672 lines
15 KiB
C
672 lines
15 KiB
C
/*
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright 2012 Garrett D'Amore <garrett@damore.org> All rights reserved.
|
|
* Copyright 2015 John Marino <draco@marino.st>
|
|
*
|
|
* This source code is derived from the illumos localedef command, and
|
|
* provided under BSD-style license terms by Nexenta Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The functions in this file convert from the standard multibyte forms
|
|
* to the wide character forms used internally by libc. Unfortunately,
|
|
* this approach means that we need a method for each and every encoding.
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <wchar.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include "localedef.h"
|
|
|
|
static int towide_none(wchar_t *, const char *, unsigned);
|
|
static int towide_utf8(wchar_t *, const char *, unsigned);
|
|
static int towide_big5(wchar_t *, const char *, unsigned);
|
|
static int towide_gbk(wchar_t *, const char *, unsigned);
|
|
static int towide_gb2312(wchar_t *, const char *, unsigned);
|
|
static int towide_gb18030(wchar_t *, const char *, unsigned);
|
|
static int towide_mskanji(wchar_t *, const char *, unsigned);
|
|
static int towide_euccn(wchar_t *, const char *, unsigned);
|
|
static int towide_eucjp(wchar_t *, const char *, unsigned);
|
|
static int towide_euckr(wchar_t *, const char *, unsigned);
|
|
static int towide_euctw(wchar_t *, const char *, unsigned);
|
|
|
|
static int tomb_none(char *, wchar_t);
|
|
static int tomb_utf8(char *, wchar_t);
|
|
static int tomb_mbs(char *, wchar_t);
|
|
|
|
static int (*_towide)(wchar_t *, const char *, unsigned) = towide_none;
|
|
static int (*_tomb)(char *, wchar_t) = tomb_none;
|
|
static char _encoding_buffer[20] = {'N','O','N','E'};
|
|
static const char *_encoding = _encoding_buffer;
|
|
static int _nbits = 7;
|
|
|
|
/*
|
|
* Table of supported encodings. We only bother to list the multibyte
|
|
* encodings here, because single byte locales are handed by "NONE".
|
|
*/
|
|
static struct {
|
|
const char *name;
|
|
/* the name that the underlying libc implemenation uses */
|
|
const char *cname;
|
|
/* the maximum number of bits required for priorities */
|
|
int nbits;
|
|
int (*towide)(wchar_t *, const char *, unsigned);
|
|
int (*tomb)(char *, wchar_t);
|
|
} mb_encodings[] = {
|
|
/*
|
|
* UTF8 values max out at 0x1fffff (although in theory there could
|
|
* be later extensions, but it won't happen.) This means we only need
|
|
* 21 bits to be able to encode the entire range of priorities.
|
|
*/
|
|
{ "UTF-8", "UTF-8", 21, towide_utf8, tomb_utf8 },
|
|
{ "UTF8", "UTF-8", 21, towide_utf8, tomb_utf8 },
|
|
{ "utf8", "UTF-8", 21, towide_utf8, tomb_utf8 },
|
|
{ "utf-8", "UTF-8", 21, towide_utf8, tomb_utf8 },
|
|
|
|
{ "EUC-CN", "EUC-CN", 16, towide_euccn, tomb_mbs },
|
|
{ "eucCN", "EUC-CN", 16, towide_euccn, tomb_mbs },
|
|
/*
|
|
* Becuase the 3-byte form of EUC-JP use the same leading byte,
|
|
* only 17 bits required to provide unique priorities. (The low
|
|
* bit of that first byte is set.) By setting this value low,
|
|
* we can get by with only 3 bytes in the strxfrm expansion.
|
|
*/
|
|
{ "EUC-JP", "EUC-JP", 17, towide_eucjp, tomb_mbs },
|
|
{ "eucJP", "EUC-JP", 17, towide_eucjp, tomb_mbs },
|
|
|
|
{ "EUC-KR", "EUC-KR", 16, towide_euckr, tomb_mbs },
|
|
{ "eucKR", "EUC-KR", 16, towide_euckr, tomb_mbs },
|
|
/*
|
|
* EUC-TW uses 2 bytes most of the time, but 4 bytes if the
|
|
* high order byte is 0x8E. However, with 4 byte encodings,
|
|
* the third byte will be A0-B0. So we only need to consider
|
|
* the lower order 24 bits for collation.
