5910d436b2
This is an amalgam of a patch by Doug Ambrisko to generalize uart_acpi_find_device, imp moving the ACPI table to uart_dev_ns8250.c and advice by jhb to work around a bug in the EPYC 3151 BIOS (the BIOS incorrectly marks the serial ports as disabled) Reviewed by: imp MFC after: 8 weeks Differential Revision: https://reviews.freebsd.org/D16432
1085 lines
27 KiB
C
1085 lines
27 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2003 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "opt_acpi.h"
|
|
#include "opt_platform.h"
|
|
#include "opt_uart.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <machine/bus.h>
|
|
|
|
#ifdef FDT
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
#endif
|
|
|
|
#include <dev/uart/uart.h>
|
|
#include <dev/uart/uart_cpu.h>
|
|
#ifdef FDT
|
|
#include <dev/uart/uart_cpu_fdt.h>
|
|
#endif
|
|
#include <dev/uart/uart_bus.h>
|
|
#include <dev/uart/uart_dev_ns8250.h>
|
|
#include <dev/uart/uart_ppstypes.h>
|
|
#ifdef DEV_ACPI
|
|
#include <dev/uart/uart_cpu_acpi.h>
|
|
#endif
|
|
|
|
#include <dev/ic/ns16550.h>
|
|
|
|
#include "uart_if.h"
|
|
|
|
#define DEFAULT_RCLK 1843200
|
|
|
|
/*
|
|
* Set the default baudrate tolerance to 3.0%.
|
|
*
|
|
* Some embedded boards have odd reference clocks (eg 25MHz)
|
|
* and we need to handle higher variances in the target baud rate.
|
|
*/
|
|
#ifndef UART_DEV_TOLERANCE_PCT
|
|
#define UART_DEV_TOLERANCE_PCT 30
|
|
#endif /* UART_DEV_TOLERANCE_PCT */
|
|
|
|
static int broken_txfifo = 0;
|
|
SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
|
|
&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
|
|
|
|
/*
|
|
* Clear pending interrupts. THRE is cleared by reading IIR. Data
|
|
* that may have been received gets lost here.
|
|
*/
|
|
static void
|
|
ns8250_clrint(struct uart_bas *bas)
|
|
{
|
|
uint8_t iir, lsr;
|
|
|
|
iir = uart_getreg(bas, REG_IIR);
|
|
while ((iir & IIR_NOPEND) == 0) {
|
|
iir &= IIR_IMASK;
|
|
if (iir == IIR_RLS) {
|
|
lsr = uart_getreg(bas, REG_LSR);
|
|
if (lsr & (LSR_BI|LSR_FE|LSR_PE))
|
|
(void)uart_getreg(bas, REG_DATA);
|
|
} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
|
|
(void)uart_getreg(bas, REG_DATA);
|
|
else if (iir == IIR_MLSC)
|
|
(void)uart_getreg(bas, REG_MSR);
|
|
uart_barrier(bas);
|
|
iir = uart_getreg(bas, REG_IIR);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ns8250_delay(struct uart_bas *bas)
|
|
{
|
|
int divisor;
|
|
u_char lcr;
|
|
|
|
lcr = uart_getreg(bas, REG_LCR);
|
|
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
|
|
uart_barrier(bas);
|
|
divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
|
|
/* 1/10th the time to transmit 1 character (estimate). */
|
|
if (divisor <= 134)
|
|
return (16000000 * divisor / bas->rclk);
|
|
return (16000 * divisor / (bas->rclk / 1000));
|
|
}
|
|
|
|
static int
|
|
ns8250_divisor(int rclk, int baudrate)
|
|
{
|
|
int actual_baud, divisor;
|
|
int error;
|
|
|
|
if (baudrate == 0)
|
|
return (0);
|
|
|
|
divisor = (rclk / (baudrate << 3) + 1) >> 1;
|
|
if (divisor == 0 || divisor >= 65536)
|
|
return (0);
|
|
actual_baud = rclk / (divisor << 4);
|
|
|
|
/* 10 times error in percent: */
|
|
error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
|
|
|
|
/* enforce maximum error tolerance: */
|
|
if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
|
|
return (0);
|
|
|
|
return (divisor);
|
|
}
|
|
|
|
static int
|
|
ns8250_drain(struct uart_bas *bas, int what)
|
|
{
|
|
int delay, limit;
|
|
|
|
delay = ns8250_delay(bas);
|
|
|
|
if (what & UART_DRAIN_TRANSMITTER) {
|
|
/*
|
|
* Pick an arbitrary high limit to avoid getting stuck in
|
|
* an infinite loop when the hardware is broken. Make the
|
|
* limit high enough to handle large FIFOs.
