freebsd-skq/sys/dev/et/if_et.c
2011-03-23 13:10:15 +00:00

2461 lines
58 KiB
C

/*-
* Copyright (c) 2007 Sepherosa Ziehau. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Sepherosa Ziehau <sepherosa@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/et/if_etreg.h>
#include <dev/et/if_etvar.h>
#include "miibus_if.h"
MODULE_DEPEND(et, pci, 1, 1, 1);
MODULE_DEPEND(et, ether, 1, 1, 1);
MODULE_DEPEND(et, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
TUNABLE_INT("hw.et.msi_disable", &msi_disable);
#define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
static int et_probe(device_t);
static int et_attach(device_t);
static int et_detach(device_t);
static int et_shutdown(device_t);
static int et_miibus_readreg(device_t, int, int);
static int et_miibus_writereg(device_t, int, int, int);
static void et_miibus_statchg(device_t);
static void et_init_locked(struct et_softc *);
static void et_init(void *);
static int et_ioctl(struct ifnet *, u_long, caddr_t);
static void et_start_locked(struct ifnet *);
static void et_start(struct ifnet *);
static void et_watchdog(struct et_softc *);
static int et_ifmedia_upd_locked(struct ifnet *);
static int et_ifmedia_upd(struct ifnet *);
static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void et_add_sysctls(struct et_softc *);
static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
static void et_intr(void *);
static void et_enable_intrs(struct et_softc *, uint32_t);
static void et_disable_intrs(struct et_softc *);
static void et_rxeof(struct et_softc *);
static void et_txeof(struct et_softc *);
static int et_dma_alloc(device_t);
static void et_dma_free(device_t);
static int et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *,
void **, bus_addr_t *, bus_dmamap_t *);
static void et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
static int et_dma_mbuf_create(device_t);
static void et_dma_mbuf_destroy(device_t, int, const int[]);
static void et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
static void et_dma_buf_addr(void *, bus_dma_segment_t *, int,
bus_size_t, int);
static int et_init_tx_ring(struct et_softc *);
static int et_init_rx_ring(struct et_softc *);
static void et_free_tx_ring(struct et_softc *);
static void et_free_rx_ring(struct et_softc *);
static int et_encap(struct et_softc *, struct mbuf **);
static int et_newbuf(struct et_rxbuf_data *, int, int, int);
static int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
static int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
static void et_stop(struct et_softc *);
static int et_chip_init(struct et_softc *);
static void et_chip_attach(struct et_softc *);
static void et_init_mac(struct et_softc *);
static void et_init_rxmac(struct et_softc *);
static void et_init_txmac(struct et_softc *);
static int et_init_rxdma(struct et_softc *);
static int et_init_txdma(struct et_softc *);
static int et_start_rxdma(struct et_softc *);
static int et_start_txdma(struct et_softc *);
static int et_stop_rxdma(struct et_softc *);
static int et_stop_txdma(struct et_softc *);
static int et_enable_txrx(struct et_softc *, int);
static void et_reset(struct et_softc *);
static int et_bus_config(struct et_softc *);
static void et_get_eaddr(device_t, uint8_t[]);
static void et_setmulti(struct et_softc *);
static void et_tick(void *);
static void et_setmedia(struct et_softc *);
static void et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
static const struct et_dev {
uint16_t vid;
uint16_t did;
const char *desc;
} et_devices[] = {
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
"Agere ET1310 Gigabit Ethernet" },
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
"Agere ET1310 Fast Ethernet" },
{ 0, 0, NULL }
};
static device_method_t et_methods[] = {
DEVMETHOD(device_probe, et_probe),
DEVMETHOD(device_attach, et_attach),
DEVMETHOD(device_detach, et_detach),
DEVMETHOD(device_shutdown, et_shutdown),
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
DEVMETHOD(miibus_readreg, et_miibus_readreg),
DEVMETHOD(miibus_writereg, et_miibus_writereg),
DEVMETHOD(miibus_statchg, et_miibus_statchg),
{ 0, 0 }
};
static driver_t et_driver = {
"et",
et_methods,
sizeof(struct et_softc)
};
static devclass_t et_devclass;
DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0);
DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
static int et_rx_intr_npkts = 32;
static int et_rx_intr_delay = 20; /* x10 usec */
static int et_tx_intr_nsegs = 126;
static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
TUNABLE_INT("hw.et.timer", &et_timer);
TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
struct et_bsize {
int bufsize;
et_newbuf_t newbuf;
};
static const struct et_bsize et_bufsize_std[ET_RX_NRING] = {
{ .bufsize = ET_RXDMA_CTRL_RING0_128,
.newbuf = et_newbuf_hdr },
{ .bufsize = ET_RXDMA_CTRL_RING1_2048,
.newbuf = et_newbuf_cluster },
};
static int
et_probe(device_t dev)
{
const struct et_dev *d;
uint16_t did, vid;
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
for (d = et_devices; d->desc != NULL; ++d) {
if (vid == d->vid && did == d->did) {
device_set_desc(dev, d->desc);
return (0);
}
}
return (ENXIO);
}
static int
et_attach(device_t dev)
{
struct et_softc *sc;
struct ifnet *ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
int cap, error, msic;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/*
* Initialize tunables
*/
sc->sc_rx_intr_npkts = et_rx_intr_npkts;
sc->sc_rx_intr_delay = et_rx_intr_delay;
sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
sc->sc_timer = et_timer;
/* Enable bus mastering */
pci_enable_busmaster(dev);
/*
* Allocate IO memory
*/
