m = bf->bf_m;
|
|
if (m == NULL) {
|
|
/*
|
|
* NB: by assigning a page to the rx dma buffer we
|
|
* implicitly satisfy the Atheros requirement that
|
|
* this buffer be cache-line-aligned and sized to be
|
|
* multiple of the cache line size. Not doing this
|
|
* causes weird stuff to happen (for the 5210 at least).
|
|
*/
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: no mbuf/cluster\n", __func__);
|
|
sc->sc_stats.ast_rx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
|
|
bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
|
|
__func__, error);
|
|
sc->sc_stats.ast_rx_busdma++;
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("multi-segment packet; nseg %u", bf->bf_nseg));
|
|
bf->bf_m = m;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* Setup descriptors. For receive we always terminate
|
|
* the descriptor list with a self-linked entry so we'll
|
|
* not get overrun under high load (as can happen with a
|
|
* 5212 when ANI processing enables PHY error frames).
|
|
*
|
|
* To insure the last descriptor is self-linked we create
|
|
* each descriptor as self-linked and add it to the end. As
|
|
* each additional descriptor is added the previous self-linked
|
|
* entry is ``fixed'' naturally. This should be safe even
|
|
* if DMA is happening. When processing RX interrupts we
|
|
* never remove/process the last, self-linked, entry on the
|
|
* descriptor list. This insures the hardware always has
|
|
* someplace to write a new frame.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = bf->bf_daddr; /* link to self */
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
ds->ds_vdata = mtod(m, void *); /* for radar */
|
|
ath_hal_setuprxdesc(ah, ds
|
|
, m->m_len /* buffer size */
|
|
, 0
|
|
);
|
|
|
|
if (sc->sc_rxlink != NULL)
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Extend 15-bit time stamp from rx descriptor to
|
|
* a full 64-bit TSF using the specified TSF.
|
|
*/
|
|
static __inline u_int64_t
|
|
ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
|
|
{
|
|
if ((tsf & 0x7fff) < rstamp)
|
|
tsf -= 0x8000;
|
|
return ((tsf &~ 0x7fff) | rstamp);
|
|
}
|
|
|
|
/*
|
|
* Intercept management frames to collect beacon rssi data
|
|
* and to do ibss merges.
|
|
*/
|
|
static void
|
|
ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
|
|
struct ieee80211_node *ni,
|
|
int subtype, int rssi, u_int32_t rstamp)
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
/*
|
|
* Call up first so subsequent work can use information
|
|
* potentially stored in the node (e.g. for ibss merge).
|
|
*/
|
|
sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
|
|
switch (subtype) {
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
/* update rssi statistics for use by the hal */
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
|
|
if (sc->sc_syncbeacon &&
|
|
ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
|
|
/*
|
|
* Resync beacon timers using the tsf of the beacon
|
|
* frame we just received.
|
|
*/
|
|
ath_beacon_config(sc);
|
|
}
|
|
/* fall thru... */
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS &&
|
|
ic->ic_state == IEEE80211_S_RUN) {
|
|
u_int64_t tsf = ath_extend_tsf(rstamp,
|
|
ath_hal_gettsf64(sc->sc_ah));
|
|
/*
|
|
* Handle ibss merge as needed; check the tsf on the
|
|
* frame before attempting the merge. The 802.11 spec
|
|
* says the station should change it's bssid to match
|
|
* the oldest station with the same ssid, where oldest
|
|
* is determined by the tsf. Note that hardware
|
|
* reconfiguration happens through callback to
|
|
* ath_newstate as the state machine will go from
|
|
* RUN -> RUN when this happens.
|
|
*/
|
|
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"ibss merge, rstamp %u tsf %ju "
|
|
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
|
|
(uintmax_t)ni->ni_tstamp.tsf);
|
|
(void) ieee80211_ibss_merge(ni);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the default antenna.
|
|
*/
|
|
static void
|
|
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/* XXX block beacon interrupts */
|
|
ath_hal_setdefantenna(ah, antenna);
|
|
if (sc->sc_defant != antenna)
|
|
sc->sc_stats.ast_ant_defswitch++;
|
|
sc->sc_defant = antenna;
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
static int
|
|
ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
|
|
const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
|
|
{
|
|
u_int8_t rix;
|
|
|
|
KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
|
|
|
|
/*
|
|
* Discard anything shorter than an ack or cts.
|
|
*/
|
|
if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
|
|
__func__, m->m_pkthdr.len);
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
return 0;
|
|
}
|
|
sc->sc_rx_th.wr_tsf = htole64(
|
|
ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
|
|
rix = ds->ds_rxstat.rs_rate;
|
|
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
|
|
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
/* XXX propagate other error flags from descriptor */
|
|
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
|
|
sc->sc_rx_th.wr_antnoise = nf;
|
|
sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ath_rx_proc(void *arg, int npending)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_softc *sc = arg;
|
|
struct ath_buf *bf;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
int len, type, ngood;
|
|
u_int phyerr;
|
|
HAL_STATUS status;
|
|
int16_t nf;
|
|
u_int64_t tsf;
|
|
|
|
NET_LOCK_GIANT(); /* XXX */
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
|
|
ngood = 0;
|
|
nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
|
|
tsf = ath_hal_gettsf64(ah);
|
|
do {
|
|
bf = STAILQ_FIRST(&sc->sc_rxbuf);
|
|
if (bf == NULL) { /* NB: shouldn't happen */
|
|
if_printf(ifp, "%s: no buffer!\n", __func__);
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
if (m == NULL) { /* NB: shouldn't happen */
|
|
/*
|
|
* If mbuf allocation failed previously there
|
|
* will be no mbuf; try again to re-populate it.
|
|
*/
|
|
/* XXX make debug msg */
|
|
if_printf(ifp, "%s: no mbuf!\n", __func__);
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
|
|
goto rx_next;
|
|
}
|
|
ds = bf->bf_desc;
|
|
if (ds->ds_link == bf->bf_daddr) {
|
|
/* NB: never process the self-linked entry at the end */
|
|
break;
|
|
}
|
|
/* XXX sync descriptor memory */
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link));
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(bf, 0, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
|
|
if (ds->ds_rxstat.rs_more) {
|
|
/*
|
|
* Frame spans multiple descriptors; this
|
|
* cannot happen yet as we don't support
|
|
* jumbograms. If not in monitor mode,
|
|
* discard the frame.
|
|
*/
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
sc->sc_stats.ast_rx_toobig++;
|
|
goto rx_next;
|
|
}
|
|
/* fall thru for monitor mode handling... */
|
|
} else if (ds->ds_rxstat.rs_status != 0) {
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
|
|
sc->sc_stats.ast_rx_crcerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
|
|
sc->sc_stats.ast_rx_fifoerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_stats.ast_rx_phyerr++;
|
|
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
|
|
sc->sc_stats.ast_rx_phy[phyerr]++;
|
|
goto rx_next;
|
|
}
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
|
|
/*
|
|
* Decrypt error. If the error occurred
|
|
* because there was no hardware key, then
|
|
* let the frame through so the upper layers
|
|
* can process it. This is necessary for 5210
|
|
* parts which have no way to setup a ``clear''
|
|
* key cache entry.
|
|
*
|
|
* XXX do key cache faulting
|
|
*/
|
|
if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
|
|
goto rx_accept;
|
|
sc->sc_stats.ast_rx_badcrypt++;
|
|
}
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
|
|
sc->sc_stats.ast_rx_badmic++;
|
|
/*
|
|
* Do minimal work required to hand off
|
|
* the 802.11 header for notifcation.
|
|
*/
|
|
/* XXX frag's and qos frames */
|
|
len = ds->ds_rxstat.rs_datalen;
|
|
if (len >= sizeof (struct ieee80211_frame)) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
ieee80211_notify_michael_failure(ic,
|
|
mtod(m, struct ieee80211_frame *),
|
|
sc->sc_splitmic ?
|
|
ds->ds_rxstat.rs_keyix-32 :
|
|
ds->ds_rxstat.rs_keyix
|
|
);
|
|
}
|
|
}
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* When a tap is present pass error frames
|
|
* that have been requested. By default we
|
|
* pass decrypt+mic errors but others may be
|
|
* interesting (e.g. crc).