|
|
*/
|
|
limit = 10*1024;
|
|
while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
|
|
DELAY(delay);
|
|
if (limit == 0) {
|
|
/* printf("ns8250: transmitter appears stuck... "); */
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
if (what & UART_DRAIN_RECEIVER) {
|
|
/*
|
|
* Pick an arbitrary high limit to avoid getting stuck in
|
|
* an infinite loop when the hardware is broken. Make the
|
|
* limit high enough to handle large FIFOs and integrated
|
|
* UARTs. The HP rx2600 for example has 3 UARTs on the
|
|
* management board that tend to get a lot of data send
|
|
* to it when the UART is first activated.
|
|
*/
|
|
limit=10*4096;
|
|
while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
|
|
(void)uart_getreg(bas, REG_DATA);
|
|
uart_barrier(bas);
|
|
DELAY(delay << 2);
|
|
}
|
|
if (limit == 0) {
|
|
/* printf("ns8250: receiver appears broken... "); */
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We can only flush UARTs with FIFOs. UARTs without FIFOs should be
|
|
* drained. WARNING: this function clobbers the FIFO setting!
|
|
*/
|
|
static void
|
|
ns8250_flush(struct uart_bas *bas, int what)
|
|
{
|
|
uint8_t fcr;
|
|
|
|
fcr = FCR_ENABLE;
|
|
#ifdef CPU_XBURST
|
|
fcr |= FCR_UART_ON;
|
|
#endif
|
|
if (what & UART_FLUSH_TRANSMITTER)
|
|
fcr |= FCR_XMT_RST;
|
|
if (what & UART_FLUSH_RECEIVER)
|
|
fcr |= FCR_RCV_RST;
|
|
uart_setreg(bas, REG_FCR, fcr);
|
|
uart_barrier(bas);
|
|
}
|
|
|
|
static int
|
|
ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
|
|
int parity)
|
|
{
|
|
int divisor;
|
|
uint8_t lcr;
|
|
|
|
lcr = 0;
|
|
if (databits >= 8)
|
|
lcr |= LCR_8BITS;
|
|
else if (databits == 7)
|
|
lcr |= LCR_7BITS;
|
|
else if (databits == 6)
|
|
lcr |= LCR_6BITS;
|
|
else
|
|
lcr |= LCR_5BITS;
|
|
if (stopbits > 1)
|
|
lcr |= LCR_STOPB;
|
|
lcr |= parity << 3;
|
|
|
|
/* Set baudrate. */
|
|
if (baudrate > 0) {
|
|
divisor = ns8250_divisor(bas->rclk, baudrate);
|
|
if (divisor == 0)
|
|
return (EINVAL);
|
|
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_DLL, divisor & 0xff);
|
|
uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
|
|
uart_barrier(bas);
|
|
}
|
|
|
|
/* Set LCR and clear DLAB. */
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Low-level UART interface.
|
|
*/
|
|
static int ns8250_probe(struct uart_bas *bas);
|
|
static void ns8250_init(struct uart_bas *bas, int, int, int, int);
|
|
static void ns8250_term(struct uart_bas *bas);
|
|
static void ns8250_putc(struct uart_bas *bas, int);
|
|
static int ns8250_rxready(struct uart_bas *bas);
|
|
static int ns8250_getc(struct uart_bas *bas, struct mtx *);
|
|
|
|
struct uart_ops uart_ns8250_ops = {
|
|
.probe = ns8250_probe,
|
|
.init = ns8250_init,
|
|
.term = ns8250_term,
|
|
.putc = ns8250_putc,
|
|
.rxready = ns8250_rxready,
|
|
.getc = ns8250_getc,
|
|
};
|
|
|
|
static int
|
|
ns8250_probe(struct uart_bas *bas)
|
|
{
|
|
u_char val;
|
|
|
|
#ifdef CPU_XBURST
|
|
uart_setreg(bas, REG_FCR, FCR_UART_ON);
|
|
#endif
|
|
|
|
/* Check known 0 bits that don't depend on DLAB. */
|
|
val = uart_getreg(bas, REG_IIR);
|
|
if (val & 0x30)
|
|
return (ENXIO);
|
|
/*
|
|
* Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
|
|
* chip, but otherwise doesn't seem to have a function. In
|
|
* other words, uart(4) works regardless. Ignore that bit so
|
|
* the probe succeeds.