sc->sc_mem_rid = ET_PCIR_BAR;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_mem_rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "can't allocate IO memory\n");
return (ENXIO);
}
msic = 0;
if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
sc->sc_expcap = cap;
sc->sc_flags |= ET_FLAG_PCIE;
msic = pci_msi_count(dev);
if (bootverbose)
device_printf(dev, "MSI count: %d\n", msic);
}
if (msic > 0 && msi_disable == 0) {
msic = 1;
if (pci_alloc_msi(dev, &msic) == 0) {
if (msic == 1) {
device_printf(dev, "Using %d MSI message\n",
msic);
sc->sc_flags |= ET_FLAG_MSI;
} else
pci_release_msi(dev);
}
}
/*
* Allocate IRQ
*/
if ((sc->sc_flags & ET_FLAG_MSI) == 0) {
sc->sc_irq_rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE);
} else {
sc->sc_irq_rid = 1;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_ACTIVE);
}
if (sc->sc_irq_res == NULL) {
device_printf(dev, "can't allocate irq\n");
error = ENXIO;
goto fail;
}
error = et_bus_config(sc);
if (error)
goto fail;
et_get_eaddr(dev, eaddr);
CSR_WRITE_4(sc, ET_PM,
ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
et_reset(sc);
et_disable_intrs(sc);
error = et_dma_alloc(dev);
if (error)
goto fail;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = et_init;
ifp->if_ioctl = et_ioctl;
ifp->if_start = et_start;
ifp->if_mtu = ETHERMTU;
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
IFQ_SET_READY(&ifp->if_snd);
et_chip_attach(sc);
error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd,
et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, eaddr);
callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0);
error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, et_intr, sc, &sc->sc_irq_handle);
if (error) {
ether_ifdetach(ifp);
device_printf(dev, "can't setup intr\n");
goto fail;
}
et_add_sysctls(sc);
return (0);
fail:
et_detach(dev);
return (error);
}
static int
et_detach(device_t dev)
{
struct et_softc *sc = device_get_softc(dev);
if (device_is_attached(dev)) {
struct ifnet *ifp = sc->ifp;
ET_LOCK(sc);
et_stop(sc);
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
ET_UNLOCK(sc);
ether_ifdetach(ifp);
}
if (sc->sc_miibus != NULL)
device_delete_child(dev, sc->sc_miibus);
bus_generic_detach(dev);
if (sc->sc_irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_res);
}
if ((sc->sc_flags & ET_FLAG_MSI) != 0)
pci_release_msi(dev);
if (sc->sc_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
sc->sc_mem_res);
}
if (sc->ifp != NULL)
if_free(sc->ifp);
et_dma_free(dev);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static int
et_shutdown(device_t dev)
{
struct et_softc *sc = device_get_softc(dev);
ET_LOCK(sc);
et_stop(sc);
ET_UNLOCK(sc);
return (0);
}
static int
et_miibus_readreg(device_t dev, int phy, int reg)
{
struct et_softc *sc = device_get_softc(dev);
uint32_t val;
int i, ret;
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start reading */
CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
#define NRETRY 50
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
if_printf(sc->ifp,
"read phy %d, reg %d timed out\n", phy, reg);
ret = 0;
goto back;
}
#undef NRETRY
val = CSR_READ_4(sc, ET_MII_STAT);
ret = val & ET_MII_STAT_VALUE_MASK;
back:
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
return (ret);
}
static int
et_miibus_writereg(device_t dev, int phy, int reg, int val0)
{
struct et_softc *sc = device_get_softc(dev);
uint32_t val;
int i;
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK;
val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK;
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start writing */
CSR_WRITE_4(sc, ET_MII_CTRL,
(val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK);
#define NRETRY 100
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & ET_MII_IND_BUSY) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
if_printf(sc->ifp,
"write phy %d, reg %d timed out\n", phy, reg);
et_miibus_readreg(dev, phy, reg);
}
#undef NRETRY
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
return (0);
}
static void
et_miibus_statchg(device_t dev)
{
et_setmedia(device_get_softc(dev));
}
static int
et_ifmedia_upd_locked(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
struct mii_data *mii = device_get_softc(sc->sc_miibus);
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return (0);
}
static int
et_ifmedia_upd(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
int res;
ET_LOCK(sc);
res = et_ifmedia_upd_locked(ifp);
ET_UNLOCK(sc);
return (res);
}
static void
et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct et_softc *sc = ifp->if_softc;
struct mii_data *mii = device_get_softc(sc->sc_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static void
et_stop(struct et_softc *sc)
{
struct ifnet *ifp = sc->ifp;
ET_LOCK_ASSERT(sc);
callout_stop(&sc->sc_tick);
et_stop_rxdma(sc);
et_stop_txdma(sc);
et_disable_intrs(sc);
et_free_tx_ring(sc);
et_free_rx_ring(sc);
et_reset(sc);
sc->sc_tx = 0;
sc->sc_tx_intr = 0;
sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
sc->watchdog_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
static int
et_bus_config(struct et_softc *sc)
{
uint32_t val, max_plsz;
uint16_t ack_latency, replay_timer;
/*
* Test whether EEPROM is valid
* NOTE: Read twice to get the correct value
*/
pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1);
if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
device_printf(sc->dev, "EEPROM status error 0x%02x\n", val);
return (ENXIO);
}
/* TODO: LED */
if ((sc->sc_flags & ET_FLAG_PCIE) == 0)
return (0);
/*
* Configure ACK latency and replay timer according to
* max playload size
*/
val = pci_read_config(sc->dev,
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CAP, 4);
max_plsz = val & PCIM_EXP_CAP_MAX_PAYLOAD;