|
|
*/
|
|
if (bpf_peers_present(sc->sc_drvbpf) &&
|
|
(ds->ds_rxstat.rs_status & sc->sc_monpass)) {
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
/* NB: bpf needs the mbuf length setup */
|
|
len = ds->ds_rxstat.rs_datalen;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
(void) ath_rx_tap(sc, m, ds, tsf, nf);
|
|
}
|
|
/* XXX pass MIC errors up for s/w reclaculation */
|
|
goto rx_next;
|
|
}
|
|
rx_accept:
|
|
/*
|
|
* Sync and unmap the frame. At this point we're
|
|
* committed to passing the mbuf somewhere so clear
|
|
* bf_m; this means a new mbuf must be allocated
|
|
* when the rx descriptor is setup again to receive
|
|
* another frame.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
len = ds->ds_rxstat.rs_datalen;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
|
|
|
|
if (bpf_peers_present(sc->sc_drvbpf) &&
|
|
!ath_rx_tap(sc, m, ds, tsf, nf)) {
|
|
m_freem(m); /* XXX reclaim */
|
|
goto rx_next;
|
|
}
|
|
|
|
/*
|
|
* From this point on we assume the frame is at least
|
|
* as large as ieee80211_frame_min; verify that.
|
|
*/
|
|
if (len < IEEE80211_MIN_LEN) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
|
|
__func__, len);
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
m_freem(m);
|
|
goto rx_next;
|
|
}
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
|
|
ieee80211_dump_pkt(mtod(m, caddr_t), len,
|
|
sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
|
|
ds->ds_rxstat.rs_rssi);
|
|
}
|
|
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
|
|
/*
|
|
* Locate the node for sender, track state, and then
|
|
* pass the (referenced) node up to the 802.11 layer
|
|
* for its use.
|
|
*/
|
|
ni = ieee80211_find_rxnode_withkey(ic,
|
|
mtod(m, const struct ieee80211_frame_min *),
|
|
ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
|
|
IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
|
|
/*
|
|
* Track rx rssi and do any rx antenna management.
|
|
*/
|
|
an = ATH_NODE(ni);
|
|
ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
|
|
/*
|
|
* Send frame up for processing.
|
|
*/
|
|
type = ieee80211_input(ic, m, ni,
|
|
ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
|
|
ieee80211_free_node(ni);
|
|
if (sc->sc_diversity) {
|
|
/*
|
|
* When using fast diversity, change the default rx
|
|
* antenna if diversity chooses the other antenna 3
|
|
* times in a row.
|
|
*/
|
|
if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
|
|
if (++sc->sc_rxotherant >= 3)
|
|
ath_setdefantenna(sc,
|
|
ds->ds_rxstat.rs_antenna);
|
|
} else
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
if (sc->sc_softled) {
|
|
/*
|
|
* Blink for any data frame. Otherwise do a
|
|
* heartbeat-style blink when idle. The latter
|
|
* is mainly for station mode where we depend on
|
|
* periodic beacon frames to trigger the poll event.
|
|
*/
|
|
if (type == IEEE80211_FC0_TYPE_DATA) {
|
|
sc->sc_rxrate = ds->ds_rxstat.rs_rate;
|
|
ath_led_event(sc, ATH_LED_RX);
|
|
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
|
|
ath_led_event(sc, ATH_LED_POLL);
|
|
}
|
|
/*
|
|
* Arrange to update the last rx timestamp only for
|
|
* frames from our ap when operating in station mode.
|
|
* This assumes the rx key is always setup when associated.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA &&
|
|
ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
|
|
ngood++;
|
|
rx_next:
|
|
STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
} while (ath_rxbuf_init(sc, bf) == 0);
|
|
|
|
/* rx signal state monitoring */
|
|
ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
|
|
if (ath_hal_radar_event(ah))
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
|
|
if (ngood)
|
|
sc->sc_lastrx = tsf;
|
|
|
|
NET_UNLOCK_GIANT(); /* XXX */
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue.
|
|
*/
|
|
static struct ath_txq *
|
|
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
int qnum;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_subtype = subtype;
|
|
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
|
|
/*
|
|
* Enable interrupts only for EOL and DESC conditions.
|
|
* We mark tx descriptors to receive a DESC interrupt
|
|
* when a tx queue gets deep; otherwise waiting for the
|
|
* EOL to reap descriptors. Note that this is done to
|
|
* reduce interrupt load and this only defers reaping
|
|
* descriptors, never transmitting frames. Aside from
|
|
* reducing interrupts this also permits more concurrency.
|
|
* The only potential downside is if the tx queue backs
|
|
* up in which case the top half of the kernel may backup
|
|
* due to a lack of tx descriptors.
|
|
*/
|
|
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
|
|
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
|
|
if (qnum == -1) {
|
|
/*
|
|
* NB: don't print a message, this happens
|
|
* normally on parts with too few tx queues
|
|
*/
|
|
return NULL;
|
|
}
|
|
if (qnum >= N(sc->sc_txq)) {
|
|
device_printf(sc->sc_dev,
|
|
"hal qnum %u out of range, max %zu!\n",
|
|
qnum, N(sc->sc_txq));
|
|
ath_hal_releasetxqueue(ah, qnum);
|
|
return NULL;
|
|
}
|
|
if (!ATH_TXQ_SETUP(sc, qnum)) {
|
|
struct ath_txq *txq = &sc->sc_txq[qnum];
|
|
|
|
txq->axq_qnum = qnum;
|
|
txq->axq_depth = 0;
|
|
txq->axq_intrcnt = 0;
|
|
txq->axq_link = NULL;
|
|
STAILQ_INIT(&txq->axq_q);
|
|
ATH_TXQ_LOCK_INIT(sc, txq);
|
|
sc->sc_txqsetup |= 1<<qnum;
|
|
}
|
|
return &sc->sc_txq[qnum];
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Setup a hardware data transmit queue for the specified
|
|
* access control. The hal may not support all requested
|
|
* queues in which case it will return a reference to a
|
|
* previously setup queue. We record the mapping from ac's
|
|
* to h/w queues for use by ath_tx_start and also track
|
|
* the set of h/w queues being used to optimize work in the
|
|
* transmit interrupt handler and related routines.
|
|
*/
|
|
static int
|
|
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
struct ath_txq *txq;
|
|
|
|
if (ac >= N(sc->sc_ac2q)) {
|
|
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
|
|
ac, N(sc->sc_ac2q));
|
|
return 0;
|
|
}
|
|
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
|
|
if (txq != NULL) {
|
|
sc->sc_ac2q[ac] = txq;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Update WME parameters for a transmit queue.
|
|
*/
|
|
static int
|
|
ath_txq_update(struct ath_softc *sc, int ac)
|
|
{
|
|
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
|
|
#define ATH_TXOP_TO_US(v) (v<<5)
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_txq *txq = sc->sc_ac2q[ac];
|
|
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
|
|
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
|
|
qi.tqi_aifs = wmep->wmep_aifsn;
|
|
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
|
|
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
|
|
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
|
|
|
|
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
|
|
device_printf(sc->sc_dev, "unable to update hardware queue "
|
|
"parameters for %s traffic!\n",
|
|
ieee80211_wme_acnames[ac]);
|
|
return 0;
|
|
} else {
|
|
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
|
|
return 1;
|
|
}
|
|
#undef ATH_TXOP_TO_US
|
|
#undef ATH_EXPONENT_TO_VALUE
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update WME parameters.
|
|
*/
|
|
static int
|
|
ath_wme_update(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
return !ath_txq_update(sc, WME_AC_BE) ||
|
|
!ath_txq_update(sc, WME_AC_BK) ||
|
|
!ath_txq_update(sc, WME_AC_VI) ||
|
|
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim resources for a setup queue.
|
|
*/
|
|
static void
|
|
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
|
|
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
|
|
ATH_TXQ_LOCK_DESTROY(txq);
|
|
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all tx queue resources.
|
|
*/
|
|
static void
|
|
ath_tx_cleanup(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
ATH_TXBUF_LOCK_DESTROY(sc);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
|
|
}
|
|
|
|
/*
|
|
* Defragment an mbuf chain, returning at most maxfrags separate
|
|
* mbufs+clusters. If this is not possible NULL is returned and
|
|
* the original mbuf chain is left in it's present (potentially
|
|
* modified) state. We use two techniques: collapsing consecutive
|
|
* mbufs and replacing consecutive mbufs by a cluster.