|
|
*/
|
|
{ "EUC-TW", "EUC-TW", 24, towide_euctw, tomb_mbs },
|
|
{ "eucTW", "EUC-TW", 24, towide_euctw, tomb_mbs },
|
|
|
|
{ "MS_Kanji", "MSKanji", 16, towide_mskanji, tomb_mbs },
|
|
{ "MSKanji", "MSKanji", 16, towide_mskanji, tomb_mbs },
|
|
{ "PCK", "MSKanji", 16, towide_mskanji, tomb_mbs },
|
|
{ "SJIS", "MSKanji", 16, towide_mskanji, tomb_mbs },
|
|
{ "Shift_JIS", "MSKanji", 16, towide_mskanji, tomb_mbs },
|
|
|
|
{ "BIG5", "BIG5", 16, towide_big5, tomb_mbs },
|
|
{ "big5", "BIG5", 16, towide_big5, tomb_mbs },
|
|
{ "Big5", "BIG5", 16, towide_big5, tomb_mbs },
|
|
|
|
{ "GBK", "GBK", 16, towide_gbk, tomb_mbs },
|
|
|
|
/*
|
|
* GB18030 can get away with just 31 bits. This is because the
|
|
* high order bit is always set for 4 byte values, and the
|
|
* at least one of the other bits in that 4 byte value will
|
|
* be non-zero.
|
|
*/
|
|
{ "GB18030", "GB18030", 31, towide_gb18030, tomb_mbs },
|
|
|
|
/*
|
|
* This should probably be an aliase for euc-cn, or vice versa.
|
|
*/
|
|
{ "GB2312", "GB2312", 16, towide_gb2312, tomb_mbs },
|
|
|
|
{ NULL, NULL, 0, 0, 0 },
|
|
};
|
|
|
|
static char *
|
|
show_mb(const char *mb)
|
|
{
|
|
static char buf[64];
|
|
|
|
/* ASCII stuff we just print */
|
|
if (isascii(*mb) && isgraph(*mb)) {
|
|
buf[0] = *mb;
|
|
buf[1] = 0;
|
|
return (buf);
|
|
}
|
|
buf[0] = 0;
|
|
while (*mb != 0) {
|
|
char scr[8];
|
|
(void) snprintf(scr, sizeof (scr), "\\x%02x", *mb);
|
|
(void) strlcat(buf, scr, sizeof (buf));
|
|
mb++;
|
|
}
|
|
return (buf);
|
|
}
|
|
|
|
static char *widemsg;
|
|
|
|
void
|
|
werr(const char *fmt, ...)
|
|
{
|
|
char *msg;
|
|
|
|
va_list va;
|
|
va_start(va, fmt);
|
|
(void) vasprintf(&msg, fmt, va);
|
|
va_end(va);
|
|
|
|
free(widemsg);
|
|
widemsg = msg;
|
|
}
|
|
|
|
/*
|
|
* This is used for 8-bit encodings.
|
|
*/
|
|
int
|
|
towide_none(wchar_t *c, const char *mb, unsigned n __unused)
|
|
{
|
|
if (mb_cur_max != 1) {
|
|
werr("invalid or unsupported multibyte locale");
|
|
return (-1);
|
|
}
|
|
*c = (uint8_t)*mb;
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
tomb_none(char *mb, wchar_t wc)
|
|
{
|
|
if (mb_cur_max != 1) {
|
|
werr("invalid or unsupported multibyte locale");
|
|
return (-1);
|
|
}
|
|
*(uint8_t *)mb = (wc & 0xff);
|
|
mb[1] = 0;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* UTF-8 stores wide characters in UTF-32 form.