switch (max_plsz) {
case ET_PCIV_DEVICE_CAPS_PLSZ_128:
ack_latency = ET_PCIV_ACK_LATENCY_128;
replay_timer = ET_PCIV_REPLAY_TIMER_128;
break;
case ET_PCIV_DEVICE_CAPS_PLSZ_256:
ack_latency = ET_PCIV_ACK_LATENCY_256;
replay_timer = ET_PCIV_REPLAY_TIMER_256;
break;
default:
ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2);
replay_timer = pci_read_config(sc->dev,
ET_PCIR_REPLAY_TIMER, 2);
device_printf(sc->dev, "ack latency %u, replay timer %u\n",
ack_latency, replay_timer);
break;
}
if (ack_latency != 0) {
pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer,
2);
}
/*
* Set L0s and L1 latency timer to 2us
*/
val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4);
val &= ~(PCIM_LINK_CAP_L0S_EXIT | PCIM_LINK_CAP_L1_EXIT);
/* L0s exit latency : 2us */
val |= 0x00005000;
/* L1 exit latency : 2us */
val |= 0x00028000;
pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4);
/*
* Set max read request size to 2048 bytes
*/
val = pci_read_config(sc->dev,
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
pci_write_config(sc->dev,
sc->sc_expcap + PCIR_EXPRESS_DEVICE_CTL, val, 2);
return (0);
}
static void
et_get_eaddr(device_t dev, uint8_t eaddr[])
{
uint32_t val;
int i;
val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
for (i = 0; i < 4; ++i)
eaddr[i] = (val >> (8 * i)) & 0xff;
val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
for (; i < ETHER_ADDR_LEN; ++i)
eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
}
static void
et_reset(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
CSR_WRITE_4(sc, ET_SWRST,
ET_SWRST_TXDMA | ET_SWRST_RXDMA |
ET_SWRST_TXMAC | ET_SWRST_RXMAC |
ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
}
static void
et_disable_intrs(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
}
static void
et_enable_intrs(struct et_softc *sc, uint32_t intrs)
{
CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
}
static int
et_dma_alloc(device_t dev)
{
struct et_softc *sc = device_get_softc(dev);
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
int i, error;
/*
* Create top level DMA tag
*/
error = bus_dma_tag_create(NULL, 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
MAXBSIZE,
BUS_SPACE_UNRESTRICTED,
BUS_SPACE_MAXSIZE_32BIT,
0, NULL, NULL, &sc->sc_dtag);
if (error) {
device_printf(dev, "can't create DMA tag\n");
return (error);
}
/*
* Create TX ring DMA stuffs
*/
error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag,
(void **)&tx_ring->tr_desc,
&tx_ring->tr_paddr, &tx_ring->tr_dmap);
if (error) {
device_printf(dev, "can't create TX ring DMA stuffs\n");
return (error);
}
/*
* Create TX status DMA stuffs
*/
error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag,
(void **)&txsd->txsd_status,
&txsd->txsd_paddr, &txsd->txsd_dmap);
if (error) {
device_printf(dev, "can't create TX status DMA stuffs\n");
return (error);
}
/*
* Create DMA stuffs for RX rings
*/
for (i = 0; i < ET_RX_NRING; ++i) {
static const uint32_t rx_ring_posreg[ET_RX_NRING] =
{ ET_RX_RING0_POS, ET_RX_RING1_POS };
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
error = et_dma_mem_create(dev, ET_RX_RING_SIZE,
&rx_ring->rr_dtag,
(void **)&rx_ring->rr_desc,
&rx_ring->rr_paddr,
&rx_ring->rr_dmap);
if (error) {
device_printf(dev, "can't create DMA stuffs for "
"the %d RX ring\n", i);
return (error);
}
rx_ring->rr_posreg = rx_ring_posreg[i];
}
/*
* Create RX stat ring DMA stuffs
*/
error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE,
&rxst_ring->rsr_dtag,
(void **)&rxst_ring->rsr_stat,
&rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap);
if (error) {
device_printf(dev, "can't create RX stat ring DMA stuffs\n");
return (error);
}
/*
* Create RX status DMA stuffs
*/
error = et_dma_mem_create(dev, sizeof(struct et_rxstatus),
&rxsd->rxsd_dtag,
(void **)&rxsd->rxsd_status,
&rxsd->rxsd_paddr, &rxsd->rxsd_dmap);
if (error) {
device_printf(dev, "can't create RX status DMA stuffs\n");
return (error);
}
/*
* Create mbuf DMA stuffs
*/
error = et_dma_mbuf_create(dev);
if (error)
return (error);
return (0);
}
static void
et_dma_free(device_t dev)
{
struct et_softc *sc = device_get_softc(dev);
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
int i, rx_done[ET_RX_NRING];
/*
* Destroy TX ring DMA stuffs
*/
et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
tx_ring->tr_dmap);
/*
* Destroy TX status DMA stuffs
*/
et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
txsd->txsd_dmap);
/*
* Destroy DMA stuffs for RX rings
*/
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
rx_ring->rr_dmap);
}
/*
* Destroy RX stat ring DMA stuffs
*/
et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
rxst_ring->rsr_dmap);
/*
* Destroy RX status DMA stuffs
*/
et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
rxsd->rxsd_dmap);
/*
* Destroy mbuf DMA stuffs
*/
for (i = 0; i < ET_RX_NRING; ++i)
rx_done[i] = ET_RX_NDESC;
et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
/*
* Destroy top level DMA tag
*/
if (sc->sc_dtag != NULL)
bus_dma_tag_destroy(sc->sc_dtag);
}
static int
et_dma_mbuf_create(device_t dev)
{
struct et_softc *sc = device_get_softc(dev);
struct et_txbuf_data *tbd = &sc->sc_tx_data;
int i, error, rx_done[ET_RX_NRING];
/*
* Create mbuf DMA tag
*/
error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL,
ET_JUMBO_FRAMELEN, ET_NSEG_MAX,
BUS_SPACE_MAXSIZE_32BIT,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_mbuf_dtag);
if (error) {
device_printf(dev, "can't create mbuf DMA tag\n");
return (error);
}
/*
* Create spare DMA map for RX mbufs
*/
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap);
if (error) {
device_printf(dev, "can't create spare mbuf DMA map\n");
bus_dma_tag_destroy(sc->sc_mbuf_dtag);