|
|
*/
|
|
static struct mbuf *
|
|
ath_defrag(struct mbuf *m0, int how, int maxfrags)
|
|
{
|
|
struct mbuf *m, *n, *n2, **prev;
|
|
u_int curfrags;
|
|
|
|
/*
|
|
* Calculate the current number of frags.
|
|
*/
|
|
curfrags = 0;
|
|
for (m = m0; m != NULL; m = m->m_next)
|
|
curfrags++;
|
|
/*
|
|
* First, try to collapse mbufs. Note that we always collapse
|
|
* towards the front so we don't need to deal with moving the
|
|
* pkthdr. This may be suboptimal if the first mbuf has much
|
|
* less data than the following.
|
|
*/
|
|
m = m0;
|
|
again:
|
|
for (;;) {
|
|
n = m->m_next;
|
|
if (n == NULL)
|
|
break;
|
|
if ((m->m_flags & M_RDONLY) == 0 &&
|
|
n->m_len < M_TRAILINGSPACE(m)) {
|
|
bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
|
|
n->m_len);
|
|
m->m_len += n->m_len;
|
|
m->m_next = n->m_next;
|
|
m_free(n);
|
|
if (--curfrags <= maxfrags)
|
|
return m0;
|
|
} else
|
|
m = n;
|
|
}
|
|
KASSERT(maxfrags > 1,
|
|
("maxfrags %u, but normal collapse failed", maxfrags));
|
|
/*
|
|
* Collapse consecutive mbufs to a cluster.
|
|
*/
|
|
prev = &m0->m_next; /* NB: not the first mbuf */
|
|
while ((n = *prev) != NULL) {
|
|
if ((n2 = n->m_next) != NULL &&
|
|
n->m_len + n2->m_len < MCLBYTES) {
|
|
m = m_getcl(how, MT_DATA, 0);
|
|
if (m == NULL)
|
|
goto bad;
|
|
bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
|
|
bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
|
|
n2->m_len);
|
|
m->m_len = n->m_len + n2->m_len;
|
|
m->m_next = n2->m_next;
|
|
*prev = m;
|
|
m_free(n);
|
|
m_free(n2);
|
|
if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
|
|
return m0;
|
|
/*
|
|
* Still not there, try the normal collapse
|
|
* again before we allocate another cluster.
|
|
*/
|
|
goto again;
|
|
}
|
|
prev = &n->m_next;
|
|
}
|
|
/*
|
|
* No place where we can collapse to a cluster; punt.
|
|
* This can occur if, for example, you request 2 frags
|
|
* but the packet requires that both be clusters (we
|
|
* never reallocate the first mbuf to avoid moving the
|
|
* packet header).
|
|
*/
|
|
bad:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return h/w rate index for an IEEE rate (w/o basic rate bit).
|
|
*/
|
|
static int
|
|
ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rt->rateCount; i++)
|
|
if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
|
|
return i;
|
|
return 0; /* NB: lowest rate */
|
|
}
|
|
|
|
static int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
|
|
struct mbuf *m0)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
|
|
int i, error, iswep, ismcast, ismrr;
|
|
int keyix, hdrlen, pktlen, try0;
|
|
u_int8_t rix, txrate, ctsrate;
|
|
u_int8_t cix = 0xff; /* NB: silence compiler */
|
|
struct ath_desc *ds, *ds0;
|
|
struct ath_txq *txq;
|
|
struct ieee80211_frame *wh;
|
|
u_int subtype, flags, ctsduration;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
struct mbuf *m;
|
|
u_int pri;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
|
|
|
|
if (iswep) {
|
|
const struct ieee80211_cipher *cip;
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*/
|
|
k = ieee80211_crypto_encap(ic, ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
/*
|
|
* Adjust the packet + header lengths for the crypto
|
|
* additions and calculate the h/w key index. When
|
|
* a s/w mic is done the frame will have had any mic
|
|
* added to it prior to entry so m0->m_pkthdr.len above will
|
|
* account for it. Otherwise we need to add it to the
|
|
* packet length.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
hdrlen += cip->ic_header;
|
|
pktlen += cip->ic_header + cip->ic_trailer;
|
|
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
|
|
pktlen += cip->ic_miclen;
|
|
keyix = k->wk_keyix;
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
/*
|
|
* Use station key cache slot, if assigned.
|
|
*/
|
|
keyix = ni->ni_ucastkey.wk_keyix;
|
|
if (keyix == IEEE80211_KEYIX_NONE)
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
} else
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* XXX packet requires too many descriptors */
|
|
bf->bf_nseg = ATH_TXDESC+1;
|
|
} else if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
|
|
if (m == NULL) {
|
|
m_freem(m0);
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg <= ATH_TXDESC,
|
|
("too many segments after defrag; nseg %u", bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
an = ATH_NODE(ni);
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
ismrr = 0; /* default no multi-rate retry*/
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header,
|
|
* setup for rate calculations, and select h/w transmit queue.
|
|
*/
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
else
|
|
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
|
|
rix = sc->sc_minrateix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
/* NB: force all management frames to highest queue */
|
|
if (ni->ni_flags & IEEE80211_NODE_QOS) {
|
|
/* NB: force all management frames to highest queue */
|
|
pri = WME_AC_VO;
|
|
} else
|
|
pri = WME_AC_BE;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
|
|
rix = sc->sc_minrateix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
/* NB: force all ctl frames to highest queue */
|
|
if (ni->ni_flags & IEEE80211_NODE_QOS) {
|
|
/* NB: force all ctl frames to highest queue */
|
|
pri = WME_AC_VO;
|
|
} else
|
|
pri = WME_AC_BE;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
/*
|
|
* Data frames: multicast frames go out at a fixed rate,
|
|
* otherwise consult the rate control module for the
|
|
* rate to use.
|
|
*/
|
|
if (ismcast) {
|
|
/*
|
|
* Check mcast rate setting in case it's changed.
|
|
* XXX move out of fastpath
|
|
*/
|
|
if (ic->ic_mcast_rate != sc->sc_mcastrate) {
|
|
sc->sc_mcastrix =
|
|
ath_tx_findrix(rt, ic->ic_mcast_rate);
|
|
sc->sc_mcastrate = ic->ic_mcast_rate;
|
|
}
|
|
rix = sc->sc_mcastrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = 1;
|
|
} else {
|
|
ath_rate_findrate(sc, an, shortPreamble, pktlen,
|
|
&rix, &try0, &txrate);
|
|
sc->sc_txrate = txrate; /* for LED blinking */
|
|
if (try0 != ATH_TXMAXTRY)
|
|
ismrr = 1;
|
|
}
|
|
pri = M_WME_GETAC(m0);
|
|
if (cap->cap_wmeParams[pri].wmep_noackPolicy)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
break;
|
|
default:
|
|
if_printf(ifp, "bogus frame type 0x%x (%s)\n",
|
|
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
|
|
/* XXX statistic */
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
txq = sc->sc_ac2q[pri];
|
|
|
|
/*
|
|
* When servicing one or more stations in power-save mode
|
|
* multicast frames must be buffered until after the beacon.
|
|
* We use the CAB queue for that.
|
|
*/
|
|
if (ismcast && ic->ic_ps_sta) {
|
|
txq = sc->sc_cabq;
|
|
/* XXX? more bit in 802.11 frame header */
|
|
}
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
if (ismcast) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
} else if (pktlen > ic->ic_rtsthreshold) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
cix = rt->info[rix].controlRate;
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether
|
|
* to use RTS/CTS or just CTS. Note that this is only
|
|
* done for OFDM unicast frames.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
rt->info[rix].phy == IEEE80211_T_OFDM &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
/* XXX fragments must use CCK rates w/ protection */
|
|
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
sc->sc_stats.ast_tx_protect++;
|
|
}
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
/*
|
|
* XXX not right with fragmentation.
|
|
*/
|
|
if (shortPreamble)
|
|
dur = rt->info[rix].spAckDuration;
|
|
else
|
|
dur = rt->info[rix].lpAckDuration;
|
|
*(u_int16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
|
|
/*
|
|
* Calculate RTS/CTS rate and duration if needed.
