freebsd-skq/sys/dev/aic7xxx/aic7xxx.seq
gibbs c83d2c637f aic7xxx.seq:
Add the same type of safeguards we use in the mesg_in phase to the mesg_out
phase.

aic7xxx_reg.h:
Add definitions for the DSCommand register for PCI adapters.
1996-01-07 19:18:28 +00:00

1132 lines
33 KiB
Plaintext

/*+M***********************************************************************
*Adaptec 274x/284x/294x device driver for Linux and FreeBSD.
*
*Copyright (c) 1994 John Aycock
* The University of Calgary Department of Computer Science.
* All rights reserved.
*
*Modifications/enhancements:
* Copyright (c) 1994, 1995 Justin Gibbs. All rights reserved.
*
*Redistribution and use in source and binary forms, with or without
*modification, are permitted provided that the following conditions
*are met:
*1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer.
*2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of Calgary
* Department of Computer Science and its contributors.
*4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
*ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
*FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
*DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
*OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
*SUCH DAMAGE.
*
*FreeBSD, Twin, Wide, 2 command per target support, tagged queuing and other
*optimizations provided by Justin T. Gibbs (gibbs@FreeBSD.org)
*
*-M************************************************************************/
VERSION AIC7XXX_SEQ_VER "$Id: aic7xxx.seq,v 1.26 1996/01/05 16:11:49 gibbs Exp $"
#include "../../dev/aic7xxx/aic7xxx_reg.h"
/*
* We can't just use ACCUM in the sequencer code because it
* must be treated specially by the assembler, and it currently
* looks for the symbol 'A'. This is the only register defined
* the assembler's symbol space.
*/
A = ACCUM
/* After starting the selection hardware, we return to the "poll_for_work"
* loop so that we can check for reconnecting targets as well as for our
* selection to complete just in case the reselection wins bus arbitration.
* The problem with this is that we must keep track of the SCB that we've
* already pulled from the QINFIFO and started the selection on just in case
* the reselection wins so that we can retry the selection at a later time.
* This problem cannot be resolved by holding a single entry in scratch
* ram since a reconnecting target can request sense and this will create
* yet another SCB waiting for selection. The solution used here is to
* use byte 31 of the SCB as a psuedo-next pointer and to thread a list
* of SCBs that are awaiting selection. Since 0-0xfe are valid SCB offsets,
* SCB_LIST_NULL is 0xff which is out of range. The kernel driver must
* add an entry to this list everytime a request sense occurs. The sequencer
* will automatically consume the entries.
*/
/*
* Initialize any state idle loop state here. This code is executed on
* startup and after every bus free.
*/
start:
mvi SCSISEQ,ENRSELI /* Always allow reselection */
poll_for_work:
/*
* Are we a twin channel device?
* For fairness, we check the other bus first,
* since we just finished a transaction on the
* current channel.
*/
test FLAGS,TWIN_BUS jz start2
xor SBLKCTL,SELBUSB /* Toggle to the other bus */
test SSTAT0,SELDI jnz reselect
xor SBLKCTL,SELBUSB /* Toggle to the original bus */
start2:
test SSTAT0,SELDI jnz reselect
cmp WAITING_SCBH,SCB_LIST_NULL jne start_waiting
test QINCNT,0xff jz poll_for_work
/* We have at least one queued SCB now and we don't have any
* SCBs in the list of SCBs awaiting selection. Set the SCB
* pointer from the FIFO so we see the right bank of SCB
* registers.
*/
mov SCBPTR,QINFIFO
/*
* If the control byte of this SCB has the NEEDDMA flag set, we have
* yet to DMA it from host memory
*/
test SCB_CONTROL,NEEDDMA jz test_busy
clr HCNT2
clr HCNT1
mvi HCNT0,SCB_SIZEOF
mvi DINDEX,HADDR
mvi SCB_PHYSADDR call bcopy_4
mvi DFCNTRL,0xd /* HDMAEN|DIRECTION|FIFORESET */
/*
* Wait for DMA from host memory to data FIFO to complete, then disable
* DMA and wait for it to acknowledge that it's off.
*/
call dma_finish
/* Copy the SCB from the FIFO to the SCBARRAY */
mvi DINDEX, SCBARRAY
call bcopy_5_dfdat
call bcopy_7_dfdat
call bcopy_7_dfdat
call bcopy_7_dfdat
/*
* See if there is not already an active SCB for this target. This code
* locks out on a per target basis instead of target/lun. Although this
* is not ideal for devices that have multiple luns active at the same
* time, it is faster than looping through all SCB's looking for active
* commands. It may be benificial to make findscb a more general procedure
* to see if the added cost of the search is negligible. This code also
* assumes that the kernel driver will clear the active flags on board
* initialization, board reset, and a target SELTO. Tagged commands
* don't set the active bits since you can have more than queue more
* than one command at a time. We do, however, look to see if there
* are any non-tagged I/Os in progress, and requeue the command if
* there are. Tagged and non-tagged commands cannot be mixed to a
* single target.
