freebsd-skq/sys/dev/fxp/if_fxp.c
Matt Jacob 2a05a4eb2c A better mousetrap: use device hints, as in:
hint.fxp.0.prefer_iomap="1"

to set IO vs. Memory space mapping.
2001-02-27 22:57:32 +00:00

1950 lines
50 KiB
C

/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Modifications to support media selection:
* Copyright (c) 1997 Jason R. Thorpe. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <net/bpf.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <net/ethernet.h>
#include <net/if_arp.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <pci/pcivar.h>
#include <pci/pcireg.h> /* for PCIM_CMD_xxx */
#include <pci/if_fxpreg.h>
#include <pci/if_fxpvar.h>
#ifdef __alpha__ /* XXX */
/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
#undef vtophys
#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va))
#endif /* __alpha__ */
/*
* NOTE! On the Alpha, we have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Inline function to copy a 16-bit aligned 32-bit quantity.
*/
static __inline void fxp_lwcopy __P((volatile u_int32_t *,
volatile u_int32_t *));
static __inline void
fxp_lwcopy(src, dst)
volatile u_int32_t *src, *dst;
{
#ifdef __i386__
*dst = *src;
#else
volatile u_int16_t *a = (volatile u_int16_t *)src;
volatile u_int16_t *b = (volatile u_int16_t *)dst;
b[0] = a[0];
b[1] = a[1];
#endif
}
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
static u_char fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5 /* 21 */
};
/* Supported media types. */
struct fxp_supported_media {
const int fsm_phy; /* PHY type */
const int *fsm_media; /* the media array */
const int fsm_nmedia; /* the number of supported media */
const int fsm_defmedia; /* default media for this PHY */
};
static const int fxp_media_standard[] = {
IFM_ETHER|IFM_10_T,
IFM_ETHER|IFM_10_T|IFM_FDX,
IFM_ETHER|IFM_100_TX,
IFM_ETHER|IFM_100_TX|IFM_FDX,
IFM_ETHER|IFM_AUTO,
};
#define FXP_MEDIA_STANDARD_DEFMEDIA (IFM_ETHER|IFM_AUTO)
static const int fxp_media_default[] = {
IFM_ETHER|IFM_MANUAL, /* XXX IFM_AUTO ? */
};
#define FXP_MEDIA_DEFAULT_DEFMEDIA (IFM_ETHER|IFM_MANUAL)
static const struct fxp_supported_media fxp_media[] = {
{ FXP_PHY_DP83840, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_DP83840A, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82553A, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82553C, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82555, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_82555B, fxp_media_standard,
sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
FXP_MEDIA_STANDARD_DEFMEDIA },
{ FXP_PHY_80C24, fxp_media_default,
sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
FXP_MEDIA_DEFAULT_DEFMEDIA },
};
#define NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
static int fxp_mediachange __P((struct ifnet *));
static void fxp_mediastatus __P((struct ifnet *, struct ifmediareq *));
static void fxp_set_media __P((struct fxp_softc *, int));
static __inline void fxp_scb_wait __P((struct fxp_softc *));
static __inline void fxp_dma_wait __P((volatile u_int16_t *, struct fxp_softc *sc));
static void fxp_intr __P((void *));
static void fxp_start __P((struct ifnet *));
static int fxp_ioctl __P((struct ifnet *,
u_long, caddr_t));
static void fxp_init __P((void *));
static void fxp_stop __P((struct fxp_softc *));
static void fxp_watchdog __P((struct ifnet *));
static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *));
static int fxp_mdi_read __P((struct fxp_softc *, int, int));
static void fxp_mdi_write __P((struct fxp_softc *, int, int, int));
static void fxp_autosize_eeprom __P((struct fxp_softc *));
static void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *,
int, int));
static int fxp_attach_common __P((struct fxp_softc *, u_int8_t *));
static void fxp_stats_update __P((void *));
static void fxp_mc_setup __P((struct fxp_softc *));
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* Number of transmit control blocks. This determines the number
* of transmit buffers that can be chained in the CB list.