|
|
*/
|
|
int
|
|
towide_utf8(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
wchar_t c;
|
|
int nb;
|
|
wchar_t lv; /* lowest legal value */
|
|
int i;
|
|
const uint8_t *s = (const uint8_t *)mb;
|
|
|
|
c = *s;
|
|
|
|
if ((c & 0x80) == 0) {
|
|
/* 7-bit ASCII */
|
|
*wc = c;
|
|
return (1);
|
|
} else if ((c & 0xe0) == 0xc0) {
|
|
/* u80-u7ff - two bytes encoded */
|
|
nb = 2;
|
|
lv = 0x80;
|
|
c &= ~0xe0;
|
|
} else if ((c & 0xf0) == 0xe0) {
|
|
/* u800-uffff - three bytes encoded */
|
|
nb = 3;
|
|
lv = 0x800;
|
|
c &= ~0xf0;
|
|
} else if ((c & 0xf8) == 0xf0) {
|
|
/* u1000-u1fffff - four bytes encoded */
|
|
nb = 4;
|
|
lv = 0x1000;
|
|
c &= ~0xf8;
|
|
} else {
|
|
/* 5 and 6 byte encodings are not legal unicode */
|
|
werr("utf8 encoding too large (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
if (nb > (int)n) {
|
|
werr("incomplete utf8 sequence (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
|
|
for (i = 1; i < nb; i++) {
|
|
if (((s[i]) & 0xc0) != 0x80) {
|
|
werr("illegal utf8 byte (%x)", s[i]);
|
|
return (-1);
|
|
}
|
|
c <<= 6;
|
|
c |= (s[i] & 0x3f);
|
|
}
|
|
|
|
if (c < lv) {
|
|
werr("illegal redundant utf8 encoding (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
*wc = c;
|
|
return (nb);
|
|
}
|
|
|
|
int
|
|
tomb_utf8(char *mb, wchar_t wc)
|
|
{
|
|
uint8_t *s = (uint8_t *)mb;
|
|
uint8_t msk;
|
|
int cnt;
|
|
int i;
|
|
|
|
if (wc <= 0x7f) {
|
|
s[0] = wc & 0x7f;
|
|
s[1] = 0;
|
|
return (1);
|
|
}
|
|
if (wc <= 0x7ff) {
|
|
cnt = 2;
|
|
msk = 0xc0;
|
|
} else if (wc <= 0xffff) {
|
|
cnt = 3;
|
|
msk = 0xe0;
|
|
} else if (wc <= 0x1fffff) {
|
|
cnt = 4;
|
|
msk = 0xf0;
|
|
} else {
|
|
werr("illegal uf8 char (%x)", wc);
|
|
return (-1);
|
|
}
|
|
for (i = cnt - 1; i; i--) {
|
|
s[i] = (wc & 0x3f) | 0x80;
|
|
wc >>= 6;
|
|
}
|
|
s[0] = (msk) | wc;
|
|
s[cnt] = 0;
|
|
return (cnt);
|
|
}
|
|
|
|
/*
|
|
* Several encodings share a simplistic dual byte encoding. In these
|
|
* forms, they all indicate that a two byte sequence is to be used if
|
|
* the first byte has its high bit set. They all store this simple
|
|
* encoding as a 16-bit value, although a great many of the possible
|
|
* code points are not used in most character sets. This gives a possible
|
|
* set of just over 32,000 valid code points.
|
|
*
|
|
* 0x00 - 0x7f - 1 byte encoding
|
|
* 0x80 - 0x7fff - illegal
|
|
* 0x8000 - 0xffff - 2 byte encoding
|
|
*/
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
|
|
static int
|
|
towide_dbcs(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
wchar_t c;
|
|
|
|
c = *(uint8_t *)mb;
|
|
|
|
if ((c & 0x80) == 0) {
|
|
/* 7-bit */
|
|
*wc = c;
|
|
return (1);
|
|
}
|
|
if (n < 2) {
|
|
werr("incomplete character sequence (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
|
|
/* Store both bytes as a single 16-bit wide. */
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[1]);
|
|
*wc = c;
|
|
return (2);
|
|
}
|
|
|
|
/*
|
|
* Most multibyte locales just convert the wide character to the multibyte
|
|
* form by stripping leading null bytes, and writing the 32-bit quantity
|
|
* in big-endian order.
|
|
*/
|
|
int
|
|
tomb_mbs(char *mb, wchar_t wc)
|
|
{
|
|
uint8_t *s = (uint8_t *)mb;
|
|
int n = 0, c;
|
|
|
|
if ((wc & 0xff000000U) != 0) {
|
|
n = 4;
|
|
} else if ((wc & 0x00ff0000U) != 0) {
|
|
n = 3;
|
|
} else if ((wc & 0x0000ff00U) != 0) {
|
|
n = 2;
|
|
} else {
|
|
n = 1;
|
|
}
|
|
c = n;
|
|
while (n) {
|
|
n--;
|
|
s[n] = wc & 0xff;
|
|
wc >>= 8;
|
|
}
|
|
/* ensure null termination */
|
|
s[c] = 0;
|
|
return (c);
|
|
}
|
|
|
|
|
|
/*
|
|
* big5 is a simple dual byte character set.