|
|
*/
|
|
ctsduration = 0;
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
/* NB: cix is set above where RTS/CTS is enabled */
|
|
KASSERT(cix != 0xff, ("cix not setup"));
|
|
ctsrate = rt->info[cix].rateCode;
|
|
/*
|
|
* Compute the transmit duration based on the frame
|
|
* size and the size of an ACK frame. We call into the
|
|
* HAL to do the computation since it depends on the
|
|
* characteristics of the actual PHY being used.
|
|
*
|
|
* NB: CTS is assumed the same size as an ACK so we can
|
|
* use the precalculated ACK durations.
|
|
*/
|
|
if (shortPreamble) {
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].spAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].spAckDuration;
|
|
} else {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].lpAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_FALSE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].lpAckDuration;
|
|
}
|
|
/*
|
|
* Must disable multi-rate retry when using RTS/CTS.
|
|
*/
|
|
ismrr = 0;
|
|
try0 = ATH_TXMGTTRY; /* XXX */
|
|
} else
|
|
ctsrate = 0;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
|
|
sc->sc_hwmap[txrate].ieeerate, -1);
|
|
|
|
if (bpf_peers_present(ic->ic_rawbpf))
|
|
bpf_mtap(ic->ic_rawbpf, m0);
|
|
if (bpf_peers_present(sc->sc_drvbpf)) {
|
|
u_int64_t tsf = ath_hal_gettsf64(ah);
|
|
|
|
sc->sc_tx_th.wt_tsf = htole64(tsf);
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
|
|
if (iswep)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf,
|
|
&sc->sc_tx_th, sc->sc_tx_th_len, m0);
|
|
}
|
|
|
|
/*
|
|
* Determine if a tx interrupt should be generated for
|
|
* this descriptor. We take a tx interrupt to reap
|
|
* descriptors when the h/w hits an EOL condition or
|
|
* when the descriptor is specifically marked to generate
|
|
* an interrupt. We periodically mark descriptors in this
|
|
* way to insure timely replenishing of the supply needed
|
|
* for sending frames. Defering interrupts reduces system
|
|
* load and potentially allows more concurrent work to be
|
|
* done but if done to aggressively can cause senders to
|
|
* backup.
|
|
*
|
|
* NB: use >= to deal with sc_txintrperiod changing
|
|
* dynamically through sysctl.
|
|
*/
|
|
if (flags & HAL_TXDESC_INTREQ) {
|
|
txq->axq_intrcnt = 0;
|
|
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
|
|
flags |= HAL_TXDESC_INTREQ;
|
|
txq->axq_intrcnt = 0;
|
|
}
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
/* XXX check return value? */
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, pktlen /* packet length */
|
|
, hdrlen /* header length */
|
|
, atype /* Atheros packet type */
|
|
, ni->ni_txpower /* txpower */
|
|
, txrate, try0 /* series 0 rate/tries */
|
|
, keyix /* key cache index */
|
|
, sc->sc_txantenna /* antenna mode */
|
|
, flags /* flags */
|
|
, ctsrate /* rts/cts rate */
|
|
, ctsduration /* rts/cts duration */
|
|
);
|
|
bf->bf_flags = flags;
|
|
/*
|
|
* Setup the multi-rate retry state only when we're
|
|
* going to use it. This assumes ath_hal_setuptxdesc
|
|
* initializes the descriptors (so we don't have to)
|
|
* when the hardware supports multi-rate retry and
|
|
* we don't use it.
|
|
*/
|
|
if (ismrr)
|
|
ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
|
|
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
ds0 = ds;
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1)
|
|
ds->ds_link = 0;
|
|
else
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
ath_hal_filltxdesc(ah, ds
|
|
, bf->bf_segs[i].ds_len /* segment length */
|
|
, i == 0 /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
, ds0 /* first descriptor */
|
|
);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
__func__, i, ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
|
|
}
|
|
/*
|
|
* Insert the frame on the outbound list and
|
|
* pass it on to the hardware.
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
if (txq->axq_link == NULL) {
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
|
|
}
|
|
txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
|
|
/*
|
|
* The CAB queue is started from the SWBA handler since
|
|
* frames only go out on DTIM and to avoid possible races.
|
|
*/
|
|
if (txq != sc->sc_cabq)
|
|
ath_hal_txstart(ah, txq->axq_qnum);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process completed xmit descriptors from the specified queue.
|
|
*/
|
|
static int
|
|
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_buf *bf;
|
|
struct ath_desc *ds, *ds0;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
int sr, lr, pri, nacked;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
nacked = 0;
|
|
for (;;) {
|
|
ATH_TXQ_LOCK(txq);
|
|
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
|
|
bf = STAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ds0 = &bf->bf_desc[0];
|
|
ds = &bf->bf_desc[bf->bf_nseg - 1];
|
|
status = ath_hal_txprocdesc(ah, ds);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
|
|
if (txq->axq_depth == 0)
|
|
txq->axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
ni = bf->bf_node;
|
|
if (ni != NULL) {
|
|
an = ATH_NODE(ni);
|
|
if (ds->ds_txstat.ts_status == 0) {
|
|
u_int8_t txant = ds->ds_txstat.ts_antenna;
|
|
sc->sc_stats.ast_ant_tx[txant]++;
|
|
sc->sc_ant_tx[txant]++;
|
|
if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
|
|
sc->sc_stats.ast_tx_altrate++;
|
|
sc->sc_stats.ast_tx_rssi =
|
|
ds->ds_txstat.ts_rssi;
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
|
|
ds->ds_txstat.ts_rssi);
|
|
pri = M_WME_GETAC(bf->bf_m);
|
|
if (pri >= WME_AC_VO)
|
|
ic->ic_wme.wme_hipri_traffic++;
|
|
ni->ni_inact = ni->ni_inact_reload;
|
|
} else {
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
|
|
sc->sc_stats.ast_tx_xretries++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
|
|
sc->sc_stats.ast_tx_fifoerr++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
|
|
sc->sc_stats.ast_tx_filtered++;
|
|
}
|
|
sr = ds->ds_txstat.ts_shortretry;
|
|
lr = ds->ds_txstat.ts_longretry;
|
|
sc->sc_stats.ast_tx_shortretry += sr;
|
|
sc->sc_stats.ast_tx_longretry += lr;
|
|
/*
|
|
* Hand the descriptor to the rate control algorithm.
|
|
*/
|
|
if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
|
|
(bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
|
|
/*
|
|
* If frame was ack'd update the last rx time
|
|
* used to workaround phantom bmiss interrupts.
|
|
*/
|
|
if (ds->ds_txstat.ts_status == 0)
|
|
nacked++;
|
|
ath_rate_tx_complete(sc, an, ds, ds0);
|
|
}
|
|
/*
|
|
* Reclaim reference to node.
|
|
*
|
|
* NB: the node may be reclaimed here if, for example
|
|
* this is a DEAUTH message that was sent and the
|
|
* node was timed out due to inactivity.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
return nacked;
|
|
}
|
|
|
|
static __inline int
|
|
txqactive(struct ath_hal *ah, int qnum)
|
|
{
|
|
u_int32_t txqs = 1<<qnum;
|
|
ath_hal_gettxintrtxqs(ah, &txqs);
|
|
return (txqs & (1<<qnum));
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for a single hardware transmit queue (e.g. 5210 and 5211).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq);
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, ATH_LED_TX);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0123(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int nacked;
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
if (txqactive(sc->sc_ah, 0))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
|
|
if (txqactive(sc->sc_ah, 1))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
|
|
if (txqactive(sc->sc_ah, 2))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
|
|
if (txqactive(sc->sc_ah, 3))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
|
|
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, ATH_LED_TX);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt.
|
|
*/
|
|
static void
|
|
ath_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i, nacked;
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, ATH_LED_TX);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
static void
|
|
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
#ifdef ATH_DEBUG
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
#endif
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
/*
|
|
* NB: this assumes output has been stopped and
|
|
* we do not need to block ath_tx_tasklet
|
|
*/
|
|
for (ix = 0;; ix++) {
|
|
ATH_TXQ_LOCK(txq);
|
|
bf = STAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
txq->axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
ath_printtxbuf(bf, txq->axq_qnum, ix,
|
|
ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
|
|
ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
|
|
bf->bf_m->m_len, 0, -1);
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Drain the transmit queues and reclaim resources.