*/
test_busy:
mov FUNCTION1,SCB_TCL
mov A,FUNCTION1
test SCB_TCL,0x88 jz test_a /* Id < 8 && A channel */
test ACTIVE_B,A jnz requeue
test SCB_CONTROL,TAG_ENB jnz start_scb
/* Mark the current target as busy */
or ACTIVE_B,A
jmp start_scb
/* Place the currently active SCB back on the queue for later processing */
requeue:
mov QINFIFO, SCBPTR
jmp poll_for_work
/*
* Pull the first entry off of the waiting for selection list
* We don't have to "test_busy" because only transactions that
* have passed that test can be in the waiting_scb list.
*/
start_waiting:
mov SCBPTR,WAITING_SCBH
jmp start_scb2
test_a:
test ACTIVE_A,A jnz requeue
test SCB_CONTROL,TAG_ENB jnz start_scb
/* Mark the current target as busy */
or ACTIVE_A,A
start_scb:
mov SCB_NEXT_WAITING,WAITING_SCBH
mov WAITING_SCBH, SCBPTR
start_scb2:
and SINDEX,0xf7,SBLKCTL /* Clear the channel select bit */
and A,0x08,SCB_TCL /* Get new channel bit */
or SINDEX,A
mov SBLKCTL,SINDEX /* select channel */
mov SCB_TCL call initialize_scsiid
/*
* Enable selection phase as an initiator, and do automatic ATN
* after the selection. We do this now so that we can overlap the
* rest of our work to set up this target with the arbitration and
* selection bus phases.
*/
start_selection:
mvi SCSISEQ,0x58 /* ENSELO|ENAUTOATNO|ENRSELI */
/*
* As soon as we get a successful selection, the target should go
* into the message out phase since we have ATN asserted. Prepare
* the message to send.
*
* Messages are stored in scratch RAM starting with a length byte
* followed by the message itself.
*/
test SCB_CMDLEN,0xff jnz mk_identify /* 0 Length Command? */
/*
* The kernel has sent us an SCB with no command attached. This implies
* that the kernel wants to send a message of some sort to this target,
* so we interrupt the driver, allow it to fill the message buffer, and
* then go back into the arbitration loop
*/
mvi INTSTAT,AWAITING_MSG
jmp wait_for_selection
mk_identify:
and A,DISCENB,SCB_CONTROL /* mask off disconnect privledge */
and SINDEX,0x7,SCB_TCL /* lun */
or SINDEX,A /* or in disconnect privledge */
or SINDEX,MSG_IDENTIFY call mk_mesg /* IDENTIFY message */
test SCB_CONTROL,0xb0 jz !message /* WDTR, SDTR or TAG?? */
/*
* Tag Message if Tag enabled in SCB control block. Use SCBPTR as the tag
* value
*/
mk_tag:
mvi DINDEX, MSG1
test SCB_CONTROL,TAG_ENB jz mk_tag_done
and A,0x23,SCB_CONTROL
mov DINDIR,A
mov DINDIR,SCBPTR
add MSG_LEN,COMP_MSG0,DINDEX /* update message length */
mk_tag_done:
mov DINDEX call mk_dtr /* build DTR message if needed */
!message:
wait_for_selection:
test SSTAT0,SELDO jnz select
test SSTAT0,SELDI jz wait_for_selection
/*
* Reselection has been initiated by a target. Make a note that we've been
* reselected, but haven't seen an IDENTIFY message from the target
* yet.
*/
reselect:
clr MSG_LEN /* Don't have anything in the mesg buffer */
mov SELID call initialize_scsiid
mvi SAVED_TCL, 0xff /*
* Fill with an imposible value so we
* don't get false hits for a tag
* without an identify.
*/
and FLAGS,0x03 /* clear target specific flags */
or FLAGS,RESELECTED
jmp select2
/*
* After the selection, remove this SCB from the "waiting for selection"
* list. This is achieved by simply moving our "next" pointer into
* WAITING_SCBH. Our next pointer will be set to null the next time this
* SCB is used, so don't bother with it now.
*/
select:
and FLAGS,0x03 /* Clear target flags */
or SCB_CONTROL,NEEDDMA
/*
* Some drives will issue a simple tag message during
* a tagged selection if they are immediately ready
* to handle the command without a disconnect. Ensure
* that SAVED_TCL (used in get_tag) is inialized correctly
* during a selection for this reason.
*/
mov SAVED_TCL, SCB_TCL
mov WAITING_SCBH,SCB_NEXT_WAITING
select2:
/*
* Set CLRCHN here before the target has entered a data transfer mode -
* with synchronous SCSI, if you do it later, you blow away some
* data in the SCSI FIFO that the target has already sent to you.