|
|
*/
|
|
int
|
|
towide_big5(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_dbcs(wc, mb, n));
|
|
}
|
|
|
|
/*
|
|
* GBK encodes wides in the same way that big5 does, the high order
|
|
* bit of the first byte indicates a double byte character.
|
|
*/
|
|
int
|
|
towide_gbk(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_dbcs(wc, mb, n));
|
|
}
|
|
|
|
/*
|
|
* GB2312 is another DBCS. Its cleaner than others in that the second
|
|
* byte does not encode ASCII, but it supports characters.
|
|
*/
|
|
int
|
|
towide_gb2312(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_dbcs(wc, mb, n));
|
|
}
|
|
|
|
/*
|
|
* GB18030. This encodes as 8, 16, or 32-bits.
|
|
* 7-bit values are in 1 byte, 4 byte sequences are used when
|
|
* the second byte encodes 0x30-39 and all other sequences are 2 bytes.
|
|
*/
|
|
int
|
|
towide_gb18030(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
wchar_t c;
|
|
|
|
c = *(uint8_t *)mb;
|
|
|
|
if ((c & 0x80) == 0) {
|
|
/* 7-bit */
|
|
*wc = c;
|
|
return (1);
|
|
}
|
|
if (n < 2) {
|
|
werr("incomplete character sequence (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
|
|
/* pull in the second byte */
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[1]);
|
|
|
|
if (((c & 0xff) >= 0x30) && ((c & 0xff) <= 0x39)) {
|
|
if (n < 4) {
|
|
werr("incomplete 4-byte character sequence (%s)",
|
|
show_mb(mb));
|
|
return (-1);
|
|
}
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[2]);
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[3]);
|
|
*wc = c;
|
|
return (4);
|
|
}
|
|
|
|
*wc = c;
|
|
return (2);
|
|
}
|
|
|
|
/*
|
|
* MS-Kanji (aka SJIS) is almost a clean DBCS like the others, but it
|
|
* also has a range of single byte characters above 0x80. (0xa1-0xdf).
|
|
*/
|
|
int
|
|
towide_mskanji(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
wchar_t c;
|
|
|
|
c = *(uint8_t *)mb;
|
|
|
|
if ((c < 0x80) || ((c > 0xa0) && (c < 0xe0))) {
|
|
/* 7-bit */
|
|
*wc = c;
|
|
return (1);
|
|
}
|
|
|
|
if (n < 2) {
|
|
werr("incomplete character sequence (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
|
|
/* Store both bytes as a single 16-bit wide. */
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[1]);
|
|
*wc = c;
|
|
return (2);
|
|
}
|
|
|
|
/*
|
|
* EUC forms. EUC encodings are "variable". FreeBSD carries some additional
|
|
* variable data to encode these, but we're going to treat each as independent
|
|
* instead. Its the only way we can sensibly move forward.
|
|
*
|
|
* Note that the way in which the different EUC forms vary is how wide
|
|
* CS2 and CS3 are and what the first byte of them is.
|
|
*/
|
|
static int
|
|
towide_euc_impl(wchar_t *wc, const char *mb, unsigned n,
|
|
uint8_t cs2, uint8_t cs2width, uint8_t cs3, uint8_t cs3width)
|
|
{
|
|
int i;
|
|
int width = 2;
|
|
wchar_t c;
|
|
|
|
c = *(uint8_t *)mb;
|
|
|
|
/*
|
|
* All variations of EUC encode 7-bit ASCII as one byte, and use
|
|
* additional bytes for more than that.
|
|
*/
|
|
if ((c & 0x80) == 0) {
|
|
/* 7-bit */
|
|
*wc = c;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* All EUC variants reserve 0xa1-0xff to identify CS1, which
|
|
* is always two bytes wide. Note that unused CS will be zero,
|
|
* and that cannot be true because we know that the high order
|
|
* bit must be set.