* This must be a power of two.
*/
#define FXP_NTXCB 128
/*
* Number of completed TX commands at which point an interrupt
* will be generated to garbage collect the attached buffers.
* Must be at least one less than FXP_NTXCB, and should be
* enough less so that the transmitter doesn't becomes idle
* during the buffer rundown (which would reduce performance).
*/
#define FXP_CXINT_THRESH 120
/*
* TxCB list index mask. This is used to do list wrap-around.
*/
#define FXP_TXCB_MASK (FXP_NTXCB - 1)
/*
* Number of receive frame area buffers. These are large so chose
* wisely.
*/
#define FXP_NRFABUFS 64
/*
* Maximum number of seconds that the receiver can be idle before we
* assume it's dead and attempt to reset it by reprogramming the
* multicast filter. This is part of a work-around for a bug in the
* NIC. See fxp_stats_update().
*/
#define FXP_MAX_RX_IDLE 15
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static __inline void
fxp_scb_wait(sc)
struct fxp_softc *sc;
{
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
DELAY(2);
if (i == 0)
printf("fxp%d: SCB timeout\n", FXP_UNIT(sc));
}
static __inline void
fxp_dma_wait(status, sc)
volatile u_int16_t *status;
struct fxp_softc *sc;
{
int i = 10000;
while (!(*status & FXP_CB_STATUS_C) && --i)
DELAY(2);
if (i == 0)
printf("fxp%d: DMA timeout\n", FXP_UNIT(sc));
}
/*
* Return identification string if this is device is ours.
*/
static int
fxp_probe(device_t dev)
{
if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
switch (pci_get_device(dev)) {
case FXP_DEVICEID_i82557:
device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet");
return 0;
case FXP_DEVICEID_i82559:
device_set_desc(dev, "Intel InBusiness 10/100 Ethernet");
return 0;
case FXP_DEVICEID_i82559ER:
device_set_desc(dev, "Intel Embedded 10/100 Ethernet");
return 0;
case FXP_DEVICEID_i82562:
device_set_desc(dev, "Intel PLC 10/100 Ethernet");
return 0;
default:
break;
}
}
return ENXIO;
}
static int
fxp_attach(device_t dev)
{
int error = 0;
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
u_int32_t val;
int rid, m1, m2, prefer_iomap;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
callout_handle_init(&sc->stat_ch);
FXP_LOCK(sc);
/*
* Enable bus mastering. Enable memory space too, in case
* BIOS/Prom forgot about it.
*/
val = pci_read_config(dev, PCIR_COMMAND, 2);
val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, val, 2);
val = pci_read_config(dev, PCIR_COMMAND, 2);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
irq = pci_read_config(dev, PCIR_INTLINE, 4);
/* Reset the power state. */
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
pci_write_config(dev, PCIR_INTLINE, irq, 4);
}
/*
* Figure out which we should try first - memory mapping or i/o mapping?
* We default to memory mapping. Then we accept an override from the
* command line. Then we check to see which one is enabled.
*/
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
prefer_iomap = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
}
if (val & m1) {
sc->rtp =
(m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
0, ~0, 1, RF_ACTIVE);
}
if (sc->mem == NULL && (val & m2)) {
sc->rtp =
(m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
0, ~0, 1, RF_ACTIVE);
}
if (!sc->mem) {
device_printf(dev, "could not map device registers\n");
error = ENXIO;
goto fail;
}
if (bootverbose) {
device_printf(dev, "using %s space register mapping\n",
sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
/*
* Allocate our interrupt.