sc->sc_mbuf_dtag = NULL;
return (error);
}
/*
* Create DMA maps for RX mbufs
*/
bzero(rx_done, sizeof(rx_done));
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
int j;
for (j = 0; j < ET_RX_NDESC; ++j) {
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
&rbd->rbd_buf[j].rb_dmap);
if (error) {
device_printf(dev, "can't create %d RX mbuf "
"for %d RX ring\n", j, i);
rx_done[i] = j;
et_dma_mbuf_destroy(dev, 0, rx_done);
return (error);
}
}
rx_done[i] = ET_RX_NDESC;
rbd->rbd_softc = sc;
rbd->rbd_ring = &sc->sc_rx_ring[i];
}
/*
* Create DMA maps for TX mbufs
*/
for (i = 0; i < ET_TX_NDESC; ++i) {
error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
&tbd->tbd_buf[i].tb_dmap);
if (error) {
device_printf(dev, "can't create %d TX mbuf "
"DMA map\n", i);
et_dma_mbuf_destroy(dev, i, rx_done);
return (error);
}
}
return (0);
}
static void
et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
{
struct et_softc *sc = device_get_softc(dev);
struct et_txbuf_data *tbd = &sc->sc_tx_data;
int i;
if (sc->sc_mbuf_dtag == NULL)
return;
/*
* Destroy DMA maps for RX mbufs
*/
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
int j;
for (j = 0; j < rx_done[i]; ++j) {
struct et_rxbuf *rb = &rbd->rbd_buf[j];
KASSERT(rb->rb_mbuf == NULL,
("RX mbuf in %d RX ring is not freed yet\n", i));
bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap);
}
}
/*
* Destroy DMA maps for TX mbufs
*/
for (i = 0; i < tx_done; ++i) {
struct et_txbuf *tb = &tbd->tbd_buf[i];
KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap);
}
/*
* Destroy spare mbuf DMA map
*/
bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap);
/*
* Destroy mbuf DMA tag
*/
bus_dma_tag_destroy(sc->sc_mbuf_dtag);
sc->sc_mbuf_dtag = NULL;
}
static int
et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
{
struct et_softc *sc = device_get_softc(dev);
int error;
error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL,
size, 1, BUS_SPACE_MAXSIZE_32BIT,
0, NULL, NULL, dtag);
if (error) {
device_printf(dev, "can't create DMA tag\n");
return (error);
}
error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
dmap);
if (error) {
device_printf(dev, "can't allocate DMA mem\n");
bus_dma_tag_destroy(*dtag);
*dtag = NULL;
return (error);
}
error = bus_dmamap_load(*dtag, *dmap, *addr, size,
et_dma_ring_addr, paddr, BUS_DMA_WAITOK);
if (error) {
device_printf(dev, "can't load DMA mem\n");
bus_dmamem_free(*dtag, *addr, *dmap);
bus_dma_tag_destroy(*dtag);
*dtag = NULL;
return (error);
}
return (0);
}
static void
et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
{
if (dtag != NULL) {
bus_dmamap_unload(dtag, dmap);
bus_dmamem_free(dtag, addr, dmap);
bus_dma_tag_destroy(dtag);
}
}
static void
et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
KASSERT(nseg == 1, ("too many segments\n"));
*((bus_addr_t *)arg) = seg->ds_addr;
}
static void
et_chip_attach(struct et_softc *sc)
{
uint32_t val;
/*
* Perform minimal initialization
*/
/* Disable loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup half duplex mode
*/
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
}
static void
et_intr(void *xsc)
{
struct et_softc *sc = xsc;
struct ifnet *ifp;
uint32_t intrs;
ET_LOCK(sc);
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ET_UNLOCK(sc);
return;
}
et_disable_intrs(sc);
intrs = CSR_READ_4(sc, ET_INTR_STATUS);
intrs &= ET_INTRS;
if (intrs == 0) /* Not interested */
goto back;
if (intrs & ET_INTR_RXEOF)
et_rxeof(sc);
if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
et_txeof(sc);
if (intrs & ET_INTR_TIMER)
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
back:
et_enable_intrs(sc, ET_INTRS);
ET_UNLOCK(sc);
}
static void
et_init_locked(struct et_softc *sc)
{
struct ifnet *ifp = sc->ifp;
const struct et_bsize *arr;
int error, i;
ET_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
et_stop(sc);
arr = et_bufsize_std;
for (i = 0; i < ET_RX_NRING; ++i) {
sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
}
error = et_init_tx_ring(sc);
if (error)
goto back;
error = et_init_rx_ring(sc);
if (error)
goto back;
error = et_chip_init(sc);
if (error)
goto back;
error = et_enable_txrx(sc, 1);
if (error)
goto back;
et_enable_intrs(sc, ET_INTRS);
callout_reset(&sc->sc_tick, hz, et_tick, sc);
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
back:
if (error)
et_stop(sc);
}
static void
et_init(void *xsc)
{
struct et_softc *sc = xsc;
ET_LOCK(sc);
et_init_locked(sc);
ET_UNLOCK(sc);
}
static int
et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct et_softc *sc = ifp->if_softc;
struct mii_data *mii = device_get_softc(sc->sc_miibus);
struct ifreq *ifr = (struct ifreq *)data;
int error = 0, mask, max_framelen;
/* XXX LOCKSUSED */
switch (cmd) {
case SIOCSIFFLAGS:
ET_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST))
et_setmulti(sc);
} else {
et_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
et_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
ET_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ET_LOCK(sc);
et_setmulti(sc);
ET_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMTU:
#if 0
if (sc->sc_flags & ET_FLAG_JUMBO)
max_framelen = ET_JUMBO_FRAMELEN;
else
#endif
max_framelen = MCLBYTES - 1;
if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
error = EOPNOTSUPP;
break;
}
if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
et_init(sc);
}
break;
case SIOCSIFCAP:
ET_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= ET_CSUM_FEATURES;
else
ifp->if_hwassist &= ~ET_CSUM_FEATURES;
}
ET_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
et_start_locked(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
struct et_txbuf_data *tbd;
int trans;
ET_LOCK_ASSERT(sc);