*/
clr SIGSTATE
or SXFRCTL0,CLRCHN
/*
* Initialize SCSIRATE with the appropriate value for this target.
*/
call ndx_dtr
mov SCSIRATE,SINDIR
mvi SCSISEQ,ENAUTOATNP /*
* ATN on parity errors
* for "in" phases
*/
mvi CLRSINT1,CLRBUSFREE
mvi CLRSINT0,0x60 /* CLRSELDI|CLRSELDO */
/*
* Main loop for information transfer phases. If BSY is false, then
* we have a bus free condition, expected or not. Otherwise, wait
* for the target to assert REQ before checking MSG, C/D and I/O
* for the bus phase.
*
*/
ITloop:
test SSTAT1,BUSFREE jnz p_busfree
test SSTAT1,REQINIT jz ITloop
and A,PHASE_MASK,SCSISIGI
mov A call scsisig
cmp ALLZEROS,A je p_dataout
cmp A,P_DATAIN je p_datain
cmp A,P_COMMAND je p_command
cmp A,P_MESGOUT je p_mesgout
cmp A,P_STATUS je p_status
cmp A,P_MESGIN je p_mesgin
mvi INTSTAT,BAD_PHASE /* unknown phase - signal driver */
p_dataout:
mvi DMAPARAMS,0x7d /*
* WIDEODD|SCSIEN|SDMAEN|HDMAEN|
* DIRECTION|FIFORESET
*/
jmp data_phase_init
/*
* If we re-enter the data phase after going through another phase, the
* STCNT may have been cleared, so restore it from the residual field.
*/
data_phase_reinit:
mvi DINDEX, STCNT
mvi SCB_RESID_DCNT call bcopy_3
jmp data_phase_loop
p_datain:
mvi DMAPARAMS,0x79 /*
* WIDEODD|SCSIEN|SDMAEN|HDMAEN|
* !DIRECTION|FIFORESET
*/
data_phase_init:
call assert
test FLAGS, DPHASE jnz data_phase_reinit
call sg_scb2ram
or FLAGS, DPHASE /* We have seen a data phase */
data_phase_loop:
/* If we are the last SG block, don't set wideodd. */
cmp SG_COUNT,0x01 jne data_phase_wideodd
and DMAPARAMS, 0xbf /* Turn off WIDEODD */
data_phase_wideodd:
mov DMAPARAMS call dma
/* Exit if we had an underrun */
test SSTAT0,SDONE jz data_phase_finish /* underrun STCNT != 0 */
/*
* Advance the scatter-gather pointers if needed
*/
sg_advance:
dec SG_COUNT /* one less segment to go */
test SG_COUNT, 0xff jz data_phase_finish /* Are we done? */
clr A /* add sizeof(struct scatter) */
add SG_NEXT0,SG_SIZEOF,SG_NEXT0
adc SG_NEXT1,A,SG_NEXT1
adc SG_NEXT2,A,SG_NEXT2
adc SG_NEXT3,A,SG_NEXT3
/*
* Load a struct scatter and set up the data address and length.
* If the working value of the SG count is nonzero, then
* we need to load a new set of values.
*
* This, like all DMA's, assumes a little-endian host data storage.
*/
sg_load:
clr HCNT2
clr HCNT1
mvi HCNT0,SG_SIZEOF
mvi DINDEX,HADDR
mvi SG_NEXT call bcopy_4
mvi DFCNTRL,0xd /* HDMAEN|DIRECTION|FIFORESET */
/*
* Wait for DMA from host memory to data FIFO to complete, then disable
* DMA and wait for it to acknowledge that it's off.
*/
call dma_finish
/*
* Copy data from FIFO into SCB data pointer and data count. This assumes
* that the struct scatterlist has this structure (this and sizeof(struct
* scatterlist) == 12 are asserted in aic7xxx.c):
*
* struct scatterlist {
* char *address; four bytes, little-endian order
* ... four bytes, ignored
* unsigned short length; two bytes, little-endian order
* }
*
*
* Not in FreeBSD. the scatter list entry is only 8 bytes.
*
* struct ahc_dma_seg {
* physaddr addr; four bytes, little-endian order
* long len; four bytes, little endian order
* };
*/
/*
* For Linux, we must throw away four bytes since there is a 32bit gap
* in the middle of a struct scatterlist
*/
#ifdef LINUX
call bcopy_4_dfdat
mov NONE,DFDAT
mov NONE,DFDAT
mov NONE,DFDAT
mov NONE,DFDAT
call bcopy_3_dfdat /* Only support 24 bit length. */
#else
/*
* For FreeBSD, just copy it wholesale
*/
mvi DINDEX,HADDR
call bcopy_7_dfdat
#endif
/* Load STCNT as well. It is a mirror of HCNT */
mvi DINDEX,STCNT
mvi HCNT call bcopy_3
test SSTAT1,PHASEMIS jz data_phase_loop
data_phase_finish:
/*
* After a DMA finishes, save the SG and STCNT residuals back into the SCB
* We use STCNT instead of HCNT, since it's a reflection of how many bytes
* were transferred on the SCSI (as opposed to the host) bus.