*/
rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "could not map interrupt\n");
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
fxp_intr, sc, &sc->ih);
if (error) {
device_printf(dev, "could not setup irq\n");
goto fail;
}
/* Do generic parts of attach. */
if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
/* Failed! */
bus_teardown_intr(dev, sc->irq, sc->ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
error = ENXIO;
goto fail;
}
device_printf(dev, "Ethernet address %6D%s\n",
sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
ifp = &sc->arpcom.ac_if;
ifp->if_unit = device_get_unit(dev);
ifp->if_name = "fxp";
ifp->if_output = ether_output;
ifp->if_baudrate = 100000000;
ifp->if_init = fxp_init;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
/*
* Attach the interface.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
/*
* Let the system queue as many packets as we have available
* TX descriptors.
*/
ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
FXP_UNLOCK(sc);
return 0;
fail:
FXP_UNLOCK(sc);
mtx_destroy(&sc->sc_mtx);
return error;
}
/*
* Detach interface.
*/
static int
fxp_detach(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
FXP_LOCK(sc);
/*
* Close down routes etc.
*/
ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
/*
* Stop DMA and drop transmit queue.
*/
fxp_stop(sc);
/*
* Deallocate resources.
*/
bus_teardown_intr(dev, sc->irq, sc->ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
/*
* Free all the receive buffers.
*/
if (sc->rfa_headm != NULL)
m_freem(sc->rfa_headm);
/*
* Free all media structures.
*/
ifmedia_removeall(&sc->sc_media);
/*
* Free anciliary structures.
*/
free(sc->cbl_base, M_DEVBUF);
free(sc->fxp_stats, M_DEVBUF);
free(sc->mcsp, M_DEVBUF);
FXP_UNLOCK(sc);
mtx_destroy(&sc->sc_mtx);
return 0;
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static int
fxp_shutdown(device_t dev)
{
/*
* Make sure that DMA is disabled prior to reboot. Not doing
* do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
fxp_stop((struct fxp_softc *) device_get_softc(dev));
return 0;
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
fxp_suspend(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
int i;
FXP_LOCK(sc);
fxp_stop(sc);
for (i=0; i<5; i++)
sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
FXP_UNLOCK(sc);
return 0;
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
fxp_resume(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp = &sc->sc_if;
u_int16_t pci_command;
int i;
FXP_LOCK(sc);
/* better way to do this? */
for (i=0; i<5; i++)
pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
/* reenable busmastering */
pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
fxp_init(sc);
sc->suspended = 0;
FXP_UNLOCK(sc);
return 0;
}
static device_method_t fxp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fxp_probe),
DEVMETHOD(device_attach, fxp_attach),
DEVMETHOD(device_detach, fxp_detach),
DEVMETHOD(device_shutdown, fxp_shutdown),
DEVMETHOD(device_suspend, fxp_suspend),
DEVMETHOD(device_resume, fxp_resume),
{ 0, 0 }
};
static driver_t fxp_driver = {
"fxp",
fxp_methods,
sizeof(struct fxp_softc),
};
static devclass_t fxp_devclass;
DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
/*
* Do generic parts of attach.
*/
static int
fxp_attach_common(sc, enaddr)
struct fxp_softc *sc;
u_int8_t *enaddr;
{
u_int16_t data;
int i, nmedia, defmedia;
const int *media;
/*
* Reset to a stable state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->cbl_base == NULL)
goto fail;
sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (sc->fxp_stats == NULL)
goto fail;
sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
if (sc->mcsp == NULL)
goto fail;
/*
* Pre-allocate our receive buffers.
*/
for (i = 0; i < FXP_NRFABUFS; i++) {
if (fxp_add_rfabuf(sc, NULL) != 0) {
goto fail;
}
}
/*
* Find out how large of an SEEPROM we have.
*/
fxp_autosize_eeprom(sc);
/*
* Get info about the primary PHY
*/
fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
sc->phy_primary_addr = data & 0xff;
sc->phy_primary_device = (data >> 8) & 0x3f;
sc->phy_10Mbps_only = data >> 15;
/*
* Read MAC address.
*/
fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
/*
* Initialize the media structures.
