freebsd-skq/sys/dev/vr/if_vr.c
yongari 4c371e596b Close a race where SIOCGIFMEDIA ioctl get inconsistent link status.
Because driver is accessing a common MII structure in
mii_pollstat(), updating user supplied structure should be done
before dropping a driver lock.

Reported by:	Karim (fodillemlinkarimi <> gmail dot com)
2011-10-17 19:49:00 +00:00

2610 lines
67 KiB
C

/*-
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* Some Rhine chips has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <dev/vr/if_vrreg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(vr, pci, 1, 1, 1);
MODULE_DEPEND(vr, ether, 1, 1, 1);
MODULE_DEPEND(vr, miibus, 1, 1, 1);
/* Define to show Rx/Tx error status. */
#undef VR_SHOW_ERRORS
#define VR_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types, their names & quirks.
*/
#define VR_Q_NEEDALIGN (1<<0)
#define VR_Q_CSUM (1<<1)
#define VR_Q_CAM (1<<2)
static const struct vr_type {
u_int16_t vr_vid;
u_int16_t vr_did;
int vr_quirks;
const char *vr_name;
} const vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
VR_Q_NEEDALIGN,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
0,
"VIA VT6102 Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
0,
"VIA VT6105 Rhine III 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
VR_Q_CSUM,
"VIA VT6105M Rhine III 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, 0, NULL }
};
static int vr_probe(device_t);
static int vr_attach(device_t);
static int vr_detach(device_t);
static int vr_shutdown(device_t);
static int vr_suspend(device_t);
static int vr_resume(device_t);
static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int vr_dma_alloc(struct vr_softc *);
static void vr_dma_free(struct vr_softc *);
static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
static int vr_newbuf(struct vr_softc *, int);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void vr_fixup_rx(struct mbuf *);
#endif
static int vr_rxeof(struct vr_softc *);
static void vr_txeof(struct vr_softc *);
static void vr_tick(void *);
static int vr_error(struct vr_softc *, uint16_t);
static void vr_tx_underrun(struct vr_softc *);
static void vr_intr(void *);
static void vr_start(struct ifnet *);
static void vr_start_locked(struct ifnet *);
static int vr_encap(struct vr_softc *, struct mbuf **);
static int vr_ioctl(struct ifnet *, u_long, caddr_t);
static void vr_init(void *);
static void vr_init_locked(struct vr_softc *);
static void vr_tx_start(struct vr_softc *);
static void vr_rx_start(struct vr_softc *);
static int vr_tx_stop(struct vr_softc *);
static int vr_rx_stop(struct vr_softc *);
static void vr_stop(struct vr_softc *);
static void vr_watchdog(struct vr_softc *);
static int vr_ifmedia_upd(struct ifnet *);
static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int vr_miibus_readreg(device_t, int, int);
static int vr_miibus_writereg(device_t, int, int, int);
static void vr_miibus_statchg(device_t);
static void vr_cam_mask(struct vr_softc *, uint32_t, int);
static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
static void vr_set_filter(struct vr_softc *);
static void vr_reset(const struct vr_softc *);
static int vr_tx_ring_init(struct vr_softc *);
static int vr_rx_ring_init(struct vr_softc *);
static void vr_setwol(struct vr_softc *);
static void vr_clrwol(struct vr_softc *);
static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
static const struct vr_tx_threshold_table {
int tx_cfg;
int bcr_cfg;
int value;
} const vr_tx_threshold_tables[] = {
{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES, 64 },
{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
};
static device_method_t vr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vr_probe),
DEVMETHOD(device_attach, vr_attach),
DEVMETHOD(device_detach, vr_detach),
DEVMETHOD(device_shutdown, vr_shutdown),
DEVMETHOD(device_suspend, vr_suspend),
DEVMETHOD(device_resume, vr_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
{ NULL, NULL }
};
static driver_t vr_driver = {
"vr",
vr_methods,
sizeof(struct vr_softc)
};
static devclass_t vr_devclass;
DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
static int
vr_miibus_readreg(device_t dev, int phy, int reg)
{
struct vr_softc *sc;
int i;
sc = device_get_softc(dev);
/* Set the register address. */
CSR_WRITE_1(sc, VR_MIIADDR, reg);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
for (i = 0; i < VR_MII_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
break;
}
if (i == VR_MII_TIMEOUT)
device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
return (CSR_READ_2(sc, VR_MIIDATA));
}
static int
vr_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct vr_softc *sc;
int i;
sc = device_get_softc(dev);
/* Set the register address and data to write. */
CSR_WRITE_1(sc, VR_MIIADDR, reg);