*/
mvi DINDEX,SCB_RESID_DCNT
mvi STCNT call bcopy_3
mov SCB_RESID_SGCNT, SG_COUNT
jmp ITloop
/*
* Command phase. Set up the DMA registers and let 'er rip - the
* two bytes after the SCB SCSI_cmd_length are zeroed by the driver,
* so we can copy those three bytes directly into HCNT.
*/
p_command:
call assert
/*
* Load HADDR and HCNT. We can do this in one bcopy since they are neighbors
*/
mvi DINDEX,HADDR
mvi SCB_CMDPTR call bcopy_7
mvi DINDEX,STCNT
mvi SCB_CMDLEN call bcopy_3
mvi 0x3d call dma # SCSIEN|SDMAEN|HDMAEN|
# DIRECTION|FIFORESET
jmp ITloop
/*
* Status phase. Wait for the data byte to appear, then read it
* and store it into the SCB.
*/
p_status:
mvi SCB_TARGET_STATUS call inb_first
jmp mesgin_done
/*
* Message out phase. If there is no active message, but the target
* took us into this phase anyway, build a no-op message and send it.
*/
p_mesgout:
test MSG_LEN, 0xff jnz p_mesgout_start
mvi MSG_NOP call mk_mesg /* build NOP message */
p_mesgout_start:
/*
* Set up automatic PIO transfer from MSG0. Bit 3 in
* SXFRCTL0 (SPIOEN) is already on.
*/
mvi SINDEX,MSG0
mov DINDEX,MSG_LEN
/*
* When target asks for a byte, drop ATN if it's the last one in
* the message. Otherwise, keep going until the message is exhausted.
*
* Keep an eye out for a phase change, in case the target issues
* a MESSAGE REJECT.
*/
p_mesgout_loop:
test SSTAT1,PHASEMIS jnz p_mesgout_phasemis
test SSTAT0,SPIORDY jz p_mesgout_loop
cmp DINDEX,1 jne p_mesgout_outb /* last byte? */
mvi CLRSINT1,CLRATNO /* drop ATN */
p_mesgout_outb:
or SXFRCTL0, CLRSTCNT
mvi STCNT0, 1
dec DINDEX
mov SCSIDATL,SINDIR
p_mesgout_outb_wait:
test SSTAT0,SDONE jz p_mesgout_outb_wait
p_mesgout4:
test DINDEX,0xff jnz p_mesgout_loop
/*
* If the next bus phase after ATN drops is a message out, it means
* that the target is requesting that the last message(s) be resent.
*/
p_mesgout_snoop:
test SSTAT1,BUSFREE jnz p_mesgout_done
test SSTAT1,REQINIT jz p_mesgout_snoop
test SSTAT1,PHASEMIS jnz p_mesgout_done
or SINDEX,0x10,SIGSTATE /* turn on ATNO */
call scsisig /* ATNO - re-assert ATN */
jmp ITloop
p_mesgout_phasemis:
mvi CLRSINT1,CLRATNO /* Be sure turn ATNO off */
p_mesgout_done:
clr MSG_LEN /* no active msg */
jmp ITloop
/*
* Message in phase. Bytes are read using Automatic PIO mode.
*/
p_mesgin:
mvi A call inb_first /* read the 1st message byte */
mov REJBYTE,A /* save it for the driver */
test A,MSG_IDENTIFY jnz mesgin_identify
cmp A,MSG_DISCONNECT je mesgin_disconnect
cmp A,MSG_SDPTRS je mesgin_sdptrs
cmp ALLZEROS,A je mesgin_complete
cmp A,MSG_RDPTRS je mesgin_rdptrs
cmp A,MSG_EXTENDED je mesgin_extended
cmp A,MSG_REJECT je mesgin_reject
rej_mesgin:
/*
* We have no idea what this message in is, and there's no way
* to pass it up to the kernel, so we issue a message reject and
* hope for the best. Since we're now using manual PIO mode to
* read in the message, there should no longer be a race condition
* present when we assert ATN. In any case, rejection should be a
* rare occurrence - signal the driver when it happens.
*/
or SINDEX,0x10,SIGSTATE /* turn on ATNO */
call scsisig
mvi INTSTAT,SEND_REJECT /* let driver know */
mvi MSG_REJECT call mk_mesg
mesgin_done:
call inb_last /*ack & turn auto PIO back on*/
jmp ITloop
mesgin_complete:
/*
* We got a "command complete" message, so put the SCB pointer
* into the Queue Out, and trigger a completion interrupt.