*/
media = fxp_media_default;
nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
for (i = 0; i < NFXPMEDIA; i++) {
if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
media = fxp_media[i].fsm_media;
nmedia = fxp_media[i].fsm_nmedia;
defmedia = fxp_media[i].fsm_defmedia;
}
}
ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
for (i = 0; i < nmedia; i++) {
if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
continue;
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
}
ifmedia_set(&sc->sc_media, defmedia);
return (0);
fail:
printf("fxp%d: Failed to malloc memory\n", FXP_UNIT(sc));
if (sc->cbl_base)
free(sc->cbl_base, M_DEVBUF);
if (sc->fxp_stats)
free(sc->fxp_stats, M_DEVBUF);
if (sc->mcsp)
free(sc->mcsp, M_DEVBUF);
/* frees entire chain */
if (sc->rfa_headm)
m_freem(sc->rfa_headm);
return (ENOMEM);
}
/*
* From NetBSD:
*
* Figure out EEPROM size.
*
* 559's can have either 64-word or 256-word EEPROMs, the 558
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
* talks about the existance of 16 to 256 word EEPROMs.
*
* The only known sizes are 64 and 256, where the 256 version is used
* by CardBus cards to store CIS information.
*
* The address is shifted in msb-to-lsb, and after the last
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
* after which follows the actual data. We try to detect this zero, by
* probing the data-out bit in the EEPROM control register just after
* having shifted in a bit. If the bit is zero, we assume we've
* shifted enough address bits. The data-out should be tri-state,
* before this, which should translate to a logical one.
*
* Other ways to do this would be to try to read a register with known
* contents with a varying number of address bits, but no such
* register seem to be available. The high bits of register 10 are 01
* on the 558 and 559, but apparently not on the 557.
*
* The Linux driver computes a checksum on the EEPROM data, but the
* value of this checksum is not very well documented.
*/
static void
fxp_autosize_eeprom(sc)
struct fxp_softc *sc;
{
u_int16_t reg;
int x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
/*
* Shift in address.
* Wait for the dummy zero following a correct address shift.
*/
for (x = 1; x <= 8; x++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
FXP_EEPROM_EECS | FXP_EEPROM_EESK);
DELAY(1);
if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0)
break;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
sc->eeprom_size = x;
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static void
fxp_read_eeprom(sc, data, offset, words)
struct fxp_softc *sc;
u_short *data;
int offset;
int words;
{
u_int16_t reg;
int i, x;
for (i = 0; i < words; i++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
/*
* Shift in address.
*/
for (x = sc->eeprom_size; x > 0; x--) {
if ((i + offset) & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
}
/*
* Start packet transmission on the interface.
*/
static void
fxp_start(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_cb_tx *txp;
FXP_LOCK(sc);
/*
* See if we need to suspend xmit until the multicast filter
* has been reprogrammed (which can only be done at the head
* of the command chain).
*/
if (sc->need_mcsetup) {
FXP_UNLOCK(sc);
return;
}
txp = NULL;
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
* NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
* a NOP command when needed.
*/
while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
struct mbuf *m, *mb_head;
int segment;
/*
* Grab a packet to transmit.
*/
IF_DEQUEUE(&ifp->if_snd, mb_head);
/*
* Get pointer to next available tx desc.
*/
txp = sc->cbl_last->next;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffer descriptors with the physical address
* and size of the mbuf.
*/
tbdinit:
for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (segment == FXP_NTXSEG)
break;
txp->tbd[segment].tb_addr =
vtophys(mtod(m, vm_offset_t));
txp->tbd[segment].tb_size = m->m_len;
segment++;
}
}
if (m != NULL) {
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this mbuf
* chain first. Bail out if we can't get the new buffers.
*/
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
break;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
break;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
goto tbdinit;
}
txp->tbd_number = segment;
txp->mb_head = mb_head;
txp->cb_status = 0;
if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
} else {
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
}
txp->tx_threshold = tx_threshold;
/*
* Advance the end of list forward.