|
|
*/
|
|
static void
|
|
ath_draintxq(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i;
|
|
|
|
/* XXX return value */
|
|
if (!sc->sc_invalid) {
|
|
/* don't touch the hardware if marked invalid */
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
|
|
__func__, sc->sc_bhalq,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
|
|
NULL);
|
|
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_stopdma(sc, &sc->sc_txq[i]);
|
|
}
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i]);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
|
|
if (bf != NULL && bf->bf_m != NULL) {
|
|
ath_printtxbuf(bf, sc->sc_bhalq, 0,
|
|
ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
|
|
ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
|
|
bf->bf_m->m_len, 0, -1);
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Disable the receive h/w in preparation for a reset.
|
|
*/
|
|
static void
|
|
ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_stoppcurecv(ah); /* disable PCU */
|
|
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
|
|
ath_hal_stopdmarecv(ah); /* disable DMA engine */
|
|
DELAY(3000); /* 3ms is long enough for 1 frame */
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
printf("%s: rx queue %p, link %p\n", __func__,
|
|
(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
|
|
ix = 0;
|
|
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link));
|
|
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
|
|
ath_printrxbuf(bf, ix, status == HAL_OK);
|
|
ix++;
|
|
}
|
|
}
|
|
#endif
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* Enable the receive h/w following a reset.
|
|
*/
|
|
static int
|
|
ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
sc->sc_rxlink = NULL;
|
|
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
int error = ath_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV,
|
|
"%s: ath_rxbuf_init failed %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
bf = STAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_putrxbuf(ah, bf->bf_daddr);
|
|
ath_hal_rxena(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update internal state after a channel change.
|
|
*/
|
|
static void
|
|
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
enum ieee80211_phymode mode;
|
|
u_int16_t flags;
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
mode = ieee80211_chan2mode(ic, chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
/*
|
|
* Update BPF state. NB: ethereal et. al. don't handle
|
|
* merged flags well so pick a unique mode for their use.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_A(chan))
|
|
flags = IEEE80211_CHAN_A;
|
|
/* XXX 11g schizophrenia */
|
|
else if (IEEE80211_IS_CHAN_G(chan) ||
|
|
IEEE80211_IS_CHAN_PUREG(chan))
|
|
flags = IEEE80211_CHAN_G;
|
|
else
|
|
flags = IEEE80211_CHAN_B;
|
|
if (IEEE80211_IS_CHAN_T(chan))
|
|
flags |= IEEE80211_CHAN_TURBO;
|
|
sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
|
|
htole16(chan->ic_freq);
|
|
sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
|
|
htole16(flags);
|
|
}
|
|
|
|
/*
|
|
* Poll for a channel clear indication; this is required
|
|
* for channels requiring DFS and not previously visited
|
|
* and/or with a recent radar detection.
|
|
*/
|
|
static void
|
|
ath_dfswait(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_CHANNEL hchan;
|
|
|
|
ath_hal_radar_wait(ah, &hchan);
|
|
DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
|
|
__func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
|
|
|
|
if (hchan.privFlags & CHANNEL_INTERFERENCE) {
|
|
if_printf(sc->sc_ifp,
|
|
"channel %u/0x%x/0x%x has interference\n",
|
|
hchan.channel, hchan.channelFlags, hchan.privFlags);
|
|
return;
|
|
}
|
|
if ((hchan.privFlags & CHANNEL_DFS) == 0) {
|
|
/* XXX should not happen */
|
|
return;
|
|
}
|
|
if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
|
|
sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
|
|
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if_printf(sc->sc_ifp,
|
|
"channel %u/0x%x/0x%x marked clear\n",
|
|
hchan.channel, hchan.channelFlags, hchan.privFlags);
|
|
} else
|
|
callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by reseting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* ath_init.
|
|
*/
|
|
static int
|
|
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
HAL_CHANNEL hchan;
|
|
|
|
/*
|
|
* Convert to a HAL channel description with
|
|
* the flags constrained to reflect the current
|
|
* operating mode.
|
|
*/
|
|
hchan.channel = chan->ic_freq;
|
|
hchan.channelFlags = ath_chan2flags(ic, chan);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
|
|
__func__,
|
|
ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
|
|
sc->sc_curchan.channelFlags),
|
|
sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
|
|
ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
|
|
hchan.channel, hchan.channelFlags);
|
|
if (hchan.channel != sc->sc_curchan.channel ||
|
|
hchan.channelFlags != sc->sc_curchan.channelFlags) {
|
|
HAL_STATUS status;
|
|
|
|
/*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
|
|
if_printf(ic->ic_ifp, "%s: unable to reset "
|
|
"channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
|
|
__func__, ieee80211_chan2ieee(ic, chan),
|
|
chan->ic_freq, chan->ic_flags, hchan.channelFlags);
|
|
return EIO;
|
|
}
|
|
sc->sc_curchan = hchan;
|
|
ath_update_txpow(sc); /* update tx power state */
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
sc->sc_calinterval = 1;
|
|
sc->sc_caltries = 0;
|
|
|
|
/*
|
|
* Re-enable rx framework.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(ic->ic_ifp,
|
|
"%s: unable to restart recv logic\n", __func__);
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ic->ic_ibss_chan = chan;
|
|
ath_chan_change(sc, chan);
|
|
|
|
/*
|
|
* Handle DFS required waiting period to determine
|
|
* if channel is clear of radar traffic.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
#define DFS_AND_NOT_CLEAR(_c) \
|
|
(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
|
|
if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
|
|
if_printf(sc->sc_ifp,
|
|
"wait for DFS clear channel signal\n");
|
|
/* XXX stop sndq */
|
|
sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
callout_reset(&sc->sc_dfs_ch,
|
|
2 * hz, ath_dfswait, sc);
|
|
} else
|
|
callout_stop(&sc->sc_dfs_ch);
|
|
#undef DFS_NOT_CLEAR
|
|
}
|
|
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_next_scan(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ic);
|
|
}
|
|
|
|
/*
|
|
* Periodically recalibrate the PHY to account
|
|
* for temperature/environment changes.
|
|
*/
|
|
static void
|
|
ath_calibrate(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_BOOL iqCalDone;
|
|
|
|
sc->sc_stats.ast_per_cal++;
|
|
|
|
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
|
|
/*
|
|
* Rfgain is out of bounds, reset the chip
|
|
* to load new gain values.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: rfgain change\n", __func__);
|
|
sc->sc_stats.ast_per_rfgain++;
|
|
ath_reset(sc->sc_ifp);
|
|
}
|
|
if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: calibration of channel %u failed\n",
|
|
__func__, sc->sc_curchan.channel);
|
|
sc->sc_stats.ast_per_calfail++;
|
|
}
|
|
/*
|
|
* Calibrate noise floor data again in case of change.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
/*
|
|
* Poll more frequently when the IQ calibration is in
|
|
* progress to speedup loading the final settings.
|
|
* We temper this aggressive polling with an exponential
|
|
* back off after 4 tries up to ath_calinterval.
|
|
*/
|
|
if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
|
|
sc->sc_caltries = 0;
|
|
sc->sc_calinterval = ath_calinterval;
|
|
} else if (sc->sc_caltries > 4) {
|
|
sc->sc_caltries = 0;
|
|
sc->sc_calinterval <<= 1;
|
|
if (sc->sc_calinterval > ath_calinterval)
|
|
sc->sc_calinterval = ath_calinterval;
|
|
}
|
|
KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
|
|
("bad calibration interval %u", sc->sc_calinterval));
|
|
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: next +%u (%siqCalDone tries %u)\n", __func__,
|
|
sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
|
|
sc->sc_caltries++;
|
|
callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
|
|
ath_calibrate, sc);
|
|
}
|
|
|
|
static int
|
|
ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_node *ni;
|
|
int i, error;
|
|
const u_int8_t *bssid;
|
|
u_int32_t rfilt;
|
|
static const HAL_LED_STATE leds[] = {
|
|
HAL_LED_INIT, /* IEEE80211_S_INIT */
|
|
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
|
|
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
|
|
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
|
|
HAL_LED_RUN, /* IEEE80211_S_RUN */
|
|
};
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[ic->ic_state],
|
|
ieee80211_state_name[nstate]);
|
|
|
|
callout_stop(&sc->sc_scan_ch);
|
|
callout_stop(&sc->sc_cal_ch);
|
|
callout_stop(&sc->sc_dfs_ch);
|
|
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
|
|
|
|
if (nstate == IEEE80211_S_INIT) {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
/*
|
|
* NB: disable interrupts so we don't rx frames.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
|
|
/*
|
|
* Notify the rate control algorithm.