* Check status for non zero return and interrupt driver if needed
* This allows the driver to interpret errors only when they occur
* instead of always uploading the scb. If the status is SCSI_CHECK,
* the driver will download a new scb requesting sense to replace
* the old one, modify the "waiting for selection" SCB list and set
* RETURN_1 to 0x80. If RETURN_1 is set to 0x80 the sequencer imediately
* jumps to main loop where it will run down the waiting SCB list.
* If the kernel driver does not wish to request sense, it need
* only clear RETURN_1, and the command is allowed to complete. We don't
* bother to post to the QOUTFIFO in the error case since it would require
* extra work in the kernel driver to ensure that the entry was removed
* before the command complete code tried processing it.
*
* First check for residuals
*/
test SCB_RESID_SGCNT,0xff jz check_status
/*
* If we have a residual count, interrupt and tell the host. Other
* alternatives are to pause the sequencer on all command completes (yuck),
* dma the resid directly to the host (slick, we may have space to do it now)
* or have the sequencer pause itself when it encounters a non-zero resid
* (unecessary pause just to flag the command -yuck-, but takes one instruction
* and since it shouldn't happen that often is good enough for our purposes).
*/
resid:
mvi INTSTAT,RESIDUAL
check_status:
test SCB_TARGET_STATUS,0xff jz status_ok /* Good Status? */
mvi INTSTAT,BAD_STATUS /* let driver know */
cmp RETURN_1, SEND_SENSE jne status_ok
jmp mesgin_done
status_ok:
/* First, mark this target as free. */
test SCB_CONTROL,TAG_ENB jnz test_immediate /*
* Tagged commands
* don't busy the
* target.
*/
mov FUNCTION1,SCB_TCL
mov A,FUNCTION1
test SCB_TCL,0x88 jz clear_a
xor ACTIVE_B,A
jmp test_immediate
clear_a:
xor ACTIVE_A,A
test_immediate:
test SCB_CMDLEN,0xff jnz complete /* Immediate message complete */
/*
* Pause the sequencer until the driver gets around to handling the command
* complete. This is so that any action that might require carefull timing
* with the completion of this command can occur.
*/
mvi INTSTAT,IMMEDDONE
jmp start
complete:
mov QOUTFIFO,SCBPTR
mvi INTSTAT,CMDCMPLT
jmp mesgin_done
/*
* Is it an extended message? We only support the synchronous and wide data
* transfer request messages, which will probably be in response to
* WDTR or SDTR message outs from us. If it's not SDTR or WDTR, reject it -
* apparently this can be done after any message in byte, according
* to the SCSI-2 spec.
*/
mesgin_extended:
mvi ARG_1 call inb_next /* extended message length */
mvi A call inb_next /* extended message code */
cmp A,MSG_SDTR je p_mesginSDTR
cmp A,MSG_WDTR je p_mesginWDTR
jmp rej_mesgin
p_mesginWDTR:
cmp ARG_1,2 jne rej_mesgin /* extended mesg length=2 */
mvi ARG_1 call inb_next /* Width of bus */
mvi INTSTAT,WDTR_MSG /* let driver know */
test RETURN_1,0xff jz mesgin_done /* Do we need to send WDTR? */
cmp RETURN_1,SEND_REJ je rej_mesgin /*
* Bus width was too large
* Reject it.
*/
/* We didn't initiate the wide negotiation, so we must respond to the request */
and RETURN_1,0x7f /* Clear the SEND_WDTR Flag */
mvi DINDEX,MSG0
mvi MSG0 call mk_wdtr /* build WDTR message */
or SINDEX,0x10,SIGSTATE /* turn on ATNO */
call scsisig
jmp mesgin_done
p_mesginSDTR:
cmp ARG_1,3 jne rej_mesgin /* extended mesg length=3 */
mvi ARG_1 call inb_next /* xfer period */
mvi A call inb_next /* REQ/ACK offset */
mvi INTSTAT,SDTR_MSG /* call driver to convert */
test RETURN_1,0xff jz mesgin_done /* Do we need to mk_sdtr/rej */
cmp RETURN_1,SEND_REJ je rej_mesgin /*
* Requested SDTR too small
* Reject it.
*/
mvi DINDEX, MSG0
mvi MSG0 call mk_sdtr
or SINDEX,0x10,SIGSTATE /* turn on ATNO */
call scsisig
jmp mesgin_done
/*
* Is it a disconnect message? Set a flag in the SCB to remind us
* and await the bus going free.
*/
mesgin_disconnect:
or SCB_CONTROL,DISCONNECTED
jmp mesgin_done
/*
* Save data pointers message? Copy working values into the SCB,
* usually in preparation for a disconnect.