*/
#ifdef __alpha__
/*
* On platforms which can't access memory in 16-bit
* granularities, we must prevent the card from DMA'ing
* up the status while we update the command field.
* This could cause us to overwrite the completion status.
*/
atomic_clear_short(&sc->cbl_last->cb_command,
FXP_CB_COMMAND_S);
#else
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
#endif /*__alpha__*/
sc->cbl_last = txp;
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, cbl_first
* sits on the last TxCB that was sent out).
*/
if (sc->tx_queued == 0)
sc->cbl_first = txp;
sc->tx_queued++;
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, mb_head);
}
/*
* We're finished. If we added to the list, issue a RESUME to get DMA
* going again if suspended.
*/
if (txp != NULL) {
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
}
FXP_UNLOCK(sc);
}
/*
* Process interface interrupts.
*/
static void
fxp_intr(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
u_int8_t statack;
FXP_LOCK(sc);
if (sc->suspended) {
FXP_UNLOCK(sc);
return;
}
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
/*
* Free any finished transmit mbuf chains.
*
* Handle the CNA event likt a CXTNO event. It used to
* be that this event (control unit not ready) was not
* encountered, but it is now with the SMPng modifications.
* The exact sequence of events that occur when the interface
* is brought up are different now, and if this event
* goes unhandled, the configuration/rxfilter setup sequence
* can stall for several seconds. The result is that no
* packets go out onto the wire for about 5 to 10 seconds
* after the interface is ifconfig'ed for the first time.
*/
if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
struct fxp_cb_tx *txp;
for (txp = sc->cbl_first; sc->tx_queued &&
(txp->cb_status & FXP_CB_STATUS_C) != 0;
txp = txp->next) {
if (txp->mb_head != NULL) {
m_freem(txp->mb_head);
txp->mb_head = NULL;
}
sc->tx_queued--;
}
sc->cbl_first = txp;
ifp->if_timer = 0;
if (sc->tx_queued == 0) {
if (sc->need_mcsetup)
fxp_mc_setup(sc);
}
/*
* Try to start more packets transmitting.
*/
if (ifp->if_snd.ifq_head != NULL)
fxp_start(ifp);
}
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
struct mbuf *m;
struct fxp_rfa *rfa;
rcvloop:
m = sc->rfa_headm;
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
if (rfa->rfa_status & FXP_RFA_STATUS_C) {
/*
* Remove first packet from the chain.
*/
sc->rfa_headm = m->m_next;
m->m_next = NULL;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (fxp_add_rfabuf(sc, m) == 0) {
struct ether_header *eh;
int total_len;
total_len = rfa->actual_size &
(MCLBYTES - 1);
if (total_len <
sizeof(struct ether_header)) {
m_freem(m);
goto rcvloop;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
eh = mtod(m, struct ether_header *);
m->m_data +=
sizeof(struct ether_header);
m->m_len -=
sizeof(struct ether_header);
m->m_pkthdr.len = m->m_len;
ether_input(ifp, eh, m);
}
goto rcvloop;
}
if (statack & FXP_SCB_STATACK_RNR) {
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
vtophys(sc->rfa_headm->m_ext.ext_buf) +
RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_RU_START);
}
}
}
FXP_UNLOCK(sc);
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
static void
fxp_stats_update(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
struct fxp_stats *sp = sc->fxp_stats;
struct fxp_cb_tx *txp;
ifp->if_opackets += sp->tx_good;
ifp->if_collisions += sp->tx_total_collisions;
if (sp->rx_good) {
ifp->if_ipackets += sp->rx_good;
sc->rx_idle_secs = 0;
} else {
/*
* Receiver's been idle for another second.