|
|
*/
|
|
val = uart_getreg(bas, REG_MCR);
|
|
if (val & 0xa0)
|
|
return (ENXIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
|
|
int parity)
|
|
{
|
|
u_char ier, val;
|
|
|
|
if (bas->rclk == 0)
|
|
bas->rclk = DEFAULT_RCLK;
|
|
ns8250_param(bas, baudrate, databits, stopbits, parity);
|
|
|
|
/* Disable all interrupt sources. */
|
|
/*
|
|
* We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
|
|
* UARTs split the receive time-out interrupt bit out separately as
|
|
* 0x10. This gets handled by ier_mask and ier_rxbits below.
|
|
*/
|
|
ier = uart_getreg(bas, REG_IER) & 0xe0;
|
|
uart_setreg(bas, REG_IER, ier);
|
|
uart_barrier(bas);
|
|
|
|
/* Disable the FIFO (if present). */
|
|
val = 0;
|
|
#ifdef CPU_XBURST
|
|
val |= FCR_UART_ON;
|
|
#endif
|
|
uart_setreg(bas, REG_FCR, val);
|
|
uart_barrier(bas);
|
|
|
|
/* Set RTS & DTR. */
|
|
uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
|
|
uart_barrier(bas);
|
|
|
|
ns8250_clrint(bas);
|
|
}
|
|
|
|
static void
|
|
ns8250_term(struct uart_bas *bas)
|
|
{
|
|
|
|
/* Clear RTS & DTR. */
|
|
uart_setreg(bas, REG_MCR, MCR_IE);
|
|
uart_barrier(bas);
|
|
}
|
|
|
|
static void
|
|
ns8250_putc(struct uart_bas *bas, int c)
|
|
{
|
|
int limit;
|
|
|
|
limit = 250000;
|
|
while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
|
|
DELAY(4);
|
|
uart_setreg(bas, REG_DATA, c);
|
|
uart_barrier(bas);
|
|
}
|
|
|
|
static int
|
|
ns8250_rxready(struct uart_bas *bas)
|
|
{
|
|
|
|
return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
|
|
{
|
|
int c;
|
|
|
|
uart_lock(hwmtx);
|
|
|
|
while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
|
|
uart_unlock(hwmtx);
|
|
DELAY(4);
|
|
uart_lock(hwmtx);
|
|
}
|
|
|
|
c = uart_getreg(bas, REG_DATA);
|
|
|
|
uart_unlock(hwmtx);
|
|
|
|
return (c);
|
|
}
|
|
|
|
static kobj_method_t ns8250_methods[] = {
|
|
KOBJMETHOD(uart_attach, ns8250_bus_attach),
|
|
KOBJMETHOD(uart_detach, ns8250_bus_detach),
|
|
KOBJMETHOD(uart_flush, ns8250_bus_flush),
|
|
KOBJMETHOD(uart_getsig, ns8250_bus_getsig),
|
|
KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl),
|
|
KOBJMETHOD(uart_ipend, ns8250_bus_ipend),
|
|
KOBJMETHOD(uart_param, ns8250_bus_param),
|
|
KOBJMETHOD(uart_probe, ns8250_bus_probe),
|
|
KOBJMETHOD(uart_receive, ns8250_bus_receive),
|
|
KOBJMETHOD(uart_setsig, ns8250_bus_setsig),
|
|
KOBJMETHOD(uart_transmit, ns8250_bus_transmit),
|
|
KOBJMETHOD(uart_grab, ns8250_bus_grab),
|
|
KOBJMETHOD(uart_ungrab, ns8250_bus_ungrab),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
struct uart_class uart_ns8250_class = {
|
|
"ns8250",
|
|
ns8250_methods,
|
|
sizeof(struct ns8250_softc),
|
|
.uc_ops = &uart_ns8250_ops,
|
|
.uc_range = 8,
|
|
.uc_rclk = DEFAULT_RCLK,
|
|
.uc_rshift = 0
|
|
};
|
|
|
|
/*
|
|
* XXX -- refactor out ACPI and FDT ifdefs
|
|
*/
|
|
#ifdef DEV_ACPI
|
|
static struct acpi_uart_compat_data acpi_compat_data[] = {
|
|
{"AMD0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
|
|
{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
|
|
{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
|
|
{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
|
|
{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
|
|
{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
|
|
{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
|
|
{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
|
|
{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
|
|
{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
|
|
{NULL, NULL, 0, 0 , 0, 0, 0, NULL},
|
|
};
|
|
UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
|
|
#endif
|
|
|
|
#ifdef FDT
|
|
static struct ofw_compat_data compat_data[] = {
|
|
{"ns16550", (uintptr_t)&uart_ns8250_class},
|
|
{"ns16550a", (uintptr_t)&uart_ns8250_class},
|
|
{NULL, (uintptr_t)NULL},
|
|
};
|
|
UART_FDT_CLASS_AND_DEVICE(compat_data);
|
|
#endif
|
|
|
|
/* Use token-pasting to form SER_ and MSR_ named constants. */
|
|
#define SER(sig) SER_##sig
|
|
#define SERD(sig) SER_D##sig
|
|
#define MSR(sig) MSR_##sig
|
|
#define MSRD(sig) MSR_D##sig
|
|
|
|
/*
|
|
* Detect signal changes using software delta detection. The previous state of
|
|
* the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
|
|
* short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
|
|
* new state of both the signal and the delta bits.