*/
mesgin_sdptrs:
call sg_ram2scb
jmp mesgin_done
/*
* Restore pointers message? Data pointers are recopied from the
* SCB anytime we enter a data phase for the first time, so all
* we need to do is clear the DPHASE flag and let the data phase
* code do the rest.
*/
mesgin_rdptrs:
and FLAGS,0xfb /*
* !DPHASE we'll reload them
* the next time through
*/
jmp mesgin_done
/*
* Identify message? For a reconnecting target, this tells us the lun
* that the reconnection is for - find the correct SCB and switch to it,
* clearing the "disconnected" bit so we don't "find" it by accident later.
*/
mesgin_identify:
test A,0x78 jnz rej_mesgin /*!DiscPriv|!LUNTAR|!Reserved*/
and A,0x07 /* lun in lower three bits */
or SAVED_TCL,A,SELID
and SAVED_TCL,0xf7
and A,SELBUSB,SBLKCTL /* B Channel?? */
or SAVED_TCL,A
call inb_last /* ACK */
/*
* Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
* If we get one, we use the tag returned to switch to the proper
* SCB. Otherwise, we just use the findSCB method.
*/
snoop_tag_loop:
test SSTAT1,BUSFREE jnz use_findSCB
test SSTAT1,REQINIT jz snoop_tag_loop
test SSTAT1,PHASEMIS jnz use_findSCB
mvi A call inb_first
cmp A,MSG_SIMPLE_TAG je get_tag
use_findSCB:
mov ALLZEROS call findSCB /* Have to search */
setup_SCB:
and SCB_CONTROL,0xfb /* clear disconnect bit in SCB */
or FLAGS,IDENTIFY_SEEN /* make note of IDENTIFY */
jmp ITloop
get_tag:
mvi ARG_1 call inb_next /* tag value */
/*
* See if the tag is in range. The tag is < SCBCOUNT if we add
* the complement of SCBCOUNT to the incomming tag and there is
* no carry.
*/
mov A,COMP_SCBCOUNT
add SINDEX,A,ARG_1
jc abort_tag
/*
* Ensure that the SCB the tag points to is for an SCB transaction
* to the reconnecting target.
*/
mov SCBPTR,ARG_1
mov A,SAVED_TCL
cmp SCB_TCL,A jne abort_tag
test SCB_CONTROL,TAG_ENB jz abort_tag
call inb_last /* Ack Successful tag */
jmp setup_SCB
abort_tag:
or SINDEX,0x10,SIGSTATE /* turn on ATNO */
call scsisig
mvi INTSTAT,ABORT_TAG /* let driver know */
mvi 0xd call mk_mesg /* ABORT TAG message */
jmp mesgin_done
/*
* Message reject? Let the kernel driver handle this. If we have an
* outstanding WDTR or SDTR negotiation, assume that it's a response from
* the target selecting 8bit or asynchronous transfer, otherwise just ignore
* it since we have no clue what it pertains to.
*/
mesgin_reject:
mvi INTSTAT, REJECT_MSG
jmp mesgin_done
/*
* [ ADD MORE MESSAGE HANDLING HERE ]
*/
/*
* Bus free phase. It might be useful to interrupt the device
* driver if we aren't expecting this. For now, make sure that
* ATN isn't being asserted and look for a new command.
*/
p_busfree:
mvi CLRSINT1,CLRATNO
/*
* if this is an immediate command, perform a psuedo command complete to
* notify the driver.
*/
test SCB_CMDLEN,0xff jz status_ok
jmp start
/*
* Instead of a generic bcopy routine that requires an argument, we unroll
* the cases that are actually used, and call them explicitly. This
* not only reduces the overhead of doing a bcopy, but ends up saving space
* in the program since you don't have to put the argument into the accumulator
* before the call. Both functions expect DINDEX to contain the destination
* address and SINDEX to contain the source address.
*/
bcopy_7:
mov DINDIR,SINDIR
mov DINDIR,SINDIR
bcopy_5:
mov DINDIR,SINDIR
bcopy_4:
mov DINDIR,SINDIR
bcopy_3:
mov DINDIR,SINDIR
mov DINDIR,SINDIR
mov DINDIR,SINDIR ret
bcopy_7_dfdat:
mov DINDIR,DFDAT
mov DINDIR,DFDAT
bcopy_5_dfdat:
mov DINDIR,DFDAT
bcopy_4_dfdat:
mov DINDIR,DFDAT
bcopy_3_dfdat:
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT ret
/*
* Locking the driver out, build a one-byte message passed in SINDEX
* if there is no active message already. SINDEX is returned intact.
*/
mk_mesg:
mvi SEQCTL,0x50 /* PAUSEDIS|FASTMODE */
test MSG_LEN,0xff jz mk_mesg1 /* Should always succeed */
/*
* Hmmm. For some reason the mesg buffer is in use.
* Tell the driver. It should look at SINDEX to find
* out what we wanted to use the buffer for and resolve
* the conflict.