tbd = &sc->sc_tx_data;
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
return;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING)
return;
trans = 0;
for (;;) {
struct mbuf *m;
if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (et_encap(sc, &m)) {
ifp->if_oerrors++;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
trans = 1;
BPF_MTAP(ifp, m);
}
if (trans)
sc->watchdog_timer = 5;
}
static void
et_start(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
ET_LOCK(sc);
et_start_locked(ifp);
ET_UNLOCK(sc);
}
static void
et_watchdog(struct et_softc *sc)
{
ET_LOCK_ASSERT(sc);
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
return;
if_printf(sc->ifp, "watchdog timed out\n");
sc->ifp->if_oerrors++;
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
et_init_locked(sc);
et_start_locked(sc->ifp);
}
static int
et_stop_rxdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_RXDMA_CTRL,
ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
DELAY(5);
if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
if_printf(sc->ifp, "can't stop RX DMA engine\n");
return (ETIMEDOUT);
}
return (0);
}
static int
et_stop_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL,
ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
return (0);
}
static void
et_free_tx_ring(struct et_softc *sc)
{
struct et_txbuf_data *tbd = &sc->sc_tx_data;
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
int i;
for (i = 0; i < ET_TX_NDESC; ++i) {
struct et_txbuf *tb = &tbd->tbd_buf[i];
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
}
}
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
}
static void
et_free_rx_ring(struct et_softc *sc)
{
int n;
for (n = 0; n < ET_RX_NRING; ++n) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
int i;
for (i = 0; i < ET_RX_NDESC; ++i) {
struct et_rxbuf *rb = &rbd->rbd_buf[i];
if (rb->rb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_mbuf_dtag,
rb->rb_dmap);
m_freem(rb->rb_mbuf);
rb->rb_mbuf = NULL;
}
}
bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
BUS_DMASYNC_PREWRITE);
}
}
static void
et_setmulti(struct et_softc *sc)
{
struct ifnet *ifp;
uint32_t hash[4] = { 0, 0, 0, 0 };
uint32_t rxmac_ctrl, pktfilt;
struct ifmultiaddr *ifma;
int i, count;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
pktfilt = CSR_READ_4(sc, ET_PKTFILT);
rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
goto back;
}
count = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
uint32_t *hp, h;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
h = (h & 0x3f800000) >> 23;
hp = &hash[0];
if (h >= 32 && h < 64) {
h -= 32;
hp = &hash[1];
} else if (h >= 64 && h < 96) {
h -= 64;
hp = &hash[2];
} else if (h >= 96) {
h -= 96;
hp = &hash[3];
}
*hp |= (1 << h);
++count;
}
if_maddr_runlock(ifp);
for (i = 0; i < 4; ++i)
CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
if (count > 0)
pktfilt |= ET_PKTFILT_MCAST;
rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
back:
CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
}
static int
et_chip_init(struct et_softc *sc)
{
struct ifnet *ifp = sc->ifp;
uint32_t rxq_end;
int error, frame_len, rxmem_size;
/*
* Split 16Kbytes internal memory between TX and RX
* according to frame length.
*/
frame_len = ET_FRAMELEN(ifp->if_mtu);
if (frame_len < 2048) {
rxmem_size = ET_MEM_RXSIZE_DEFAULT;
} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
rxmem_size = ET_MEM_SIZE / 2;
} else {
rxmem_size = ET_MEM_SIZE -
roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
}
rxq_end = ET_QUEUE_ADDR(rxmem_size);
CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
/* No loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Clear MSI configure */
if ((sc->sc_flags & ET_FLAG_MSI) == 0)
CSR_WRITE_4(sc, ET_MSI_CFG, 0);
/* Disable timer */
CSR_WRITE_4(sc, ET_TIMER, 0);
/* Initialize MAC */
et_init_mac(sc);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
/* Initialize RX MAC */
et_init_rxmac(sc);
/* Initialize TX MAC */
et_init_txmac(sc);
/* Initialize RX DMA engine */
error = et_init_rxdma(sc);
if (error)
return (error);
/* Initialize TX DMA engine */
error = et_init_txdma(sc);
if (error)
return (error);
return (0);
}
static int
et_init_tx_ring(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap = 0;
tbd->tbd_used = 0;
bzero(txsd->txsd_status, sizeof(uint32_t));
bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
BUS_DMASYNC_PREWRITE);
return (0);
}
static int
et_init_rx_ring(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
int n;
for (n = 0; n < ET_RX_NRING; ++n) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
int i, error;
for (i = 0; i < ET_RX_NDESC; ++i) {
error = rbd->rbd_newbuf(rbd, i, 1);
if (error) {
if_printf(sc->ifp, "%d ring %d buf, "
"newbuf failed: %d\n", n, i, error);
return (error);
}
}
}
bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
BUS_DMASYNC_PREWRITE);
bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
BUS_DMASYNC_PREWRITE);
return (0);
}
static void
et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs,
bus_size_t mapsz __unused, int error)
{
struct et_dmamap_ctx *ctx = xctx;
int i;
if (error)
return;
if (nsegs > ctx->nsegs) {
ctx->nsegs = 0;
return;
}
ctx->nsegs = nsegs;
for (i = 0; i < nsegs; ++i)
ctx->segs[i] = segs[i];
}
static int
et_init_rxdma(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxdesc_ring *rx_ring;
int error;
error = et_stop_rxdma(sc);
if (error) {
if_printf(sc->ifp, "can't init RX DMA engine\n");
return (error);
}
/*
* Install RX status
*/
CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
/*
* Install RX stat ring
*/
CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
/* Match ET_RXSTAT_POS */