|
|
*/
|
|
#define SIGCHGSW(var, msr, sig) \
|
|
if ((msr) & MSR(sig)) { \
|
|
if ((var & SER(sig)) == 0) \
|
|
var |= SERD(sig) | SER(sig); \
|
|
} else { \
|
|
if ((var & SER(sig)) != 0) \
|
|
var = SERD(sig) | (var & ~SER(sig)); \
|
|
}
|
|
|
|
/*
|
|
* Detect signal changes using the hardware msr delta bits. This is currently
|
|
* used only when PPS timing information is being captured using the "narrow
|
|
* pulse" option. With a narrow PPS pulse the signal may not still be asserted
|
|
* by time the interrupt handler is invoked. The hardware will latch the fact
|
|
* that it changed in the delta bits.
|
|
*/
|
|
#define SIGCHGHW(var, msr, sig) \
|
|
if ((msr) & MSRD(sig)) { \
|
|
if (((msr) & MSR(sig)) != 0) \
|
|
var |= SERD(sig) | SER(sig); \
|
|
else \
|
|
var = SERD(sig) | (var & ~SER(sig)); \
|
|
}
|
|
|
|
int
|
|
ns8250_bus_attach(struct uart_softc *sc)
|
|
{
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
struct uart_bas *bas;
|
|
unsigned int ivar;
|
|
#ifdef FDT
|
|
phandle_t node;
|
|
pcell_t cell;
|
|
#endif
|
|
|
|
#ifdef FDT
|
|
/* Check whether uart has a broken txfifo. */
|
|
node = ofw_bus_get_node(sc->sc_dev);
|
|
if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
|
|
broken_txfifo = cell ? 1 : 0;
|
|
#endif
|
|
|
|
bas = &sc->sc_bas;
|
|
|
|
ns8250->busy_detect = bas->busy_detect;
|
|
ns8250->mcr = uart_getreg(bas, REG_MCR);
|
|
ns8250->fcr = FCR_ENABLE;
|
|
#ifdef CPU_XBURST
|
|
ns8250->fcr |= FCR_UART_ON;
|
|
#endif
|
|
if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
|
|
&ivar)) {
|
|
if (UART_FLAGS_FCR_RX_LOW(ivar))
|
|
ns8250->fcr |= FCR_RX_LOW;
|
|
else if (UART_FLAGS_FCR_RX_MEDL(ivar))
|
|
ns8250->fcr |= FCR_RX_MEDL;
|
|
else if (UART_FLAGS_FCR_RX_HIGH(ivar))
|
|
ns8250->fcr |= FCR_RX_HIGH;
|
|
else
|
|
ns8250->fcr |= FCR_RX_MEDH;
|
|
} else
|
|
ns8250->fcr |= FCR_RX_MEDH;
|
|
|
|
/* Get IER mask */
|
|
ivar = 0xf0;
|
|
resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
|
|
&ivar);
|
|
ns8250->ier_mask = (uint8_t)(ivar & 0xff);
|
|
|
|
/* Get IER RX interrupt bits */
|
|
ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
|
|
resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
|
|
&ivar);
|
|
ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
|
|
|
|
uart_setreg(bas, REG_FCR, ns8250->fcr);
|
|
uart_barrier(bas);
|
|
ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
|
|
|
|
if (ns8250->mcr & MCR_DTR)
|
|
sc->sc_hwsig |= SER_DTR;
|
|
if (ns8250->mcr & MCR_RTS)
|
|
sc->sc_hwsig |= SER_RTS;
|
|
ns8250_bus_getsig(sc);
|
|
|
|
ns8250_clrint(bas);
|
|
ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
|
|
ns8250->ier |= ns8250->ier_rxbits;
|
|
uart_setreg(bas, REG_IER, ns8250->ier);
|
|
uart_barrier(bas);
|
|
|
|
/*
|
|
* Timing of the H/W access was changed with r253161 of uart_core.c
|
|
* It has been observed that an ITE IT8513E would signal a break
|
|
* condition with pretty much every character it received, unless
|
|
* it had enough time to settle between ns8250_bus_attach() and
|
|
* ns8250_bus_ipend() -- which it accidentally had before r253161.