*/
mvi SEQCTL,0x10 /* !PAUSEDIS|FASTMODE */
mvi INTSTAT,MSG_BUFFER_BUSY ret
mk_mesg1:
mvi MSG_LEN,1 /* length = 1 */
mov MSG0,SINDEX /* 1-byte message */
mvi SEQCTL,0x10 ret /* !PAUSEDIS|FASTMODE */
/*
* Functions to read data in Automatic PIO mode.
*
* According to Adaptec's documentation, an ACK is not sent on input from
* the target until SCSIDATL is read from. So we wait until SCSIDATL is
* latched (the usual way), then read the data byte directly off the bus
* using SCSIBUSL. When we have pulled the ATN line, or we just want to
* acknowledge the byte, then we do a dummy read from SCISDATL. The SCSI
* spec guarantees that the target will hold the data byte on the bus until
* we send our ACK.
*
* The assumption here is that these are called in a particular sequence,
* and that REQ is already set when inb_first is called. inb_{first,next}
* use the same calling convention as inb.
*/
inb_next:
call inb_last
inb_first:
test SSTAT1,PHASEMIS jnz mesgin_phasemis
test SSTAT0,SPIORDY jz inb_first /* wait for next byte */
mov DINDEX,SINDEX
mov DINDIR,SCSIBUSL ret /*read byte directly from bus*/
inb_last:
or SXFRCTL0,CLRSTCNT
mvi STCNT0,0x01
mov NONE,SCSIDATL /*dummy read from latch to ACK*/
inb_last_wait:
test SSTAT0,SDONE jz inb_last_wait /* Wait for completion */
ret
mesgin_phasemis:
/*
* We expected to receive another byte, but the target changed phase
*/
mvi INTSTAT, MSGIN_PHASEMIS
jmp ITloop
/*
* DMA data transfer. HADDR and HCNT must be loaded first, and
* SINDEX should contain the value to load DFCNTRL with - 0x3d for
* host->scsi, or 0x39 for scsi->host. The SCSI channel is cleared
* during initialization.
*/
dma:
mov DFCNTRL,SINDEX
dma1:
test SSTAT0,DMADONE jnz dma3
test SSTAT1,PHASEMIS jz dma1 /* ie. underrun */
/*
* We will be "done" DMAing when the transfer count goes to zero, or
* the target changes the phase (in light of this, it makes sense that
* the DMA circuitry doesn't ACK when PHASEMIS is active). If we are
* doing a SCSI->Host transfer, the data FIFO should be flushed auto-
* magically on STCNT=0 or a phase change, so just wait for FIFO empty
* status.
*/
dma3:
test SINDEX,DIRECTION jnz dma5
dma4:
test DFSTATUS,FIFOEMP jz dma4
/*
* Now shut the DMA enables off and make sure that the DMA enables are
* actually off first lest we get an ILLSADDR.
*/
dma5:
/* disable DMA, but maintain WIDEODD */
and A, WIDEODD, SINDEX
mov DFCNTRL, A
dma6:
test DFCNTRL,0x38 jnz dma6 /* SCSIENACK|SDMAENACK|HDMAENACK */
ret
dma_finish:
test DFSTATUS,HDONE jz dma_finish
clr DFCNTRL /* disable DMA */
dma_finish2:
test DFCNTRL,HDMAENACK jnz dma_finish2
ret
/*
* Common SCSI initialization for selection and reselection. Expects
* the target SCSI ID to be in the upper four bits of SINDEX, and A's
* contents are stomped on return.
*/
initialize_scsiid:
and SINDEX,0xf0 /* Get target ID */
and A,0x0f,SCSIID
or SINDEX,A
mov SCSIID,SINDEX ret
/*
* Assert that if we've been reselected, then we've seen an IDENTIFY
* message.
*/
assert:
test FLAGS,RESELECTED jz return /* reselected? */
test FLAGS,IDENTIFY_SEEN jnz return /* seen IDENTIFY? */
mvi INTSTAT,NO_IDENT ret /* no - cause a kernel panic */
/*
* Locate the SCB matching the target ID/channel/lun in SAVED_TCL and switch
* the SCB to it. Have the kernel print a warning message if it can't be
* found, and generate an ABORT message to the target. SINDEX should be
* cleared on call.
*/
findSCB:
mov A,SAVED_TCL
mov SCBPTR,SINDEX /* switch to new SCB */
cmp SCB_TCL,A jne findSCB1 /* target ID/channel/lun match? */
test SCB_CONTROL,DISCONNECTED jz findSCB1 /*should be disconnected*/
ret
findSCB1:
inc SINDEX
mov A,SCBCOUNT
cmp SINDEX,A jne findSCB
mvi INTSTAT,NO_MATCH /* not found - signal kernel */
mvi MSG_ABORT call mk_mesg /* ABORT message */
or SINDEX,0x10,SIGSTATE /* assert ATNO */
call scsisig
ret
/*
* Make a working copy of the scatter-gather parameters from the SCB.