CSR_WRITE_2(sc, VR_MIIDATA, data);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
for (i = 0; i < VR_MII_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
break;
}
if (i == VR_MII_TIMEOUT)
device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
reg);
return (0);
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
vr_miibus_statchg(device_t dev)
{
struct vr_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int lfdx, mfdx;
uint8_t cr0, cr1, fc;
sc = device_get_softc(dev);
mii = device_get_softc(sc->vr_miibus);
ifp = sc->vr_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->vr_link = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->vr_link = 1;
break;
default:
break;
}
}
if (sc->vr_link != 0) {
cr0 = CSR_READ_1(sc, VR_CR0);
cr1 = CSR_READ_1(sc, VR_CR1);
mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
if (mfdx != lfdx) {
if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
if (vr_tx_stop(sc) != 0 ||
vr_rx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx/Rx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
VR_UNLOCK(sc);
return;
}
}
if (lfdx)
cr1 |= VR_CR1_FULLDUPLEX;
else
cr1 &= ~VR_CR1_FULLDUPLEX;
CSR_WRITE_1(sc, VR_CR1, cr1);
}
fc = 0;
#ifdef notyet
/* Configure flow-control. */
if (sc->vr_revid >= REV_ID_VT6105_A0) {
fc = CSR_READ_1(sc, VR_FLOWCR1);
fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
fc |= VR_FLOWCR1_RXPAUSE;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
fc |= VR_FLOWCR1_TXPAUSE;
CSR_WRITE_1(sc, VR_FLOWCR1, fc);
} else if (sc->vr_revid >= REV_ID_VT6102_A) {
/* No Tx puase capability available for Rhine II. */
fc = CSR_READ_1(sc, VR_MISC_CR0);
fc &= ~VR_MISCCR0_RXPAUSE;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
fc |= VR_MISCCR0_RXPAUSE;
CSR_WRITE_1(sc, VR_MISC_CR0, fc);
}
#endif
vr_rx_start(sc);
vr_tx_start(sc);
} else {
if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx/Rx shutdown error -- resetting\n",
__func__);
sc->vr_flags |= VR_F_RESTART;
}
}
}
static void
vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
{
if (type == VR_MCAST_CAM)
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
else
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
CSR_WRITE_4(sc, VR_CAMMASK, mask);
CSR_WRITE_1(sc, VR_CAMCTL, 0);
}
static int
vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
{
int i;
if (type == VR_MCAST_CAM) {
if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
return (EINVAL);
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
} else
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
/* Set CAM entry address. */
CSR_WRITE_1(sc, VR_CAMADDR, idx);
/* Set CAM entry data. */
if (type == VR_MCAST_CAM) {
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
} else {
CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
}
DELAY(10);
/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
break;
}
if (i == VR_TIMEOUT)
device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
__func__);
CSR_WRITE_1(sc, VR_CAMCTL, 0);
return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
vr_set_filter(struct vr_softc *sc)
{
struct ifnet *ifp;
int h;
uint32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
uint8_t rxfilt;
int error, mcnt;
uint32_t cam_mask;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
VR_RXCFG_RX_MULTI);
if (ifp->if_flags & IFF_BROADCAST)
rxfilt |= VR_RXCFG_RX_BROAD;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= VR_RXCFG_RX_PROMISC;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* Now program new ones. */
error = 0;
mcnt = 0;
if_maddr_rlock(ifp);
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
/*
* For hardwares that have CAM capability, use
* 32 entries multicast perfect filter.
*/
cam_mask = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (error != 0) {
cam_mask = 0;
break;
}
cam_mask |= 1 << mcnt;
mcnt++;
}
vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
}
if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
/*
* If there are too many multicast addresses or
* setting multicast CAM filter failed, use hash
* table based filtering.
*/
mcnt = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
}
if_maddr_runlock(ifp);
if (mcnt > 0)
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
}
static void
vr_reset(const struct vr_softc *sc)
{
int i;
/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
if (sc->vr_revid < REV_ID_VT6102_A) {
/* VT86C100A needs more delay after reset. */
DELAY(100);
}
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
break;
}
if (i == VR_TIMEOUT) {
if (sc->vr_revid < REV_ID_VT6102_A)
device_printf(sc->vr_dev, "reset never completed!\n");
else {
/* Use newer force reset command. */
device_printf(sc->vr_dev,
"Using force reset command.\n");
VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
/*
* Wait a little while for the chip to get its brains
* in order.