|
|
* It's not understood why the UART chip behaves this way and it
|
|
* could very well be that the DELAY make the H/W work in the same
|
|
* accidental manner as before. More analysis is warranted, but
|
|
* at least now we fixed a known regression.
|
|
*/
|
|
DELAY(200);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_detach(struct uart_softc *sc)
|
|
{
|
|
struct ns8250_softc *ns8250;
|
|
struct uart_bas *bas;
|
|
u_char ier;
|
|
|
|
ns8250 = (struct ns8250_softc *)sc;
|
|
bas = &sc->sc_bas;
|
|
ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
|
|
uart_setreg(bas, REG_IER, ier);
|
|
uart_barrier(bas);
|
|
ns8250_clrint(bas);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_flush(struct uart_softc *sc, int what)
|
|
{
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
struct uart_bas *bas;
|
|
int error;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
if (sc->sc_rxfifosz > 1) {
|
|
ns8250_flush(bas, what);
|
|
uart_setreg(bas, REG_FCR, ns8250->fcr);
|
|
uart_barrier(bas);
|
|
error = 0;
|
|
} else
|
|
error = ns8250_drain(bas, what);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_getsig(struct uart_softc *sc)
|
|
{
|
|
uint32_t old, sig;
|
|
uint8_t msr;
|
|
|
|
/*
|
|
* The delta bits are reputed to be broken on some hardware, so use
|
|
* software delta detection by default. Use the hardware delta bits
|
|
* when capturing PPS pulses which are too narrow for software detection
|
|
* to see the edges. Hardware delta for RI doesn't work like the
|
|
* others, so always use software for it. Other threads may be changing
|
|
* other (non-MSR) bits in sc_hwsig, so loop until it can successfully
|
|
* update without other changes happening. Note that the SIGCHGxx()
|
|
* macros carefully preserve the delta bits when we have to loop several
|
|
* times and a signal transitions between iterations.
|
|
*/
|
|
do {
|
|
old = sc->sc_hwsig;
|
|
sig = old;
|
|
uart_lock(sc->sc_hwmtx);
|
|
msr = uart_getreg(&sc->sc_bas, REG_MSR);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
|
|
SIGCHGHW(sig, msr, DSR);
|
|
SIGCHGHW(sig, msr, CTS);
|
|
SIGCHGHW(sig, msr, DCD);
|
|
} else {
|
|
SIGCHGSW(sig, msr, DSR);
|
|
SIGCHGSW(sig, msr, CTS);
|
|
SIGCHGSW(sig, msr, DCD);
|
|
}
|
|
SIGCHGSW(sig, msr, RI);
|
|
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
|
|
return (sig);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
|
|
{
|
|
struct uart_bas *bas;
|
|
int baudrate, divisor, error;
|
|
uint8_t efr, lcr;
|
|
|
|
bas = &sc->sc_bas;
|
|
error = 0;
|
|
uart_lock(sc->sc_hwmtx);
|
|
switch (request) {
|
|
case UART_IOCTL_BREAK:
|
|
lcr = uart_getreg(bas, REG_LCR);
|
|
if (data)
|
|
lcr |= LCR_SBREAK;
|
|
else
|
|
lcr &= ~LCR_SBREAK;
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
break;
|
|
case UART_IOCTL_IFLOW:
|
|
lcr = uart_getreg(bas, REG_LCR);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, 0xbf);
|
|
uart_barrier(bas);
|
|
efr = uart_getreg(bas, REG_EFR);
|
|
if (data)
|
|
efr |= EFR_RTS;
|
|
else
|
|
efr &= ~EFR_RTS;
|
|
uart_setreg(bas, REG_EFR, efr);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
break;
|
|
case UART_IOCTL_OFLOW:
|
|
lcr = uart_getreg(bas, REG_LCR);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, 0xbf);
|
|
uart_barrier(bas);
|
|
efr = uart_getreg(bas, REG_EFR);
|
|
if (data)
|
|
efr |= EFR_CTS;
|
|
else
|
|
efr &= ~EFR_CTS;
|
|