|
|
*/
|
|
ath_rate_newstate(sc, nstate);
|
|
goto done;
|
|
}
|
|
ni = ic->ic_bss;
|
|
error = ath_chan_set(sc, ic->ic_curchan);
|
|
if (error != 0)
|
|
goto bad;
|
|
rfilt = ath_calcrxfilter(sc, nstate);
|
|
if (nstate == IEEE80211_S_SCAN)
|
|
bssid = ifp->if_broadcastaddr;
|
|
else
|
|
bssid = ni->ni_bssid;
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
|
|
__func__, rfilt, ether_sprintf(bssid));
|
|
|
|
if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
|
|
ath_hal_setassocid(ah, bssid, ni->ni_associd);
|
|
else
|
|
ath_hal_setassocid(ah, bssid, 0);
|
|
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath_hal_keyisvalid(ah, i))
|
|
ath_hal_keysetmac(ah, i, bssid);
|
|
}
|
|
|
|
/*
|
|
* Notify the rate control algorithm so rates
|
|
* are setup should ath_beacon_alloc be called.
|
|
*/
|
|
ath_rate_newstate(sc, nstate);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* nothing to do */;
|
|
} else if (nstate == IEEE80211_S_RUN) {
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
|
|
"capinfo=0x%04x chan=%d\n"
|
|
, __func__
|
|
, ic->ic_flags
|
|
, ni->ni_intval
|
|
, ether_sprintf(ni->ni_bssid)
|
|
, ni->ni_capinfo
|
|
, ieee80211_chan2ieee(ic, ic->ic_curchan));
|
|
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_IBSS:
|
|
/*
|
|
* Allocate and setup the beacon frame.
|
|
*
|
|
* Stop any previous beacon DMA. This may be
|
|
* necessary, for example, when an ibss merge
|
|
* causes reconfiguration; there will be a state
|
|
* transition from RUN->RUN that means we may
|
|
* be called with beacon transmission active.
|
|
*/
|
|
ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
ath_beacon_free(sc);
|
|
error = ath_beacon_alloc(sc, ni);
|
|
if (error != 0)
|
|
goto bad;
|
|
/*
|
|
* If joining an adhoc network defer beacon timer
|
|
* configuration to the next beacon frame so we
|
|
* have a current TSF to use. Otherwise we're
|
|
* starting an ibss/bss so there's no need to delay.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS &&
|
|
ic->ic_bss->ni_tstamp.tsf != 0)
|
|
sc->sc_syncbeacon = 1;
|
|
else
|
|
ath_beacon_config(sc);
|
|
break;
|
|
case IEEE80211_M_STA:
|
|
/*
|
|
* Allocate a key cache slot to the station.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
|
|
sc->sc_hasclrkey &&
|
|
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
|
|
ath_setup_stationkey(ni);
|
|
/*
|
|
* Defer beacon timer configuration to the next
|
|
* beacon frame so we have a current TSF to use
|
|
* (any TSF collected when scanning is likely old).
|
|
*/
|
|
sc->sc_syncbeacon = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Let the hal process statistics collected during a
|
|
* scan so it can provide calibrated noise floor data.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
/*
|
|
* Reset rssi stats; maybe not the best place...
|
|
*/
|
|
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
|
|
} else {
|
|
ath_hal_intrset(ah,
|
|
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
}
|
|
done:
|
|
/*
|
|
* Invoke the parent method to complete the work.
|
|
*/
|
|
error = sc->sc_newstate(ic, nstate, arg);
|
|
/*
|
|
* Finally, start any timers.
|
|
*/
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
/* start periodic recalibration timer */
|
|
callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
|
|
ath_calibrate, sc);
|
|
} else if (nstate == IEEE80211_S_SCAN) {
|
|
/* start ap/neighbor scan timer */
|
|
callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
|
|
ath_next_scan, sc);
|
|
}
|
|
bad:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a key cache slot to the station so we can
|
|
* setup a mapping from key index to node. The key cache
|
|
* slot is needed for managing antenna state and for
|
|
* compression when stations do not use crypto. We do
|
|
* it uniliaterally here; if crypto is employed this slot
|
|
* will be reassigned.
|
|
*/
|
|
static void
|
|
ath_setup_stationkey(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
ieee80211_keyix keyix, rxkeyix;
|
|
|
|
if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
|
|
/*
|
|
* Key cache is full; we'll fall back to doing
|
|
* the more expensive lookup in software. Note
|
|
* this also means no h/w compression.
|
|
*/
|
|
/* XXX msg+statistic */
|
|
} else {
|
|
/* XXX locking? */
|
|
ni->ni_ucastkey.wk_keyix = keyix;
|
|
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
|
|
/* NB: this will create a pass-thru key entry */
|
|
ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup driver-specific state for a newly associated node.
|
|
* Note that we're called also on a re-associate, the isnew
|
|
* param tells us if this is the first time or not.
|
|
*/
|
|
static void
|
|
ath_newassoc(struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
|
|
if (isnew &&
|
|
(ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
|
|
KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
|
|
("new assoc with a unicast key already setup (keyix %u)",
|
|
ni->ni_ucastkey.wk_keyix));
|
|
ath_setup_stationkey(ni);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_getchannels(struct ath_softc *sc, u_int cc,
|
|
HAL_BOOL outdoor, HAL_BOOL xchanmode)
|
|
{
|
|
#define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
|
|
#define IS_CHAN_PUBLIC_SAFETY(_c) \
|
|
(((_c)->channelFlags & CHANNEL_5GHZ) && \
|
|
((_c)->channel > 4940 && (_c)->channel < 4990))
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_CHANNEL *chans;
|
|
int i, ix, nchan;
|
|
|
|
chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
|
|
M_TEMP, M_NOWAIT);
|
|
if (chans == NULL) {
|
|
if_printf(ifp, "unable to allocate channel table\n");
|
|
return ENOMEM;
|
|
}
|
|
if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
|
|
NULL, 0, NULL,
|
|
cc, HAL_MODE_ALL, outdoor, xchanmode)) {
|
|
u_int32_t rd;
|
|
|
|
ath_hal_getregdomain(ah, &rd);
|
|
if_printf(ifp, "unable to collect channel list from hal; "
|
|
"regdomain likely %u country code %u\n", rd, cc);
|
|
free(chans, M_TEMP);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Convert HAL channels to ieee80211 ones and insert
|
|
* them in the table according to their channel number.
|
|
*/
|
|
for (i = 0; i < nchan; i++) {
|
|
HAL_CHANNEL *c = &chans[i];
|
|
u_int16_t flags;
|
|
|
|
/*
|
|
* XXX we're not ready to handle the ieee number mapping
|
|
* for public safety channels as they overlap with any
|
|
* 2GHz channels; for now use the non-public safety
|
|
* numbering which is non-overlapping.
|
|
*/
|
|
if (IS_CHAN_PUBLIC_SAFETY(c))
|
|
ix = (c->channel - 4000) / 5;
|
|
else
|
|
ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
|
|
if (ix > IEEE80211_CHAN_MAX) {
|
|
if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
|
|
ix, c->channel, c->channelFlags);
|
|
continue;
|
|
}
|
|
if (ix < 0) {
|
|
/* XXX can't handle stuff <2400 right now */
|
|
if (bootverbose)
|
|
if_printf(ifp, "hal channel %d (%u/%x) "
|
|
"cannot be handled; ignored\n",
|
|
ix, c->channel, c->channelFlags);
|
|
continue;
|
|
}
|
|
/*
|
|
* Calculate net80211 flags; most are compatible
|
|
* but some need massaging. Note the static turbo
|
|
* conversion can be removed once net80211 is updated
|
|
* to understand static vs. dynamic turbo.