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap = 0;
/*
* Install the 2nd RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[1];
CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING1_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* Install the 1st RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[0];
CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING0_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* RX intr moderation
*/
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
return (0);
}
static int
et_init_txdma(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
int error;
error = et_stop_txdma(sc);
if (error) {
if_printf(sc->ifp, "can't init TX DMA engine\n");
return (error);
}
/*
* Install TX descriptor ring
*/
CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
/*
* Install TX status
*/
CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
/* Match ET_TX_READY_POS */
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap = 0;
return (0);
}
static void
et_init_mac(struct et_softc *sc)
{
struct ifnet *ifp = sc->ifp;
const uint8_t *eaddr = IF_LLADDR(ifp);
uint32_t val;
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup inter packet gap
*/
val = (56 << ET_IPG_NONB2B_1_SHIFT) |
(88 << ET_IPG_NONB2B_2_SHIFT) |
(80 << ET_IPG_MINIFG_SHIFT) |
(96 << ET_IPG_B2B_SHIFT);
CSR_WRITE_4(sc, ET_IPG, val);
/*
* Setup half duplex mode
*/
val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) |
(15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) |
(55 << ET_MAC_HDX_COLLWIN_SHIFT) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/*
* Set MAC address
*/
val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
val = (eaddr[0] << 16) | (eaddr[1] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
/* Set max frame length */
CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
}
static void
et_init_rxmac(struct et_softc *sc)
{
struct ifnet *ifp = sc->ifp;
const uint8_t *eaddr = IF_LLADDR(ifp);
uint32_t val;
int i;
/* Disable RX MAC and WOL */
CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
/*
* Clear all WOL related registers
*/
for (i = 0; i < 3; ++i)
CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
for (i = 0; i < 20; ++i)
CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
/*
* Set WOL source address. XXX is this necessary?
*/
val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
val = (eaddr[0] << 8) | eaddr[1];
CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
/* Clear packet filters */
CSR_WRITE_4(sc, ET_PKTFILT, 0);
/* No ucast filtering */
CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
/*
* In order to transmit jumbo packets greater than
* ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
* RX MAC and RX DMA needs to be reduced in size to
* (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In
* order to implement this, we must use "cut through"
* mode in the RX MAC, which chops packets down into
* segments. In this case we selected 256 bytes,
* since this is the size of the PCI-Express TLP's
* that the ET1310 uses.
*/
val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) |
ET_RXMAC_MC_SEGSZ_ENABLE;
} else {
val = 0;
}
CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
/* Initialize RX MAC management register */
CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
CSR_WRITE_4(sc, ET_RXMAC_MGT,
ET_RXMAC_MGT_PASS_ECRC |
ET_RXMAC_MGT_PASS_ELEN |
ET_RXMAC_MGT_PASS_ETRUNC |
ET_RXMAC_MGT_CHECK_PKT);
/*
* Configure runt filtering (may not work on certain chip generation)
*/
val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) &
ET_PKTFILT_MINLEN_MASK;
val |= ET_PKTFILT_FRAG;
CSR_WRITE_4(sc, ET_PKTFILT, val);
/* Enable RX MAC but leave WOL disabled */
CSR_WRITE_4(sc, ET_RXMAC_CTRL,
ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
/*
* Setup multicast hash and allmulti/promisc mode
*/
et_setmulti(sc);
}
static void
et_init_txmac(struct et_softc *sc)
{
/* Disable TX MAC and FC(?) */
CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
/* No flow control yet */
CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
/* Enable TX MAC but leave FC(?) diabled */
CSR_WRITE_4(sc, ET_TXMAC_CTRL,
ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
}
static int
et_start_rxdma(struct et_softc *sc)
{
uint32_t val = 0;
val |= (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) |
ET_RXDMA_CTRL_RING0_ENABLE;
val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) |
ET_RXDMA_CTRL_RING1_ENABLE;
CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
DELAY(5);
if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
if_printf(sc->ifp, "can't start RX DMA engine\n");
return (ETIMEDOUT);
}
return (0);
}
static int
et_start_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
return (0);
}
static int
et_enable_txrx(struct et_softc *sc, int media_upd)
{
struct ifnet *ifp = sc->ifp;
uint32_t val;
int i, error;
val = CSR_READ_4(sc, ET_MAC_CFG1);
val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
ET_MAC_CFG1_LOOPBACK);
CSR_WRITE_4(sc, ET_MAC_CFG1, val);
if (media_upd)
et_ifmedia_upd_locked(ifp);
else
et_setmedia(sc);
#define NRETRY 50
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MAC_CFG1);
if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
(ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
break;
DELAY(100);
}
if (i == NRETRY) {
if_printf(ifp, "can't enable RX/TX\n");
return (0);
}
sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
#undef NRETRY
/*
* Start TX/RX DMA engine
*/
error = et_start_rxdma(sc);
if (error)
return (error);
error = et_start_txdma(sc);
if (error)
return (error);
return (0);
}
static void
et_rxeof(struct et_softc *sc)
{
struct ifnet *ifp;