*/
DELAY(2000);
}
}
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a match or NULL
*/
static const struct vr_type *
vr_match(device_t dev)
{
const struct vr_type *t = vr_devs;
for (t = vr_devs; t->vr_name != NULL; t++)
if ((pci_get_vendor(dev) == t->vr_vid) &&
(pci_get_device(dev) == t->vr_did))
return (t);
return (NULL);
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vr_probe(device_t dev)
{
const struct vr_type *t;
t = vr_match(dev);
if (t != NULL) {
device_set_desc(dev, t->vr_name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vr_attach(device_t dev)
{
struct vr_softc *sc;
struct ifnet *ifp;
const struct vr_type *t;
uint8_t eaddr[ETHER_ADDR_LEN];
int error, rid;
int i, phy, pmc;
sc = device_get_softc(dev);
sc->vr_dev = dev;
t = vr_match(dev);
KASSERT(t != NULL, ("Lost if_vr device match"));
sc->vr_quirks = t->vr_quirks;
device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
vr_sysctl_stats, "I", "Statistics");
error = 0;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
sc->vr_revid = pci_get_revid(dev);
device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
sc->vr_res_id = PCIR_BAR(0);
sc->vr_res_type = SYS_RES_IOPORT;
sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
&sc->vr_res_id, RF_ACTIVE);
if (sc->vr_res == NULL) {
device_printf(dev, "couldn't map ports\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt. */
rid = 0;
sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->vr_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "couldn't allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_start = vr_start;
ifp->if_init = vr_init;
IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* Configure Tx FIFO threshold. */
sc->vr_txthresh = VR_TXTHRESH_MIN;
if (sc->vr_revid < REV_ID_VT6105_A0) {
/*
* Use store and forward mode for Rhine I/II.
* Otherwise they produce a lot of Tx underruns and
* it would take a while to get working FIFO threshold
* value.
*/
sc->vr_txthresh = VR_TXTHRESH_MAX;
}
if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
ifp->if_hwassist = VR_CSUM_FEATURES;
ifp->if_capabilities |= IFCAP_HWCSUM;
/*
* To update checksum field the hardware may need to
* store entire frames into FIFO before transmitting.
*/
sc->vr_txthresh = VR_TXTHRESH_MAX;
}
if (sc->vr_revid >= REV_ID_VT6102_A &&
pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
/* Rhine supports oversized VLAN frame. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Windows may put the chip in suspend mode when it
* shuts down. Be sure to kick it in the head to wake it
* up again.
*/
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
* Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
* VR_CFGC and VR_CFGD such that memory mapped IO configured
* by driver is reset to default state.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
break;
}
if (i == 0)
device_printf(dev, "Reloading EEPROM timeout!\n");
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/* Reset the adapter. */
vr_reset(sc);
/* Ack intr & disable further interrupts. */
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, 0);
if (sc->vr_revid >= REV_ID_VT6102_A)
CSR_WRITE_2(sc, VR_MII_IMR, 0);
if (sc->vr_revid < REV_ID_VT6102_A) {
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MODE10T, 1);
} else {
/* Report error instead of retrying forever. */
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_PCEROPT, 1);
/* Detect MII coding error. */
pci_write_config(dev, VR_PCI_MODE3,
pci_read_config(dev, VR_PCI_MODE3, 1) |
VR_MODE3_MIION, 1);
if (sc->vr_revid >= REV_ID_VT6105_LOM &&
sc->vr_revid < REV_ID_VT6105M_A0)
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MODE10T, 1);
/* Enable Memory-Read-Multiple. */
if (sc->vr_revid >= REV_ID_VT6107_A1 &&
sc->vr_revid < REV_ID_VT6105M_A0)
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MRDPL, 1);
}
/* Disable MII AUTOPOLL. */
VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
if (vr_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
/* Do MII setup. */
if (sc->vr_revid >= REV_ID_VT6105_A0)
phy = 1;
else
phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/* Call MI attach routine. */
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Hook interrupt last to avoid having to lock softc. */
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, vr_intr, sc, &sc->vr_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
vr_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
vr_detach(device_t dev)
{
struct vr_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->vr_ifp;
KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
VR_LOCK(sc);
sc->vr_detach = 1;
vr_stop(sc);
VR_UNLOCK(sc);
callout_drain(&sc->vr_stat_callout);
ether_ifdetach(ifp);
}
if (sc->vr_miibus)
device_delete_child(dev, sc->vr_miibus);
bus_generic_detach(dev);
if (sc->vr_intrhand)
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
if (sc->vr_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
if (sc->vr_res)
bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
sc->vr_res);
if (ifp)
if_free(ifp);
vr_dma_free(sc);
mtx_destroy(&sc->vr_mtx);
return (0);
}
struct vr_dmamap_arg {
bus_addr_t vr_busaddr;
};
static void
vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct vr_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->vr_busaddr = segs[0].ds_addr;
}
static int
vr_dma_alloc(struct vr_softc *sc)
{
struct vr_dmamap_arg ctx;
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
bus_size_t tx_alignment;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->vr_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_parent_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VR_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