*/
sc->rx_idle_secs++;
}
ifp->if_ierrors +=
sp->rx_crc_errors +
sp->rx_alignment_errors +
sp->rx_rnr_errors +
sp->rx_overrun_errors;
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += sp->tx_underruns;
if (tx_threshold < 192)
tx_threshold += 64;
}
FXP_LOCK(sc);
/*
* Release any xmit buffers that have completed DMA. This isn't
* strictly necessary to do here, but it's advantagous for mbufs
* with external storage to be released in a timely manner rather
* than being defered for a potentially long time. This limits
* the delay to a maximum of one second.
*/
for (txp = sc->cbl_first; sc->tx_queued &&
(txp->cb_status & FXP_CB_STATUS_C) != 0;
txp = txp->next) {
if (txp->mb_head != NULL) {
m_freem(txp->mb_head);
txp->mb_head = NULL;
}
sc->tx_queued--;
}
sc->cbl_first = txp;
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter. This is
* a work-around for a bug in the 82557 where the receiver locks
* up if it gets certain types of garbage in the syncronization
* bits prior to the packet header. This bug is supposed to only
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
* mode as well (perhaps due to a 10/100 speed transition).
*/
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
sc->rx_idle_secs = 0;
fxp_mc_setup(sc);
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_CU_DUMPRESET);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
}
FXP_UNLOCK(sc);
/*
* Schedule another timeout one second from now.
*/
sc->stat_ch = timeout(fxp_stats_update, sc, hz);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(sc)
struct fxp_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
struct fxp_cb_tx *txp;
int i;
FXP_LOCK(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc, sc->stat_ch);
/*
* Issue software reset
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Release any xmit buffers.
*/
txp = sc->cbl_base;
if (txp != NULL) {
for (i = 0; i < FXP_NTXCB; i++) {
if (txp[i].mb_head != NULL) {
m_freem(txp[i].mb_head);
txp[i].mb_head = NULL;
}
}
}
sc->tx_queued = 0;
/*
* Free all the receive buffers then reallocate/reinitialize
*/
if (sc->rfa_headm != NULL)
m_freem(sc->rfa_headm);
sc->rfa_headm = NULL;
sc->rfa_tailm = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
if (fxp_add_rfabuf(sc, NULL) != 0) {
/*
* This "can't happen" - we're at splimp()
* and we just freed all the buffers we need
* above.
*/
panic("fxp_stop: no buffers!");
}
}
FXP_UNLOCK(sc);
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
printf("fxp%d: device timeout\n", FXP_UNIT(sc));
ifp->if_oerrors++;
fxp_init(sc);
}
static void
fxp_init(xsc)
void *xsc;
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *txp;
int i, prm;
FXP_LOCK(sc);
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *) sc->cbl_base;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template,
(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_bce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = sc->all_mcasts;/* accept all multicasts */
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(&cbp->cb_status, sc);
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
bcopy(sc->arpcom.ac_enaddr,
(void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
sizeof(sc->arpcom.ac_enaddr));
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(&cb_ias->cb_status, sc);
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->cbl_base;
bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
txp[i].cb_command = FXP_CB_COMMAND_NOP;
txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the suspend flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
sc->cbl_first = sc->cbl_last = txp;
sc->tx_queued = 1;
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
/*
* Set current media.
*/
fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
FXP_UNLOCK(sc);
/*
* Start stats updater.
*/
sc->stat_ch = timeout(fxp_stats_update, sc, hz);
}
static void
fxp_set_media(sc, media)
struct fxp_softc *sc;
int media;
{
switch (sc->phy_primary_device) {
case FXP_PHY_DP83840:
case FXP_PHY_DP83840A:
fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */
FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */
FXP_DP83840_PCR_BIT10); /* XXX I have no idea */
/* fall through */
case FXP_PHY_82553A:
case FXP_PHY_82553C: /* untested */
case FXP_PHY_82555:
case FXP_PHY_82555B:
if (IFM_SUBTYPE(media) != IFM_AUTO) {
int flags;
flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
FXP_PHY_BMCR_SPEED_100M : 0;
flags |= (media & IFM_FDX) ?