struct et_rxstatus_data *rxsd;
struct et_rxstat_ring *rxst_ring;
uint32_t rxs_stat_ring, rxst_info2;
int rxst_wrap, rxst_index;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
rxsd = &sc->sc_rx_status;
rxst_ring = &sc->sc_rxstat_ring;
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
return;
bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
BUS_DMASYNC_POSTREAD);
rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring);
rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >>
ET_RXS_STATRING_INDEX_SHIFT;
while (rxst_index != rxst_ring->rsr_index ||
rxst_wrap != rxst_ring->rsr_wrap) {
struct et_rxbuf_data *rbd;
struct et_rxdesc_ring *rx_ring;
struct et_rxstat *st;
struct mbuf *m;
int buflen, buf_idx, ring_idx;
uint32_t rxstat_pos, rxring_pos;
MPASS(rxst_ring->rsr_index < ET_RX_NSTAT);
st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
rxst_info2 = le32toh(st->rxst_info2);
buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >>
ET_RXST_INFO2_LEN_SHIFT;
buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >>
ET_RXST_INFO2_BUFIDX_SHIFT;
ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >>
ET_RXST_INFO2_RINGIDX_SHIFT;
if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap ^= 1;
}
rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK;
if (rxst_ring->rsr_wrap)
rxstat_pos |= ET_RXSTAT_POS_WRAP;
CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
if (ring_idx >= ET_RX_NRING) {
ifp->if_ierrors++;
if_printf(ifp, "invalid ring index %d\n", ring_idx);
continue;
}
if (buf_idx >= ET_RX_NDESC) {
ifp->if_ierrors++;
if_printf(ifp, "invalid buf index %d\n", buf_idx);
continue;
}
rbd = &sc->sc_rx_data[ring_idx];
m = rbd->rbd_buf[buf_idx].rb_mbuf;
if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
if (buflen < ETHER_CRC_LEN) {
m_freem(m);
m = NULL;
ifp->if_ierrors++;
} else {
m->m_pkthdr.len = m->m_len =
buflen - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
ET_UNLOCK(sc);
ifp->if_input(ifp, m);
ET_LOCK(sc);
}
} else {
ifp->if_ierrors++;
}
m = NULL; /* Catch invalid reference */
rx_ring = &sc->sc_rx_ring[ring_idx];
if (buf_idx != rx_ring->rr_index) {
if_printf(ifp, "WARNING!! ring %d, "
"buf_idx %d, rr_idx %d\n",
ring_idx, buf_idx, rx_ring->rr_index);
}
MPASS(rx_ring->rr_index < ET_RX_NDESC);
if (++rx_ring->rr_index == ET_RX_NDESC) {
rx_ring->rr_index = 0;
rx_ring->rr_wrap ^= 1;
}
rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK;
if (rx_ring->rr_wrap)
rxring_pos |= ET_RX_RING_POS_WRAP;
CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
}
}
static int
et_encap(struct et_softc *sc, struct mbuf **m0)
{
struct mbuf *m = *m0;
bus_dma_segment_t segs[ET_NSEG_MAX];
struct et_dmamap_ctx ctx;
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
struct et_txdesc *td;
bus_dmamap_t map;
int error, maxsegs, first_idx, last_idx, i;
uint32_t csum_flags, tx_ready_pos, last_td_ctrl2;
maxsegs = ET_TX_NDESC - tbd->tbd_used;
if (maxsegs > ET_NSEG_MAX)
maxsegs = ET_NSEG_MAX;
KASSERT(maxsegs >= ET_NSEG_SPARE,
("not enough spare TX desc (%d)\n", maxsegs));
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
first_idx = tx_ring->tr_ready_index;
map = tbd->tbd_buf[first_idx].tb_dmap;
ctx.nsegs = maxsegs;
ctx.segs = segs;
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT);
if (!error && ctx.nsegs == 0) {
bus_dmamap_unload(sc->sc_mbuf_dtag, map);
error = EFBIG;
}
if (error && error != EFBIG) {
if_printf(sc->ifp, "can't load TX mbuf, error %d\n",
error);
goto back;
}
if (error) { /* error == EFBIG */
struct mbuf *m_new;
m_new = m_defrag(m, M_DONTWAIT);
if (m_new == NULL) {
if_printf(sc->ifp, "can't defrag TX mbuf\n");
error = ENOBUFS;
goto back;
} else {
*m0 = m = m_new;
}
ctx.nsegs = maxsegs;
ctx.segs = segs;
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
et_dma_buf_addr, &ctx,
BUS_DMA_NOWAIT);
if (error || ctx.nsegs == 0) {
if (ctx.nsegs == 0) {
bus_dmamap_unload(sc->sc_mbuf_dtag, map);
error = EFBIG;
}
if_printf(sc->ifp,
"can't load defraged TX mbuf\n");
goto back;
}
}
bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE);
last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
sc->sc_tx += ctx.nsegs;
if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
last_td_ctrl2 |= ET_TDCTRL2_INTR;
}
csum_flags = 0;
if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_IP;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_UDP;
else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
csum_flags |= ET_TDCTRL2_CSUM_TCP;
}
last_idx = -1;
for (i = 0; i < ctx.nsegs; ++i) {
int idx;
idx = (first_idx + i) % ET_TX_NDESC;
td = &tx_ring->tr_desc[idx];
td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr));
td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr));
td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK);
if (i == ctx.nsegs - 1) { /* Last frag */
td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags);
last_idx = idx;
} else
td->td_ctrl2 = htole32(csum_flags);
MPASS(tx_ring->tr_ready_index < ET_TX_NDESC);
if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap ^= 1;
}
}
td = &tx_ring->tr_desc[first_idx];
td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG); /* First frag */
MPASS(last_idx >= 0);
tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
tbd->tbd_buf[last_idx].tb_dmap = map;
tbd->tbd_buf[last_idx].tb_mbuf = m;
tbd->tbd_used += ctx.nsegs;
MPASS(tbd->tbd_used <= ET_TX_NDESC);
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
tx_ready_pos = tx_ring->tr_ready_index & ET_TX_READY_POS_INDEX_MASK;
if (tx_ring->tr_ready_wrap)
tx_ready_pos |= ET_TX_READY_POS_WRAP;
CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
error = 0;
back:
if (error) {
m_freem(m);
*m0 = NULL;
}
return (error);
}
static void