VR_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_tx_ring_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VR_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
VR_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_rx_ring_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
goto fail;
}
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
tx_alignment = sizeof(uint32_t);
else
tx_alignment = 1;
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
tx_alignment, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * VR_MAXFRAGS, /* maxsize */
VR_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_tx_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_rx_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
(void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.vr_busaddr = 0;
error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.vr_busaddr == 0) {
device_printf(sc->vr_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
(void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.vr_busaddr = 0;
error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.vr_busaddr == 0) {
device_printf(sc->vr_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
&sc->vr_cdata.vr_rx_sparemap)) != 0) {
device_printf(sc->vr_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
vr_dma_free(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->vr_cdata.vr_tx_ring_tag) {
if (sc->vr_cdata.vr_tx_ring_map)
bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map);
if (sc->vr_cdata.vr_tx_ring_map &&
sc->vr_rdata.vr_tx_ring)
bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_rdata.vr_tx_ring,
sc->vr_cdata.vr_tx_ring_map);
sc->vr_rdata.vr_tx_ring = NULL;
sc->vr_cdata.vr_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
sc->vr_cdata.vr_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->vr_cdata.vr_rx_ring_tag) {
if (sc->vr_cdata.vr_rx_ring_map)
bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map);
if (sc->vr_cdata.vr_rx_ring_map &&
sc->vr_rdata.vr_rx_ring)
bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_rdata.vr_rx_ring,
sc->vr_cdata.vr_rx_ring_map);
sc->vr_rdata.vr_rx_ring = NULL;
sc->vr_cdata.vr_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
sc->vr_cdata.vr_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->vr_cdata.vr_tx_tag) {
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
sc->vr_cdata.vr_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->vr_cdata.vr_rx_tag) {
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->vr_cdata.vr_rx_sparemap) {
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
sc->vr_cdata.vr_rx_sparemap);
sc->vr_cdata.vr_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
sc->vr_cdata.vr_rx_tag = NULL;
}
if (sc->vr_cdata.vr_parent_tag) {
bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
sc->vr_cdata.vr_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
vr_tx_ring_init(struct vr_softc *sc)
{
struct vr_ring_data *rd;
struct vr_txdesc *txd;
bus_addr_t addr;
int i;
sc->vr_cdata.vr_tx_prod = 0;
sc->vr_cdata.vr_tx_cons = 0;
sc->vr_cdata.vr_tx_cnt = 0;
sc->vr_cdata.vr_tx_pkts = 0;
rd = &sc->vr_rdata;
bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
for (i = 0; i < VR_TX_RING_CNT; i++) {
if (i == VR_TX_RING_CNT - 1)
addr = VR_TX_RING_ADDR(sc, 0);
else
addr = VR_TX_RING_ADDR(sc, i + 1);
rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
txd = &sc->vr_cdata.vr_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
vr_rx_ring_init(struct vr_softc *sc)
{
struct vr_ring_data *rd;
struct vr_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->vr_cdata.vr_rx_cons = 0;
rd = &sc->vr_rdata;
bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
rxd->rx_m = NULL;
rxd->desc = &rd->vr_rx_ring[i];
if (i == VR_RX_RING_CNT - 1)
addr = VR_RX_RING_ADDR(sc, 0);
else
addr = VR_RX_RING_ADDR(sc, i + 1);
rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
if (vr_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static __inline void
vr_discard_rxbuf(struct vr_rxdesc *rxd)
{
struct vr_desc *desc;
desc = rxd->desc;
desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
desc->vr_status = htole32(VR_RXSTAT_OWN);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int
vr_newbuf(struct vr_softc *sc, int idx)
{
struct vr_desc *desc;
struct vr_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint64_t));
if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->vr_cdata.vr_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
sc->vr_cdata.vr_rx_sparemap = map;
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->desc;
desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
desc->vr_status = htole32(VR_RXSTAT_OWN);
return (0);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
vr_fixup_rx(struct mbuf *m)
{
uint16_t *src, *dst;
int i;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
vr_rxeof(struct vr_softc *sc)
{
struct vr_rxdesc *rxd;
struct mbuf *m;
struct ifnet *ifp;
struct vr_desc *cur_rx;
int cons, prog, total_len, rx_npkts;
uint32_t rxstat, rxctl;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
cons = sc->vr_cdata.vr_rx_cons;
rx_npkts = 0;
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
rxstat = le32toh(cur_rx->vr_status);
rxctl = le32toh(cur_rx->vr_ctl);
if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
break;
prog++;
rxd = &sc->vr_cdata.vr_rxdesc[cons];
m = rxd->rx_m;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
* We don't support SG in Rx path yet, so discard
* partial frame.