FXP_PHY_BMCR_FULLDUPLEX : 0;
fxp_mdi_write(sc, sc->phy_primary_addr,
FXP_PHY_BMCR,
(fxp_mdi_read(sc, sc->phy_primary_addr,
FXP_PHY_BMCR) &
~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
FXP_PHY_BMCR_FULLDUPLEX)) | flags);
} else {
fxp_mdi_write(sc, sc->phy_primary_addr,
FXP_PHY_BMCR,
(fxp_mdi_read(sc, sc->phy_primary_addr,
FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
}
break;
/*
* The Seeq 80c24 doesn't have a PHY programming interface, so do
* nothing.
*/
case FXP_PHY_80C24:
break;
default:
printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n",
FXP_UNIT(sc), sc->phy_primary_device,
sc->phy_primary_addr);
}
}
/*
* Change media according to request.
*/
int
fxp_mediachange(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
fxp_set_media(sc, ifm->ifm_media);
return (0);
}
/*
* Notify the world which media we're using.
*/
void
fxp_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct fxp_softc *sc = ifp->if_softc;
int flags, stsflags;
switch (sc->phy_primary_device) {
case FXP_PHY_82555:
case FXP_PHY_82555B:
case FXP_PHY_DP83840:
case FXP_PHY_DP83840A:
ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
ifmr->ifm_active = IFM_ETHER;
/*
* the following is not an error.
* You need to read this register twice to get current
* status. This is correct documented behaviour, the
* first read gets latched values.
*/
stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
if (stsflags & FXP_PHY_STS_LINK_STS)
ifmr->ifm_status |= IFM_ACTIVE;
/*
* If we are in auto mode, then try report the result.
*/
flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
if (flags & FXP_PHY_BMCR_AUTOEN) {
ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
if (stsflags & FXP_PHY_STS_AUTO_DONE) {
/*
* Intel and National parts report
* differently on what they found.
*/
if ((sc->phy_primary_device == FXP_PHY_82555)
|| (sc->phy_primary_device == FXP_PHY_82555B)) {
flags = fxp_mdi_read(sc,
sc->phy_primary_addr,
FXP_PHY_USC);
if (flags & FXP_PHY_USC_SPEED)
ifmr->ifm_active |= IFM_100_TX;
else
ifmr->ifm_active |= IFM_10_T;
if (flags & FXP_PHY_USC_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
} else { /* it's National. only know speed */
flags = fxp_mdi_read(sc,
sc->phy_primary_addr,
FXP_DP83840_PAR);
if (flags & FXP_DP83840_PAR_SPEED_10)
ifmr->ifm_active |= IFM_10_T;
else
ifmr->ifm_active |= IFM_100_TX;
}
}
} else { /* in manual mode.. just report what we were set to */
if (flags & FXP_PHY_BMCR_SPEED_100M)
ifmr->ifm_active |= IFM_100_TX;
else
ifmr->ifm_active |= IFM_10_T;
if (flags & FXP_PHY_BMCR_FULLDUPLEX)
ifmr->ifm_active |= IFM_FDX;
}
break;
case FXP_PHY_80C24:
default:
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
}
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* adding the 'oldm' (if non-NULL) on to the end of the list -
* tossing out its old contents and recycling it.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_add_rfabuf(sc, oldm)
struct fxp_softc *sc;
struct mbuf *oldm;
{
u_int32_t v;
struct mbuf *m;
struct fxp_rfa *rfa, *p_rfa;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
} else {
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sizeof(struct fxp_rfa);
rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. Instead,
* we use an optimized, inline copy.