uart_setreg(bas, REG_EFR, efr);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
break;
|
|
case UART_IOCTL_BAUD:
|
|
lcr = uart_getreg(bas, REG_LCR);
|
|
uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
|
|
uart_barrier(bas);
|
|
divisor = uart_getreg(bas, REG_DLL) |
|
|
(uart_getreg(bas, REG_DLH) << 8);
|
|
uart_barrier(bas);
|
|
uart_setreg(bas, REG_LCR, lcr);
|
|
uart_barrier(bas);
|
|
baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
|
|
if (baudrate > 0)
|
|
*(int*)data = baudrate;
|
|
else
|
|
error = ENXIO;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_ipend(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas;
|
|
struct ns8250_softc *ns8250;
|
|
int ipend;
|
|
uint8_t iir, lsr;
|
|
|
|
ns8250 = (struct ns8250_softc *)sc;
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
iir = uart_getreg(bas, REG_IIR);
|
|
|
|
if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
|
|
(void)uart_getreg(bas, DW_REG_USR);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
if (iir & IIR_NOPEND) {
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
ipend = 0;
|
|
if (iir & IIR_RXRDY) {
|
|
lsr = uart_getreg(bas, REG_LSR);
|
|
if (lsr & LSR_OE)
|
|
ipend |= SER_INT_OVERRUN;
|
|
if (lsr & LSR_BI)
|
|
ipend |= SER_INT_BREAK;
|
|
if (lsr & LSR_RXRDY)
|
|
ipend |= SER_INT_RXREADY;
|
|
} else {
|
|
if (iir & IIR_TXRDY) {
|
|
ipend |= SER_INT_TXIDLE;
|
|
uart_setreg(bas, REG_IER, ns8250->ier);
|
|
uart_barrier(bas);
|
|
} else
|
|
ipend |= SER_INT_SIGCHG;
|
|
}
|
|
if (ipend == 0)
|
|
ns8250_clrint(bas);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (ipend);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
|
|
int stopbits, int parity)
|
|
{
|
|
struct ns8250_softc *ns8250;
|
|
struct uart_bas *bas;
|
|
int error, limit;
|
|
|
|
ns8250 = (struct ns8250_softc*)sc;
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
/*
|
|
* When using DW UART with BUSY detection it is necessary to wait
|
|
* until all serial transfers are finished before manipulating the
|
|
* line control. LCR will not be affected when UART is busy.
|
|
*/
|
|
if (ns8250->busy_detect != 0) {
|
|
/*
|
|
* Pick an arbitrary high limit to avoid getting stuck in
|
|
* an infinite loop in case when the hardware is broken.
|
|
*/
|
|
limit = 10 * 1024;
|
|
while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
|
|
--limit)
|
|
DELAY(4);
|
|
|
|
if (limit <= 0) {
|
|
/* UART appears to be stuck */
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
error = ns8250_param(bas, baudrate, databits, stopbits, parity);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_probe(struct uart_softc *sc)
|
|
{
|
|
struct ns8250_softc *ns8250;
|
|
struct uart_bas *bas;
|
|
int count, delay, error, limit;
|
|
uint8_t lsr, mcr, ier;
|
|
uint8_t val;
|
|
|
|
ns8250 = (struct ns8250_softc *)sc;
|
|
bas = &sc->sc_bas;
|
|
|
|
error = ns8250_probe(bas);
|
|
if (error)
|
|
return (error);
|
|
|
|
mcr = MCR_IE;
|
|
if (sc->sc_sysdev == NULL) {
|
|
/* By using ns8250_init() we also set DTR and RTS. */
|
|
ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
|
|
} else
|
|
mcr |= MCR_DTR | MCR_RTS;
|
|
|
|
error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Set loopback mode. This avoids having garbage on the wire and
|
|
* also allows us send and receive data. We set DTR and RTS to
|
|
* avoid the possibility that automatic flow-control prevents
|
|
* any data from being sent.