|
|
*/
|
|
flags = c->channelFlags & COMPAT;
|
|
if (c->channelFlags & CHANNEL_STURBO)
|
|
flags |= IEEE80211_CHAN_TURBO;
|
|
if (ic->ic_channels[ix].ic_freq == 0) {
|
|
ic->ic_channels[ix].ic_freq = c->channel;
|
|
ic->ic_channels[ix].ic_flags = flags;
|
|
} else {
|
|
/* channels overlap; e.g. 11g and 11b */
|
|
ic->ic_channels[ix].ic_flags |= flags;
|
|
}
|
|
}
|
|
free(chans, M_TEMP);
|
|
return 0;
|
|
#undef IS_CHAN_PUBLIC_SAFETY
|
|
#undef COMPAT
|
|
}
|
|
|
|
static void
|
|
ath_led_done(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
sc->sc_blinking = 0;
|
|
}
|
|
|
|
/*
|
|
* Turn the LED off: flip the pin and then set a timer so no
|
|
* update will happen for the specified duration.
|
|
*/
|
|
static void
|
|
ath_led_off(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
|
|
}
|
|
|
|
/*
|
|
* Blink the LED according to the specified on/off times.
|
|
*/
|
|
static void
|
|
ath_led_blink(struct ath_softc *sc, int on, int off)
|
|
{
|
|
DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
|
|
sc->sc_blinking = 1;
|
|
sc->sc_ledoff = off;
|
|
callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
|
|
}
|
|
|
|
static void
|
|
ath_led_event(struct ath_softc *sc, int event)
|
|
{
|
|
|
|
sc->sc_ledevent = ticks; /* time of last event */
|
|
if (sc->sc_blinking) /* don't interrupt active blink */
|
|
return;
|
|
switch (event) {
|
|
case ATH_LED_POLL:
|
|
ath_led_blink(sc, sc->sc_hwmap[0].ledon,
|
|
sc->sc_hwmap[0].ledoff);
|
|
break;
|
|
case ATH_LED_TX:
|
|
ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
|
|
sc->sc_hwmap[sc->sc_txrate].ledoff);
|
|
break;
|
|
case ATH_LED_RX:
|
|
ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
|
|
sc->sc_hwmap[sc->sc_rxrate].ledoff);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_update_txpow(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t txpow;
|
|
|
|
if (sc->sc_curtxpow != ic->ic_txpowlimit) {
|
|
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
|
|
/* read back in case value is clamped */
|
|
ath_hal_gettxpowlimit(ah, &txpow);
|
|
ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
|
|
}
|
|
/*
|
|
* Fetch max tx power level for status requests.
|
|
*/
|
|
ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
|
|
ic->ic_bss->ni_txpower = txpow;
|
|
}
|
|
|
|
static void
|
|
rate_setup(struct ath_softc *sc,
|
|
const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
|
|
{
|
|
int i, maxrates;
|
|
|
|
if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: rate table too small (%u > %u)\n",
|
|
__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
|
|
maxrates = IEEE80211_RATE_MAXSIZE;
|
|
} else
|
|
maxrates = rt->rateCount;
|
|
for (i = 0; i < maxrates; i++)
|
|
rs->rs_rates[i] = rt->info[i].dot11Rate;
|
|
rs->rs_nrates = maxrates;
|
|
}
|
|
|
|
static int
|
|
ath_rate_setup(struct ath_softc *sc, u_int mode)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const HAL_RATE_TABLE *rt;
|
|
|
|
switch (mode) {
|
|
case IEEE80211_MODE_11A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
|
|
break;
|
|
case IEEE80211_MODE_11G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_A:
|
|
/* XXX until static/dynamic turbo is fixed */
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
|
|
__func__, mode);
|
|
return 0;
|
|
}
|
|
sc->sc_rates[mode] = rt;
|
|
if (rt != NULL) {
|
|
rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
|
|
static const struct {
|
|
u_int rate; /* tx/rx 802.11 rate */
|
|
u_int16_t timeOn; /* LED on time (ms) */
|
|
u_int16_t timeOff; /* LED off time (ms) */
|
|
} blinkrates[] = {
|
|
{ 108, 40, 10 },
|
|
{ 96, 44, 11 },
|
|
{ 72, 50, 13 },
|
|
{ 48, 57, 14 },
|
|
{ 36, 67, 16 },
|
|
{ 24, 80, 20 },
|
|
{ 22, 100, 25 },
|
|
{ 18, 133, 34 },
|
|
{ 12, 160, 40 },
|
|
{ 10, 200, 50 },
|
|
{ 6, 240, 58 },
|
|
{ 4, 267, 66 },
|
|
{ 2, 400, 100 },
|
|
{ 0, 500, 130 },
|
|
};
|
|
const HAL_RATE_TABLE *rt;
|
|
int i, j;
|
|
|
|
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
|
|
rt = sc->sc_rates[mode];
|
|
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
|
|
for (i = 0; i < rt->rateCount; i++)
|
|
sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
|
|
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
|
|
for (i = 0; i < 32; i++) {
|
|
u_int8_t ix = rt->rateCodeToIndex[i];
|
|
if (ix == 0xff) {
|
|
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
|
|
continue;
|
|
}
|
|
sc->sc_hwmap[i].ieeerate =
|
|
rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
|
|
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
|
|
if (rt->info[ix].shortPreamble ||
|
|
rt->info[ix].phy == IEEE80211_T_OFDM)
|
|
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
/* NB: receive frames include FCS */
|
|
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
|
|
IEEE80211_RADIOTAP_F_FCS;
|
|
/* setup blink rate table to avoid per-packet lookup */
|
|
for (j = 0; j < N(blinkrates)-1; j++)
|
|
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
|
|
break;
|
|
/* NB: this uses the last entry if the rate isn't found */
|
|
/* XXX beware of overlow */
|
|
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
|
|
}
|
|
sc->sc_currates = rt;
|
|
sc->sc_curmode = mode;
|
|
/*
|
|
* All protection frames are transmited at 2Mb/s for
|
|
* 11g, otherwise at 1Mb/s.
|
|
*/
|
|
if (mode == IEEE80211_MODE_11G)
|
|
sc->sc_protrix = ath_tx_findrix(rt, 2*2);
|
|
else
|
|
sc->sc_protrix = ath_tx_findrix(rt, 2*1);
|
|
/* rate index used to send management frames */
|
|
sc->sc_minrateix = 0;
|
|
/*
|
|
* Setup multicast rate state.
|
|
*/
|
|
/* XXX layering violation */
|
|
sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
|
|
sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
|
|
/* NB: caller is responsible for reseting rate control state */
|
|
#undef N
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
static void
|
|
ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
|
|
" %08x %08x %08x %08x\n",
|
|
ix, ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
!done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
printf("Q%u[%3u]", qnum, ix);
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
|
|
" %08x %08x %08x %08x %08x %08x\n",
|
|
ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data, bf->bf_flags,
|
|
!done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
|
|
static void
|
|
ath_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
ifp->if_timer = 0;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
if (sc->sc_tx_timer) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
if_printf(ifp, "device timeout\n");
|
|
ath_reset(ifp);
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_watchdog++;
|
|
} else
|
|
ifp->if_timer = 1;
|
|
}
|
|
ieee80211_watchdog(ic);
|
|
}
|
|
|
|
#ifdef ATH_DIAGAPI
|
|
/*
|
|
* Diagnostic interface to the HAL. This is used by various
|
|
* tools to do things like retrieve register contents for
|
|
* debugging. The mechanism is intentionally opaque so that
|
|
* it can change frequently w/o concern for compatiblity.
|
|
*/
|
|
static int
|
|
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int id = ad->ad_id & ATH_DIAG_ID;
|
|
void *indata = NULL;
|
|
void *outdata = NULL;
|
|
u_int32_t insize = ad->ad_in_size;
|
|
u_int32_t outsize = ad->ad_out_size;
|
|
int error = 0;
|
|
|
|
if (ad->ad_id & ATH_DIAG_IN) {
|
|
/*
|
|
* Copy in data.
|
|
*/
|
|
indata = malloc(insize, M_TEMP, M_NOWAIT);
|
|
if (indata == NULL) {
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
error = copyin(ad->ad_in_data, indata, insize);
|
|
if (error)
|
|
goto bad;
|
|
}
|
|
if (ad->ad_id & ATH_DIAG_DYN) {
|
|
/*
|
|
* Allocate a buffer for the results (otherwise the HAL
|
|
* returns a pointer to a buffer where we can read the
|
|
* results). Note that we depend on the HAL leaving this
|
|
* pointer for us to use below in reclaiming the buffer;
|
|
* may want to be more defensive.