*/
rfa->rfa_status = 0;
rfa->rfa_control = FXP_RFA_CONTROL_EL;
rfa->actual_size = 0;
v = -1;
fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->rfa_headm != NULL) {
p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
sc->rfa_tailm->m_next = m;
v = vtophys(rfa);
fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
p_rfa->rfa_control = 0;
} else {
sc->rfa_headm = m;
}
sc->rfa_tailm = m;
return (m == oldm);
}
static volatile int
fxp_mdi_read(sc, phy, reg)
struct fxp_softc *sc;
int phy;
int reg;
{
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
printf("fxp%d: fxp_mdi_read: timed out\n", FXP_UNIT(sc));
return (value & 0xffff);
}
static void
fxp_mdi_write(sc, phy, reg, value)
struct fxp_softc *sc;
int phy;
int reg;
int value;
{
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
printf("fxp%d: fxp_mdi_write: timed out\n", FXP_UNIT(sc));
}
static int
fxp_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
FXP_LOCK(sc);
switch (command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
fxp_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
fxp_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (!sc->all_mcasts)
fxp_mc_setup(sc);
/*
* fxp_mc_setup() can turn on sc->all_mcasts, so check it
* again rather than else {}.
*/
if (sc->all_mcasts)
fxp_init(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
break;
default:
error = EINVAL;
}
FXP_UNLOCK(sc);
return (error);
}
/*
* Program the multicast filter.
*
* We have an artificial restriction that the multicast setup command
* must be the first command in the chain, so we take steps to ensure
* this. By requiring this, it allows us to keep up the performance of
* the pre-initialized command ring (esp. link pointers) by not actually
* inserting the mcsetup command in the ring - i.e. its link pointer
* points to the TxCB ring, but the mcsetup descriptor itself is not part
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
* lead into the regular TxCB ring when it completes.
*
* This function must be called at splimp.
*/
static void
fxp_mc_setup(sc)
struct fxp_softc *sc;
{
struct fxp_cb_mcs *mcsp = sc->mcsp;
struct ifnet *ifp = &sc->sc_if;
struct ifmultiaddr *ifma;
int nmcasts;
int count;
/*
* If there are queued commands, we must wait until they are all
* completed. If we are already waiting, then add a NOP command
* with interrupt option so that we're notified when all commands
* have been completed - fxp_start() ensures that no additional
* TX commands will be added when need_mcsetup is true.
*/
if (sc->tx_queued) {
struct fxp_cb_tx *txp;
/*
* need_mcsetup will be true if we are already waiting for the
* NOP command to be completed (see below). In this case, bail.
*/
if (sc->need_mcsetup)
return;
sc->need_mcsetup = 1;
/*
* Add a NOP command with interrupt so that we are notified when all
* TX commands have been processed.
*/
txp = sc->cbl_last->next;
txp->mb_head = NULL;
txp->cb_status = 0;
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
/*
* Advance the end of list forward.
*/
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
sc->cbl_last = txp;
sc->tx_queued++;
/*
* Issue a resume in case the CU has just suspended.
*/
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
return;
}
sc->need_mcsetup = 0;
/*
* Initialize multicast setup descriptor.
*/
mcsp->next = sc->cbl_base;
mcsp->mb_head = NULL;
mcsp->cb_status = 0;
mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
nmcasts = 0;
if (!sc->all_mcasts) {
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (nmcasts >= MAXMCADDR) {
sc->all_mcasts = 1;
nmcasts = 0;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(void *)(uintptr_t)(volatile void *)
&sc->mcsp->mc_addr[nmcasts][0], 6);
nmcasts++;
}
}
mcsp->mc_cnt = nmcasts * 6;
sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
sc->tx_queued = 1;
/*
* Wait until command unit is not active. This should never
* be the case when nothing is queued, but make sure anyway.
*/
count = 100;
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
FXP_SCB_CUS_ACTIVE && --count)
DELAY(10);
if (count == 0) {
printf("fxp%d: command queue timeout\n", FXP_UNIT(sc));
return;
}
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
ifp->if_timer = 2;
return;
}