*/
if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
(rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
(VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
ifp->if_ierrors++;
sc->vr_stat.rx_errors++;
if (rxstat & VR_RXSTAT_CRCERR)
sc->vr_stat.rx_crc_errors++;
if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
sc->vr_stat.rx_alignment++;
if (rxstat & VR_RXSTAT_FIFOOFLOW)
sc->vr_stat.rx_fifo_overflows++;
if (rxstat & VR_RXSTAT_GIANT)
sc->vr_stat.rx_giants++;
if (rxstat & VR_RXSTAT_RUNT)
sc->vr_stat.rx_runts++;
if (rxstat & VR_RXSTAT_BUFFERR)
sc->vr_stat.rx_no_buffers++;
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
__func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
#endif
vr_discard_rxbuf(rxd);
continue;
}
if (vr_newbuf(sc, cons) != 0) {
ifp->if_iqdrops++;
sc->vr_stat.rx_errors++;
sc->vr_stat.rx_no_mbufs++;
vr_discard_rxbuf(rxd);
continue;
}
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len = VR_RXBYTES(rxstat);
total_len -= ETHER_CRC_LEN;
m->m_pkthdr.len = m->m_len = total_len;
#ifndef __NO_STRICT_ALIGNMENT
/*
* RX buffers must be 32-bit aligned.
* Ignore the alignment problems on the non-strict alignment
* platform. The performance hit incurred due to unaligned
* accesses is much smaller than the hit produced by forcing
* buffer copies all the time.
*/
vr_fixup_rx(m);
#endif
m->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
sc->vr_stat.rx_ok++;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(rxstat & VR_RXSTAT_FRAG) == 0 &&
(rxctl & VR_RXCTL_IP) != 0) {
/* Checksum is valid for non-fragmented IP packets. */
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
m->m_pkthdr.csum_data = 0xffff;
}
}
}
VR_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
VR_LOCK(sc);
rx_npkts++;
}
if (prog > 0) {
sc->vr_cdata.vr_rx_cons = cons;
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
vr_txeof(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_desc *cur_tx;
struct ifnet *ifp;
uint32_t txctl, txstat;
int cons, prod;
VR_LOCK_ASSERT(sc);
cons = sc->vr_cdata.vr_tx_cons;
prod = sc->vr_cdata.vr_tx_prod;
if (cons == prod)
return;
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->vr_ifp;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
txctl = le32toh(cur_tx->vr_ctl);
txstat = le32toh(cur_tx->vr_status);
if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
break;
sc->vr_cdata.vr_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Only the first descriptor in the chain is valid. */
if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
continue;
txd = &sc->vr_cdata.vr_txdesc[cons];
KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
__func__));
if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
ifp->if_oerrors++;
sc->vr_stat.tx_errors++;
if ((txstat & VR_TXSTAT_ABRT) != 0) {
/* Give up and restart Tx. */
sc->vr_stat.tx_abort++;
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
VR_INC(cons, VR_TX_RING_CNT);
sc->vr_cdata.vr_tx_cons = cons;
if (vr_tx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_tx_start(sc);
break;
}
if ((sc->vr_revid < REV_ID_VT3071_A &&
(txstat & VR_TXSTAT_UNDERRUN)) ||
(txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
sc->vr_stat.tx_underrun++;
/* Retry and restart Tx. */
sc->vr_cdata.vr_tx_cnt++;
sc->vr_cdata.vr_tx_cons = cons;
cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
vr_tx_underrun(sc);
return;
}
if ((txstat & VR_TXSTAT_DEFER) != 0) {
ifp->if_collisions++;
sc->vr_stat.tx_collisions++;
}
if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
ifp->if_collisions++;
sc->vr_stat.tx_late_collisions++;
}
} else {
sc->vr_stat.tx_ok++;
ifp->if_opackets++;
}
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
if (sc->vr_revid < REV_ID_VT3071_A) {
ifp->if_collisions +=
(txstat & VR_TXSTAT_COLLCNT) >> 3;
sc->vr_stat.tx_collisions +=
(txstat & VR_TXSTAT_COLLCNT) >> 3;
} else {
ifp->if_collisions += (txstat & 0x0f);
sc->vr_stat.tx_collisions += (txstat & 0x0f);
}
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
sc->vr_cdata.vr_tx_cons = cons;
if (sc->vr_cdata.vr_tx_cnt == 0)
sc->vr_watchdog_timer = 0;
}
static void
vr_tick(void *xsc)
{
struct vr_softc *sc;
struct mii_data *mii;
sc = (struct vr_softc *)xsc;
VR_LOCK_ASSERT(sc);
if ((sc->vr_flags & VR_F_RESTART) != 0) {
device_printf(sc->vr_dev, "restarting\n");
sc->vr_stat.num_restart++;
sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vr_init_locked(sc);
sc->vr_flags &= ~VR_F_RESTART;
}
mii = device_get_softc(sc->vr_miibus);
mii_tick(mii);
if (sc->vr_link == 0)
vr_miibus_statchg(sc->vr_dev);
vr_watchdog(sc);
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
#ifdef DEVICE_POLLING
static poll_handler_t vr_poll;
static poll_handler_t vr_poll_locked;
static int
vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc;
int rx_npkts;
sc = ifp->if_softc;
rx_npkts = 0;
VR_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
rx_npkts = vr_poll_locked(ifp, cmd, count);
VR_UNLOCK(sc);
return (rx_npkts);
}
static int
vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc;
int rx_npkts;