|
|
*/
|
|
uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
|
|
uart_barrier(bas);
|
|
|
|
/*
|
|
* Enable FIFOs. And check that the UART has them. If not, we're
|
|
* done. Since this is the first time we enable the FIFOs, we reset
|
|
* them.
|
|
*/
|
|
val = FCR_ENABLE;
|
|
#ifdef CPU_XBURST
|
|
val |= FCR_UART_ON;
|
|
#endif
|
|
uart_setreg(bas, REG_FCR, val);
|
|
uart_barrier(bas);
|
|
if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
|
|
/*
|
|
* NS16450 or INS8250. We don't bother to differentiate
|
|
* between them. They're too old to be interesting.
|
|
*/
|
|
uart_setreg(bas, REG_MCR, mcr);
|
|
uart_barrier(bas);
|
|
sc->sc_rxfifosz = sc->sc_txfifosz = 1;
|
|
device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
|
|
return (0);
|
|
}
|
|
|
|
val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
|
|
#ifdef CPU_XBURST
|
|
val |= FCR_UART_ON;
|
|
#endif
|
|
uart_setreg(bas, REG_FCR, val);
|
|
uart_barrier(bas);
|
|
|
|
count = 0;
|
|
delay = ns8250_delay(bas);
|
|
|
|
/* We have FIFOs. Drain the transmitter and receiver. */
|
|
error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
|
|
if (error) {
|
|
uart_setreg(bas, REG_MCR, mcr);
|
|
val = 0;
|
|
#ifdef CPU_XBURST
|
|
val |= FCR_UART_ON;
|
|
#endif
|
|
uart_setreg(bas, REG_FCR, val);
|
|
uart_barrier(bas);
|
|
goto describe;
|
|
}
|
|
|
|
/*
|
|
* We should have a sufficiently clean "pipe" to determine the
|
|
* size of the FIFOs. We send as much characters as is reasonable
|
|
* and wait for the overflow bit in the LSR register to be
|
|
* asserted, counting the characters as we send them. Based on
|
|
* that count we know the FIFO size.
|
|
*/
|
|
do {
|
|
uart_setreg(bas, REG_DATA, 0);
|
|
uart_barrier(bas);
|
|
count++;
|
|
|
|
limit = 30;
|
|
lsr = 0;
|
|
/*
|
|
* LSR bits are cleared upon read, so we must accumulate
|
|
* them to be able to test LSR_OE below.
|
|
*/
|
|
while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
|
|
--limit)
|
|
DELAY(delay);
|
|
if (limit == 0) {
|
|
ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
|
|
uart_setreg(bas, REG_IER, ier);
|
|
uart_setreg(bas, REG_MCR, mcr);
|
|
val = 0;
|
|
#ifdef CPU_XBURST
|
|
val |= FCR_UART_ON;
|
|
#endif
|
|
uart_setreg(bas, REG_FCR, val);
|
|
uart_barrier(bas);
|
|
count = 0;
|
|
goto describe;
|
|
}
|
|
} while ((lsr & LSR_OE) == 0 && count < 260);
|
|
count--;
|
|
|
|
uart_setreg(bas, REG_MCR, mcr);
|
|
|
|
/* Reset FIFOs. */
|
|
ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
|
|
|
|
describe:
|
|
if (count >= 14 && count <= 16) {
|
|
sc->sc_rxfifosz = 16;
|
|
device_set_desc(sc->sc_dev, "16550 or compatible");
|
|
} else if (count >= 28 && count <= 32) {
|
|
sc->sc_rxfifosz = 32;
|
|
device_set_desc(sc->sc_dev, "16650 or compatible");
|
|
} else if (count >= 56 && count <= 64) {
|
|
sc->sc_rxfifosz = 64;
|
|
device_set_desc(sc->sc_dev, "16750 or compatible");
|
|
} else if (count >= 112 && count <= 128) {
|
|
sc->sc_rxfifosz = 128;
|
|
device_set_desc(sc->sc_dev, "16950 or compatible");
|
|
} else if (count >= 224 && count <= 256) {
|
|
sc->sc_rxfifosz = 256;
|
|
device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
|
|
} else {
|
|
sc->sc_rxfifosz = 16;
|
|
device_set_desc(sc->sc_dev,
|
|
"Non-standard ns8250 class UART with FIFOs");
|
|
}
|
|
|
|
/*
|
|
* Force the Tx FIFO size to 16 bytes for now. We don't program the
|
|
* Tx trigger. Also, we assume that all data has been sent when the
|
|
* interrupt happens.