et_txeof(struct et_softc *sc)
{
struct ifnet *ifp;
struct et_txdesc_ring *tx_ring;
struct et_txbuf_data *tbd;
uint32_t tx_done;
int end, wrap;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
tx_ring = &sc->sc_tx_ring;
tbd = &sc->sc_tx_data;
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
return;
if (tbd->tbd_used == 0)
return;
tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
end = tx_done & ET_TX_DONE_POS_INDEX_MASK;
wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
struct et_txbuf *tb;
MPASS(tbd->tbd_start_index < ET_TX_NDESC);
tb = &tbd->tbd_buf[tbd->tbd_start_index];
bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
sizeof(struct et_txdesc));
bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
BUS_DMASYNC_PREWRITE);
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
ifp->if_opackets++;
}
if (++tbd->tbd_start_index == ET_TX_NDESC) {
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap ^= 1;
}
MPASS(tbd->tbd_used > 0);
tbd->tbd_used--;
}
if (tbd->tbd_used == 0)
sc->watchdog_timer = 0;
if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
et_start_locked(ifp);
}
static void
et_tick(void *xsc)
{
struct et_softc *sc = xsc;
struct ifnet *ifp;
struct mii_data *mii;
ET_LOCK_ASSERT(sc);
ifp = sc->ifp;
mii = device_get_softc(sc->sc_miibus);
mii_tick(mii);
if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
(mii->mii_media_status & IFM_ACTIVE) &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
if_printf(ifp, "Link up, enable TX/RX\n");
if (et_enable_txrx(sc, 0) == 0)
et_start_locked(ifp);
}
et_watchdog(sc);
callout_reset(&sc->sc_tick, hz, et_tick, sc);
}
static int
et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
{
return (et_newbuf(rbd, buf_idx, init, MCLBYTES));
}
static int
et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
{
return (et_newbuf(rbd, buf_idx, init, MHLEN));
}
static int
et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
{
struct et_softc *sc = rbd->rbd_softc;
struct et_rxbuf *rb;
struct mbuf *m;
struct et_dmamap_ctx ctx;
bus_dma_segment_t seg;
bus_dmamap_t dmap;
int error, len;
MPASS(buf_idx < ET_RX_NDESC);
rb = &rbd->rbd_buf[buf_idx];
m = m_getl(len0, /* init ? M_WAIT :*/ M_DONTWAIT, MT_DATA, M_PKTHDR, &len);
if (m == NULL) {
error = ENOBUFS;
if (init) {
if_printf(sc->ifp,
"m_getl failed, size %d\n", len0);
return (error);
} else {
goto back;
}
}
m->m_len = m->m_pkthdr.len = len;
/*
* Try load RX mbuf into temporary DMA tag
*/
ctx.nsegs = 1;
ctx.segs = &seg;
error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m,
et_dma_buf_addr, &ctx,
init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
if (error || ctx.nsegs == 0) {
if (!error) {
bus_dmamap_unload(sc->sc_mbuf_dtag,
sc->sc_mbuf_tmp_dmap);
error = EFBIG;
if_printf(sc->ifp, "too many segments?!\n");
}
m_freem(m);
m = NULL;
if (init) {
if_printf(sc->ifp, "can't load RX mbuf\n");
return (error);
} else {
goto back;
}
}
if (!init) {
bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap);
}
rb->rb_mbuf = m;
rb->rb_paddr = seg.ds_addr;
/*
* Swap RX buf's DMA map with the loaded temporary one
*/
dmap = rb->rb_dmap;
rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
sc->sc_mbuf_tmp_dmap = dmap;
error = 0;
back:
et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
return (error);
}
/*
* Create sysctl tree
*/
static void
et_add_sysctls(struct et_softc * sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I",
"RX IM, # packets per RX interrupt");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I",
"RX IM, RX interrupt delay (x10 usec)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs",
CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
"TX IM, # segments per TX interrupt");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer",
CTLFLAG_RW, &sc->sc_timer, 0, "TX timer");
}
static int
et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
{
struct et_softc *sc = arg1;
struct ifnet *ifp = sc->ifp;
int error = 0, v;
v = sc->sc_rx_intr_npkts;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error || req->newptr == NULL)
goto back;
if (v <= 0) {
error = EINVAL;
goto back;
}
if (sc->sc_rx_intr_npkts != v) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
sc->sc_rx_intr_npkts = v;
}
back:
return (error);
}
static int
et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
{
struct et_softc *sc = arg1;
struct ifnet *ifp = sc->ifp;
int error = 0, v;
v = sc->sc_rx_intr_delay;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error || req->newptr == NULL)
goto back;
if (v <= 0) {
error = EINVAL;
goto back;
}
if (sc->sc_rx_intr_delay != v) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
sc->sc_rx_intr_delay = v;
}
back:
return (error);
}
static void
et_setmedia(struct et_softc *sc)
{
struct mii_data *mii = device_get_softc(sc->sc_miibus);
uint32_t cfg2, ctrl;
cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) &
ET_MAC_CFG2_PREAMBLE_LEN_MASK);
ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
cfg2 |= ET_MAC_CFG2_MODE_GMII;
} else {
cfg2 |= ET_MAC_CFG2_MODE_MII;
ctrl |= ET_MAC_CTRL_MODE_MII;
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
cfg2 |= ET_MAC_CFG2_FDX;
else
ctrl |= ET_MAC_CTRL_GHDX;
CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
}
static void
et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
{
struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
struct et_rxdesc *desc;
MPASS(buf_idx < ET_RX_NDESC);
desc = &rx_ring->rr_desc[buf_idx];
desc->rd_addr_hi = htole32(ET_ADDR_HI(paddr));
desc->rd_addr_lo = htole32(ET_ADDR_LO(paddr));
desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK);
bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
BUS_DMASYNC_PREWRITE);
}