sc = ifp->if_softc;
VR_LOCK_ASSERT(sc);
sc->rxcycles = count;
rx_npkts = vr_rxeof(sc);
vr_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
/* Also check status register. */
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
return (rx_npkts);
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
VR_ISR_STATSOFLOW)) != 0) {
if (vr_error(sc, status) != 0)
return (rx_npkts);
}
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
__func__, status, VR_ISR_ERR_BITS);
#endif
vr_rx_start(sc);
}
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
/* Back off the transmit threshold. */
static void
vr_tx_underrun(struct vr_softc *sc)
{
int thresh;
device_printf(sc->vr_dev, "Tx underrun -- ");
if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
thresh = sc->vr_txthresh;
sc->vr_txthresh++;
if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
sc->vr_txthresh = VR_TXTHRESH_MAX;
printf("using store and forward mode\n");
} else
printf("increasing Tx threshold(%d -> %d)\n",
vr_tx_threshold_tables[thresh].value,
vr_tx_threshold_tables[thresh + 1].value);
} else
printf("\n");
sc->vr_stat.tx_underrun++;
if (vr_tx_stop(sc) != 0) {
device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_tx_start(sc);
}
static void
vr_intr(void *arg)
{
struct vr_softc *sc;
struct ifnet *ifp;
uint16_t status;
sc = (struct vr_softc *)arg;
VR_LOCK(sc);
if (sc->vr_suspended != 0)
goto done_locked;
status = CSR_READ_2(sc, VR_ISR);
if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
goto done_locked;
ifp = sc->vr_ifp;
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
goto done_locked;
#endif
/* Suppress unwanted interrupts. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(sc->vr_flags & VR_F_RESTART) != 0) {
CSR_WRITE_2(sc, VR_IMR, 0);
CSR_WRITE_2(sc, VR_ISR, status);
goto done_locked;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (; (status & VR_INTRS) != 0;) {
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
VR_ISR_STATSOFLOW)) != 0) {
if (vr_error(sc, status) != 0) {
VR_UNLOCK(sc);
return;
}
}
vr_rxeof(sc);
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
__func__, status, VR_ISR_ERR_BITS);
#endif
/* Restart Rx if RxDMA SM was stopped. */
vr_rx_start(sc);
}
vr_txeof(sc);
status = CSR_READ_2(sc, VR_ISR);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
done_locked:
VR_UNLOCK(sc);
}
static int
vr_error(struct vr_softc *sc, uint16_t status)
{
uint16_t pcis;
status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
if ((status & VR_ISR_BUSERR) != 0) {
status &= ~VR_ISR_BUSERR;
sc->vr_stat.bus_errors++;
/* Disable further interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0);
pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
"resetting\n", pcis);
pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
sc->vr_flags |= VR_F_RESTART;
return (EAGAIN);
}
if ((status & VR_ISR_LINKSTAT2) != 0) {
/* Link state change, duplex changes etc. */
status &= ~VR_ISR_LINKSTAT2;
}
if ((status & VR_ISR_STATSOFLOW) != 0) {
status &= ~VR_ISR_STATSOFLOW;
if (sc->vr_revid >= REV_ID_VT6105M_A0) {
/* Update MIB counters. */
}
}
if (status != 0)
device_printf(sc->vr_dev,
"unhandled interrupt, status = 0x%04x\n", status);
return (0);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
vr_encap(struct vr_softc *sc, struct mbuf **m_head)
{
struct vr_txdesc *txd;
struct vr_desc *desc;
struct mbuf *m;
bus_dma_segment_t txsegs[VR_MAXFRAGS];
uint32_t csum_flags, txctl;
int error, i, nsegs, prod, si;
int padlen;
VR_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
/*
* Some VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
m = *m_head;
padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
prod = sc->vr_cdata.vr_tx_prod;
txd = &sc->vr_cdata.vr_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
txd->tx_m = *m_head;
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
/* Set checksum offload. */
csum_flags = 0;
if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= VR_TXCTL_IPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
csum_flags |= VR_TXCTL_TCPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
csum_flags |= VR_TXCTL_UDPCSUM;
}
/*
* Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
* is required for all descriptors regardless of single or
* multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
* the first descriptor for a multi-fragmented frames. Without
* that VIA Rhine chip generates Tx underrun interrupts and can't
* send any frames.
*/
si = prod;
for (i = 0; i < nsegs; i++) {
desc = &sc->vr_rdata.vr_tx_ring[prod];
desc->vr_status = 0;
txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
if (i == 0)
txctl |= VR_TXCTL_FIRSTFRAG;
desc->vr_ctl = htole32(txctl);
desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
sc->vr_cdata.vr_tx_cnt++;
VR_INC(prod, VR_TX_RING_CNT);
}
/* Update producer index. */
sc->vr_cdata.vr_tx_prod = prod;
prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
desc = &sc->vr_rdata.vr_tx_ring[prod];
/*
* Set EOP on the last desciptor and reuqest Tx completion
* interrupt for every VR_TX_INTR_THRESH-th frames.