|
|
*/
|
|
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
|
|
if (outdata == NULL) {
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
}
|
|
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
|
|
if (outsize < ad->ad_out_size)
|
|
ad->ad_out_size = outsize;
|
|
if (outdata != NULL)
|
|
error = copyout(outdata, ad->ad_out_data,
|
|
ad->ad_out_size);
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
bad:
|
|
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
|
|
free(indata, M_TEMP);
|
|
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
|
|
free(outdata, M_TEMP);
|
|
return error;
|
|
}
|
|
#endif /* ATH_DIAGAPI */
|
|
|
|
static int
|
|
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
#define IS_RUNNING(ifp) \
|
|
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0;
|
|
|
|
ATH_LOCK(sc);
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if (IS_RUNNING(ifp)) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call ath_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
ath_mode_init(sc);
|
|
} else if (ifp->if_flags & IFF_UP) {
|
|
/*
|
|
* Beware of being called during attach/detach
|
|
* to reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
if (!sc->sc_invalid && ic->ic_bss != NULL)
|
|
ath_init(sc); /* XXX lose error */
|
|
} else
|
|
ath_stop_locked(ifp);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* The upper layer has already installed/removed
|
|
* the multicast address(es), just recalculate the
|
|
* multicast filter for the card.
|
|
*/
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
ath_mode_init(sc);
|
|
break;
|
|
case SIOCGATHSTATS:
|
|
/* NB: embed these numbers to get a consistent view */
|
|
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
|
|
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
|
|
sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
|
|
ATH_UNLOCK(sc);
|
|
/*
|
|
* NB: Drop the softc lock in case of a page fault;
|
|
* we'll accept any potential inconsisentcy in the
|
|
* statistics. The alternative is to copy the data
|
|
* to a local structure.
|
|
*/
|
|
return copyout(&sc->sc_stats,
|
|
ifr->ifr_data, sizeof (sc->sc_stats));
|
|
#ifdef ATH_DIAGAPI
|
|
case SIOCGATHDIAG:
|
|
ATH_UNLOCK(sc);
|
|
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
|
|
ATH_LOCK(sc);
|
|
break;
|
|
#endif
|
|
default:
|
|
error = ieee80211_ioctl(ic, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if (IS_RUNNING(ifp) &&
|
|
ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
|
|
ath_init(sc); /* XXX lose error */
|
|
error = 0;
|
|
}
|
|
if (error == ERESTART)
|
|
error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
|
|
break;
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
return error;
|
|
#undef IS_RUNNING
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int slottime = ath_hal_getslottime(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &slottime, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &acktimeout, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
int softled = sc->sc_softled;
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &softled, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
softled = (softled != 0);
|
|
if (softled != sc->sc_softled) {
|
|
if (softled) {
|
|
/* NB: handle any sc_ledpin change */
|
|
ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
}
|
|
sc->sc_softled = softled;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &defantenna, 0, req);
|
|
if (!error && req->newptr)
|
|
ath_hal_setdefantenna(sc->sc_ah, defantenna);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int diversity = ath_hal_getdiversity(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &diversity, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (!ath_hal_setdiversity(sc->sc_ah, diversity))
|
|
return EINVAL;
|
|
sc->sc_diversity = diversity;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t diag;
|
|
int error;
|
|
|
|
if (!ath_hal_getdiag(sc->sc_ah, &diag))
|
|
return EINVAL;
|
|
error = sysctl_handle_int(oidp, &diag, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t scale;
|
|
int error;
|
|
|
|
ath_hal_gettpscale(sc->sc_ah, &scale);
|
|
error = sysctl_handle_int(oidp, &scale, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int tpc = ath_hal_gettpc(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &tpc, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int rfkill = ath_hal_getrfkill(ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &rfkill, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */
|
|
return 0;
|
|
if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
|
|
return EINVAL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int rfsilent;
|
|
int error;
|
|
|
|
ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
|
|
error = sysctl_handle_int(oidp, &rfsilent, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
|
|
return EINVAL;
|
|
sc->sc_rfsilentpin = rfsilent & 0x1c;
|
|
sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t rd;
|
|
int error;
|
|
|
|
if (!ath_hal_getregdomain(sc->sc_ah, &rd))
|
|
return EINVAL;
|
|
error = sysctl_handle_int(oidp, &rd, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t tpack;
|
|
int error;
|
|
|
|
ath_hal_gettpack(sc->sc_ah, &tpack);
|
|
error = sysctl_handle_int(oidp, &tpack, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t tpcts;
|
|
int error;
|
|
|
|
ath_hal_gettpcts(sc->sc_ah, &tpcts);
|
|
error = sysctl_handle_int(oidp, &tpcts, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
|
|
}
|
|
|
|
static void
|
|
ath_sysctlattach(struct ath_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
|
|
"EEPROM country code");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_regdomain, "I", "EEPROM regdomain code");
|
|
#ifdef ATH_DEBUG
|
|
sc->sc_debug = ath_debug;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->sc_debug, 0,
|
|
"control debugging printfs");
|
|
#endif
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_slottime, "I", "802.11 slot time (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_softled, "I", "enable/disable software LED support");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
|
|
"GPIO pin connected to LED");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
|
|
"setting to turn LED on");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
|
|
"idle time for inactivity LED (ticks)");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
|
|
"tx antenna (0=auto)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rxantenna, "I", "default/rx antenna");
|
|
if (ath_hal_hasdiversity(ah))
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_diversity, "I", "antenna diversity");
|
|
sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
|
|
"tx descriptor batching");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_diag, "I", "h/w diagnostic control");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpscale, "I", "tx power scaling");
|
|
if (ath_hal_hastpc(ah)) {
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpack, "I", "tx power for ack frames");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpcts, "I", "tx power for cts frames");
|
|
}
|
|
if (ath_hal_hasrfsilent(ah)) {
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rfsilent, "I", "h/w RF silent config");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
|
|
}
|
|
sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
|
|
"mask of error frames to pass when monitoring");
|
|
}
|
|
|
|
static void
|
|
ath_bpfattach(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
|
|
&sc->sc_drvbpf);
|
|
/*
|
|
* Initialize constant fields.
|
|
* XXX make header lengths a multiple of 32-bits so subsequent
|
|
* headers are properly aligned; this is a kludge to keep
|
|
* certain applications happy.
|
|
*
|
|
* NB: the channel is setup each time we transition to the
|
|
* RUN state to avoid filling it in for each frame.
|
|
*/
|
|
sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
|
|
sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
|
|
sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
|
|
sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
|
|
sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
|
|
}
|
|
|
|
/*
|
|
* Announce various information on device/driver attach.
|
|
*/
|
|
static void
|
|
ath_announce(struct ath_softc *sc)
|
|
{
|
|
#define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int modes, cc;
|
|
|
|
if_printf(ifp, "mac %d.%d phy %d.%d",
|
|
ah->ah_macVersion, ah->ah_macRev,
|
|
ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
|
|
/*
|
|
* Print radio revision(s). We check the wireless modes
|
|
* to avoid falsely printing revs for inoperable parts.
|
|
* Dual-band radio revs are returned in the 5Ghz rev number.
|
|
*/
|
|
ath_hal_getcountrycode(ah, &cc);
|
|
modes = ath_hal_getwirelessmodes(ah, cc);
|
|
if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
|
|
if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
|
|
printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
|
|
ah->ah_analog5GhzRev >> 4,
|
|
ah->ah_analog5GhzRev & 0xf,
|
|
ah->ah_analog2GhzRev >> 4,
|
|
ah->ah_analog2GhzRev & 0xf);
|
|
else
|
|
printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
|
|
ah->ah_analog5GhzRev & 0xf);
|
|
} else
|
|
printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
|
|
ah->ah_analog5GhzRev & 0xf);
|
|
printf("\n");
|
|
if (bootverbose) {
|
|
int i;
|
|
for (i = 0; i <= WME_AC_VO; i++) {
|
|
struct ath_txq *txq = sc->sc_ac2q[i];
|
|
if_printf(ifp, "Use hw queue %u for %s traffic\n",
|
|
txq->axq_qnum, ieee80211_wme_acnames[i]);
|
|
}
|
|
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
|
|
sc->sc_cabq->axq_qnum);
|
|
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
|
|
}
|
|
if (ath_rxbuf != ATH_RXBUF)
|
|
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
|
|
if (ath_txbuf != ATH_TXBUF)
|
|
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
|
|
#undef HAL_MODE_DUALBAND
|
|
}
|