|
|
*/
|
|
if (c >= 0xa1) {
|
|
width = 2;
|
|
} else if (c == cs2) {
|
|
width = cs2width;
|
|
} else if (c == cs3) {
|
|
width = cs3width;
|
|
}
|
|
|
|
if ((int)n < width) {
|
|
werr("incomplete character sequence (%s)", show_mb(mb));
|
|
return (-1);
|
|
}
|
|
|
|
for (i = 1; i < width; i++) {
|
|
/* pull in the next byte */
|
|
c <<= 8;
|
|
c |= (uint8_t)(mb[i]);
|
|
}
|
|
|
|
*wc = c;
|
|
return (width);
|
|
}
|
|
|
|
#pragma GCC diagnostic pop
|
|
|
|
/*
|
|
* EUC-CN encodes as follows:
|
|
*
|
|
* Code set 0 (ASCII): 0x21-0x7E
|
|
* Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
|
|
* Code set 2: unused
|
|
* Code set 3: unused
|
|
*/
|
|
int
|
|
towide_euccn(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
|
|
}
|
|
|
|
/*
|
|
* EUC-JP encodes as follows:
|
|
*
|
|
* Code set 0 (ASCII or JIS X 0201-1976 Roman): 0x21-0x7E
|
|
* Code set 1 (JIS X 0208): 0xA1A1-0xFEFE
|
|
* Code set 2 (half-width katakana): 0x8EA1-0x8EDF
|
|
* Code set 3 (JIS X 0212-1990): 0x8FA1A1-0x8FFEFE
|
|
*/
|
|
int
|
|
towide_eucjp(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_euc_impl(wc, mb, n, 0x8e, 2, 0x8f, 3));
|
|
}
|
|
|
|
/*
|
|
* EUC-KR encodes as follows:
|
|
*
|
|
* Code set 0 (ASCII or KS C 5636-1993): 0x21-0x7E
|
|
* Code set 1 (KS C 5601-1992): 0xA1A1-0xFEFE
|
|
* Code set 2: unused
|
|
* Code set 3: unused
|
|
*/
|
|
int
|
|
towide_euckr(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_euc_impl(wc, mb, n, 0, 0, 0, 0));
|
|
}
|
|
|
|
/*
|
|
* EUC-TW encodes as follows:
|
|
*
|
|
* Code set 0 (ASCII): 0x21-0x7E
|
|
* Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
|
|
* Code set 2 (CNS 11643-1992 Planes 1-16): 0x8EA1A1A1-0x8EB0FEFE
|
|
* Code set 3: unused
|
|
*/
|
|
int
|
|
towide_euctw(wchar_t *wc, const char *mb, unsigned n)
|
|
{
|
|
return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
|
|
}
|
|
|
|
/*
|
|
* Public entry points.
|
|
*/
|
|
|
|
int
|
|
to_wide(wchar_t *wc, const char *mb)
|
|
{
|
|
/* this won't fail hard */
|
|
return (_towide(wc, mb, strlen(mb)));
|
|
}
|
|
|
|
int
|
|
to_mb(char *mb, wchar_t wc)
|
|
{
|
|
int rv;
|
|
|
|
if ((rv = _tomb(mb, wc)) < 0) {
|
|
errf(widemsg);
|
|
free(widemsg);
|
|
widemsg = NULL;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
char *
|
|
to_mb_string(const wchar_t *wcs)
|
|
{
|
|
char *mbs;
|
|
char *ptr;
|
|
int len;
|
|
|
|
mbs = malloc((wcslen(wcs) * mb_cur_max) + 1);
|
|
if (mbs == NULL) {
|
|
errf("out of memory");
|
|
return (NULL);
|
|
}
|
|
ptr = mbs;
|
|
while (*wcs) {
|
|
if ((len = to_mb(ptr, *wcs)) < 0) {
|
|
INTERR;
|
|
free(mbs);
|
|
return (NULL);
|
|
}
|
|
wcs++;
|
|
ptr += len;
|
|
}
|
|
*ptr = 0;
|
|
return (mbs);
|
|
}
|
|
|
|
void
|
|
set_wide_encoding(const char *encoding)
|
|
{
|
|
int i;
|
|
|
|
_towide = towide_none;
|
|
_tomb = tomb_none;
|
|
_nbits = 8;
|
|
|
|
snprintf(_encoding_buffer, sizeof(_encoding_buffer), "NONE:%s",
|
|
encoding);
|
|
for (i = 0; mb_encodings[i].name; i++) {
|
|
if (strcasecmp(encoding, mb_encodings[i].name) == 0) {
|
|
_towide = mb_encodings[i].towide;
|
|
_tomb = mb_encodings[i].tomb;
|
|
_encoding = mb_encodings[i].cname;
|
|
_nbits = mb_encodings[i].nbits;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *
|
|
get_wide_encoding(void)
|
|
{
|
|
return (_encoding);
|
|
}
|
|
|
|
int
|
|
max_wide(void)
|
|
{
|
|
return ((int)((1U << _nbits) - 1));
|
|
}
|