*/
VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
if (sc->vr_cdata.vr_tx_pkts == 0)
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
else
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
/* Lastly turn the first descriptor ownership to hardware. */
desc = &sc->vr_rdata.vr_tx_ring[si];
desc->vr_status |= htole32(VR_TXSTAT_OWN);
/* Sync descriptors. */
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
vr_start(struct ifnet *ifp)
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK(sc);
vr_start_locked(ifp);
VR_UNLOCK(sc);
}
static void
vr_start_locked(struct ifnet *ifp)
{
struct vr_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
VR_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->vr_link == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (vr_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Tell the chip to start transmitting. */
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
/* Set a timeout in case the chip goes out to lunch. */
sc->vr_watchdog_timer = 5;
}
}
static void
vr_init(void *xsc)
{
struct vr_softc *sc;
sc = (struct vr_softc *)xsc;
VR_LOCK(sc);
vr_init_locked(sc);
VR_UNLOCK(sc);
}
static void
vr_init_locked(struct vr_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
bus_addr_t addr;
int i;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
mii = device_get_softc(sc->vr_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Cancel pending I/O and free all RX/TX buffers. */
vr_stop(sc);
vr_reset(sc);
/* Set our station address. */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
/* Set DMA size. */
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
/*
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
* so we must set both.
*/
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
/* Init circular RX list. */
if (vr_rx_ring_init(sc) != 0) {
device_printf(sc->vr_dev,
"initialization failed: no memory for rx buffers\n");
vr_stop(sc);
return;
}
/* Init tx descriptors. */
vr_tx_ring_init(sc);
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
uint8_t vcam[2] = { 0, 0 };
/* Disable VLAN hardware tag insertion/stripping. */
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
/* Disable VLAN hardware filtering. */
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
/* Disable all CAM entries. */
vr_cam_mask(sc, VR_MCAST_CAM, 0);
vr_cam_mask(sc, VR_VLAN_CAM, 0);
/* Enable the first VLAN CAM. */
vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
vr_cam_mask(sc, VR_VLAN_CAM, 1);
}
/*
* Set up receive filter.
*/
vr_set_filter(sc);
/*
* Load the address of the RX ring.
*/
addr = VR_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
/*
* Load the address of the TX ring.
*/
addr = VR_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
/* Default : full-duplex, no Tx poll. */
CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
/* Set flow-control parameters for Rhine III. */
if (sc->vr_revid >= REV_ID_VT6105_A0) {
/* Rx buffer count available for incoming packet. */
CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
/*
* Tx pause low threshold : 16 free receive buffers
* Tx pause XON high threshold : 48 free receive buffers
*/
CSR_WRITE_1(sc, VR_FLOWCR1,
VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
/* Set Tx pause timer. */
CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
}
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, VR_CR0,
VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, VR_IMR, 0);
else
#endif
/*
* Enable interrupts and disable MII intrs.
*/
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (sc->vr_revid > REV_ID_VT6102_A)
CSR_WRITE_2(sc, VR_MII_IMR, 0);
sc->vr_link = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
/*
* Set media options.
*/
static int
vr_ifmedia_upd(struct ifnet *ifp)
{
struct vr_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
VR_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vr_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vr_miibus);
VR_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
VR_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
VR_UNLOCK(sc);
}
static int
vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct vr_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
VR_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->vr_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
vr_set_filter(sc);
} else {
if (sc->vr_detach == 0)
vr_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vr_stop(sc);
}
sc->vr_if_flags = ifp->if_flags;
VR_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VR_LOCK(sc);
vr_set_filter(sc);
VR_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(vr_poll, ifp);
if (error != 0)
break;
VR_LOCK(sc);
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
ifp->if_capenable |= IFCAP_POLLING;
VR_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
VR_LOCK(sc);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
ifp->if_capenable &= ~IFCAP_POLLING;
VR_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= VR_CSUM_FEATURES;
else
ifp->if_hwassist &= ~VR_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_WOL_UCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
vr_watchdog(struct vr_softc *sc)
{
struct ifnet *ifp;
VR_LOCK_ASSERT(sc);
if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
return;
ifp = sc->vr_ifp;
/*
* Reclaim first as we don't request interrupt for every packets.