|
|
*/
|
|
sc->sc_txfifosz = 16;
|
|
|
|
#if 0
|
|
/*
|
|
* XXX there are some issues related to hardware flow control and
|
|
* it's likely that uart(4) is the cause. This basically needs more
|
|
* investigation, but we avoid using for hardware flow control
|
|
* until then.
|
|
*/
|
|
/* 16650s or higher have automatic flow control. */
|
|
if (sc->sc_rxfifosz > 16) {
|
|
sc->sc_hwiflow = 1;
|
|
sc->sc_hwoflow = 1;
|
|
}
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_receive(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas;
|
|
int xc;
|
|
uint8_t lsr;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
lsr = uart_getreg(bas, REG_LSR);
|
|
while (lsr & LSR_RXRDY) {
|
|
if (uart_rx_full(sc)) {
|
|
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
|
|
break;
|
|
}
|
|
xc = uart_getreg(bas, REG_DATA);
|
|
if (lsr & LSR_FE)
|
|
xc |= UART_STAT_FRAMERR;
|
|
if (lsr & LSR_PE)
|
|
xc |= UART_STAT_PARERR;
|
|
uart_rx_put(sc, xc);
|
|
lsr = uart_getreg(bas, REG_LSR);
|
|
}
|
|
/* Discard everything left in the Rx FIFO. */
|
|
while (lsr & LSR_RXRDY) {
|
|
(void)uart_getreg(bas, REG_DATA);
|
|
uart_barrier(bas);
|
|
lsr = uart_getreg(bas, REG_LSR);
|
|
}
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_setsig(struct uart_softc *sc, int sig)
|
|
{
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
struct uart_bas *bas;
|
|
uint32_t new, old;
|
|
|
|
bas = &sc->sc_bas;
|
|
do {
|
|
old = sc->sc_hwsig;
|
|
new = old;
|
|
if (sig & SER_DDTR) {
|
|
new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
|
|
}
|
|
if (sig & SER_DRTS) {
|
|
new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
|
|
}
|
|
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
|
|
uart_lock(sc->sc_hwmtx);
|
|
ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
|
|
if (new & SER_DTR)
|
|
ns8250->mcr |= MCR_DTR;
|
|
if (new & SER_RTS)
|
|
ns8250->mcr |= MCR_RTS;
|
|
uart_setreg(bas, REG_MCR, ns8250->mcr);
|
|
uart_barrier(bas);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ns8250_bus_transmit(struct uart_softc *sc)
|
|
{
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
struct uart_bas *bas;
|
|
int i;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
if (sc->sc_txdatasz > 1) {
|
|
if ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0)
|
|
ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
|
|
} else {
|
|
while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
|
|
DELAY(4);
|
|
}
|
|
for (i = 0; i < sc->sc_txdatasz; i++) {
|
|
uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
|
|
uart_barrier(bas);
|
|
}
|
|
uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
|
|
uart_barrier(bas);
|
|
if (broken_txfifo)
|
|
ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
|
|
else
|
|
sc->sc_txbusy = 1;
|
|
uart_unlock(sc->sc_hwmtx);
|
|
if (broken_txfifo)
|
|
uart_sched_softih(sc, SER_INT_TXIDLE);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ns8250_bus_grab(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas = &sc->sc_bas;
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
u_char ier;
|
|
|
|
/*
|
|
* turn off all interrupts to enter polling mode. Leave the
|
|
* saved mask alone. We'll restore whatever it was in ungrab.
|
|
* All pending interrupt signals are reset when IER is set to 0.
|
|
*/
|
|
uart_lock(sc->sc_hwmtx);
|
|
ier = uart_getreg(bas, REG_IER);
|
|
uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
|
|
uart_barrier(bas);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
}
|
|
|
|
void
|
|
ns8250_bus_ungrab(struct uart_softc *sc)
|
|
{
|
|
struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
|
|
struct uart_bas *bas = &sc->sc_bas;
|
|
|
|
/*
|
|
* Restore previous interrupt mask
|
|
*/
|
|
uart_lock(sc->sc_hwmtx);
|
|
uart_setreg(bas, REG_IER, ns8250->ier);
|
|
uart_barrier(bas);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
}
|