*/
sg_scb2ram:
mvi DINDEX,HADDR
mvi SCB_DATAPTR call bcopy_7
mvi DINDEX,STCNT
mvi SCB_DATACNT call bcopy_3
mov SG_COUNT,SCB_SGCOUNT
mvi DINDEX,SG_NEXT
mvi SCB_SGPTR call bcopy_4
ret
/*
* Copying RAM values back to SCB, for Save Data Pointers message, but
* only if we've actually been into a data phase to change them. This
* protects against bogus data in scratch ram and the residual counts
* since they are only initialized when we go into data_in or data_out.
*/
sg_ram2scb:
test FLAGS, DPHASE jz return
mov SCB_SGCOUNT,SG_COUNT
mvi DINDEX,SCB_SGPTR
mvi SG_NEXT call bcopy_4
mvi DINDEX,SCB_DATAPTR
mvi SHADDR call bcopy_4
/*
* Use the residual number since STCNT is corrupted by any message transfer
*/
mvi SCB_RESID_DCNT call bcopy_3
ret
/*
* Add the array base TARG_SCRATCH to the target offset (the target address
* is in SCSIID), and return the result in SINDEX. The accumulator
* contains the 3->8 decoding of the target ID on return.
*/
ndx_dtr:
shr A,SCSIID,4
test SBLKCTL,SELBUSB jz ndx_dtr_2
or A,0x08 /* Channel B entries add 8 */
ndx_dtr_2:
add SINDEX,TARG_SCRATCH,A
mov FUNCTION1,SCSIID /* 3-bit target address decode */
mov A,FUNCTION1 ret
/*
* If we need to negotiate transfer parameters, build the WDTR or SDTR message
* starting at the address passed in SINDEX. DINDEX is modified on return.
* The SCSI-II spec requires that Wide negotiation occur first and you can
* only negotiat one or the other at a time otherwise in the event of a message
* reject, you wouldn't be able to tell which message was the culpret.
*/
mk_dtr:
test SCB_CONTROL,0x90 jz return /* NEEDWDTR|NEEDSDTR */
test SCB_CONTROL,NEEDWDTR jnz mk_wdtr_16bit
or FLAGS, MAXOFFSET /* Force an offset of 15 or 8 if WIDE */
mk_sdtr:
mvi DINDIR,1 /* extended message */
mvi DINDIR,3 /* extended message length = 3 */
mvi DINDIR,1 /* SDTR code */
call sdtr_to_rate
mov DINDIR,RETURN_1 /* REQ/ACK transfer period */
test FLAGS, MAXOFFSET jnz mk_sdtr_max_offset
and DINDIR,0x0f,SINDIR /* Sync Offset */
mk_sdtr_done:
add MSG_LEN,COMP_MSG0,DINDEX ret /* update message length */
mk_sdtr_max_offset:
/*
* We're initiating sync negotiation, so request the max offset we can (15 or 8)
*/
xor FLAGS, MAXOFFSET
/* Talking to a WIDE device? */
test SCSIRATE, WIDEXFER jnz wmax_offset
mvi DINDIR, MAX_OFFSET_8BIT
jmp mk_sdtr_done
wmax_offset:
mvi DINDIR, MAX_OFFSET_16BIT
jmp mk_sdtr_done
mk_wdtr_16bit:
mvi ARG_1,BUS_16_BIT
mk_wdtr:
mvi DINDIR,1 /* extended message */
mvi DINDIR,2 /* extended message length = 2 */
mvi DINDIR,3 /* WDTR code */
mov DINDIR,ARG_1 /* bus width */
add MSG_LEN,COMP_MSG0,DINDEX ret /* update message length */
/*
* Set SCSI bus control signal state. This also saves the last-written
* value into a location where the higher-level driver can read it - if
* it has to send an ABORT or RESET message, then it needs to know this
* so it can assert ATN without upsetting SCSISIGO. The new value is
* expected in SINDEX. Change the actual state last to avoid contention
* from the driver.
*/
scsisig:
mov SIGSTATE,SINDEX
mov SCSISIGO,SINDEX ret
sdtr_to_rate:
call ndx_dtr /* index scratch space for target */
shr A,SINDIR,0x4
dec SINDEX /* Preserve SINDEX */
and A,0x7
clr RETURN_1
sdtr_to_rate_loop:
test A,0x0f jz sdtr_to_rate_done
add RETURN_1,0x19
dec A
jmp sdtr_to_rate_loop
sdtr_to_rate_done:
shr RETURN_1,0x2
add RETURN_1,0x19
test SXFRCTL0,ULTRAEN jz return
shr RETURN_1,0x1
return:
ret