*/
vr_txeof(sc);
if (sc->vr_cdata.vr_tx_cnt == 0)
return;
if (sc->vr_link == 0) {
if (bootverbose)
if_printf(sc->vr_ifp, "watchdog timeout "
"(missed link)\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vr_init_locked(sc);
return;
}
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vr_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
}
static void
vr_tx_start(struct vr_softc *sc)
{
bus_addr_t addr;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) == 0) {
addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
cmd |= VR_CR0_TX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
}
if (sc->vr_cdata.vr_tx_cnt != 0) {
sc->vr_watchdog_timer = 5;
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
}
}
static void
vr_rx_start(struct vr_softc *sc)
{
bus_addr_t addr;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) == 0) {
addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
cmd |= VR_CR0_RX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
}
CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
}
static int
vr_tx_stop(struct vr_softc *sc)
{
int i;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) != 0) {
cmd &= ~VR_CR0_TX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(5);
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) == 0)
break;
}
if (i == 0)
return (ETIMEDOUT);
}
return (0);
}
static int
vr_rx_stop(struct vr_softc *sc)
{
int i;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) != 0) {
cmd &= ~VR_CR0_RX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(5);
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) == 0)
break;
}
if (i == 0)
return (ETIMEDOUT);
}
return (0);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vr_stop(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
struct ifnet *ifp;
int i;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
sc->vr_watchdog_timer = 0;
callout_stop(&sc->vr_stat_callout);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
if (vr_rx_stop(sc) != 0)
device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
if (vr_tx_stop(sc) != 0)
device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
/* Clear pending interrupts. */
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
vr_shutdown(device_t dev)
{
return (vr_suspend(dev));
}
static int
vr_suspend(device_t dev)
{
struct vr_softc *sc;
sc = device_get_softc(dev);
VR_LOCK(sc);
vr_stop(sc);
vr_setwol(sc);
sc->vr_suspended = 1;
VR_UNLOCK(sc);
return (0);
}
static int
vr_resume(device_t dev)
{
struct vr_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
VR_LOCK(sc);
ifp = sc->vr_ifp;
vr_clrwol(sc);
vr_reset(sc);
if (ifp->if_flags & IFF_UP)
vr_init_locked(sc);
sc->vr_suspended = 0;
VR_UNLOCK(sc);
return (0);
}
static void
vr_setwol(struct vr_softc *sc)
{
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
uint8_t v;
VR_LOCK_ASSERT(sc);
if (sc->vr_revid < REV_ID_VT6102_A ||
pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
return;
ifp = sc->vr_ifp;
/* Clear WOL configuration. */
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
if (sc->vr_revid > REV_ID_VT6105_B0) {
/* Newer Rhine III supports two additional patterns. */
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
}
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
/*
* It seems that multicast wakeup frames require programming pattern
* registers and valid CRC as well as pattern mask for each pattern.
* While it's possible to setup such a pattern it would complicate
* WOL configuration so ignore multicast wakeup frames.
*/
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
v = CSR_READ_1(sc, VR_STICKHW);
CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
}
/* Put hardware into sleep. */
v = CSR_READ_1(sc, VR_STICKHW);
v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
CSR_WRITE_1(sc, VR_STICKHW, v);
/* Request PME if WOL is requested. */
pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
static void
vr_clrwol(struct vr_softc *sc)
{
uint8_t v;
VR_LOCK_ASSERT(sc);
if (sc->vr_revid < REV_ID_VT6102_A)
return;
/* Take hardware out of sleep. */
v = CSR_READ_1(sc, VR_STICKHW);
v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
CSR_WRITE_1(sc, VR_STICKHW, v);
/* Clear WOL configuration as WOL may interfere normal operation. */
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_WOLCFG_CLR,
VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
if (sc->vr_revid > REV_ID_VT6105_B0) {
/* Newer Rhine III supports two additional patterns. */
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
}
}
static int
vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct vr_softc *sc;
struct vr_statistics *stat;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result == 1) {
sc = (struct vr_softc *)arg1;
stat = &sc->vr_stat;
printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
printf("Outbound good frames : %ju\n",
(uintmax_t)stat->tx_ok);
printf("Inbound good frames : %ju\n",
(uintmax_t)stat->rx_ok);
printf("Outbound errors : %u\n", stat->tx_errors);
printf("Inbound errors : %u\n", stat->rx_errors);
printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
printf("Inbound FIFO overflows : %d\n",
stat->rx_fifo_overflows);
printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
printf("Inbound frame alignment errors : %u\n",
stat->rx_alignment);
printf("Inbound giant frames : %u\n", stat->rx_giants);
printf("Inbound runt frames : %u\n", stat->rx_runts);
printf("Outbound aborted with excessive collisions : %u\n",
stat->tx_abort);
printf("Outbound collisions : %u\n", stat->tx_collisions);
printf("Outbound late collisions : %u\n",
stat->tx_late_collisions);
printf("Outbound underrun : %u\n", stat->tx_underrun);
printf("PCI bus errors : %u\n", stat->bus_errors);
printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
stat->num_restart);
}
return (error);
}