7029da5c36
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are still not MPSAFE (or already are but aren’t properly marked). Use it in preparation for a general review of all nodes. This is non-functional change that adds annotations to SYSCTL_NODE and SYSCTL_PROC nodes using one of the soon-to-be-required flags. Mark all obvious cases as MPSAFE. All entries that haven't been marked as MPSAFE before are by default marked as NEEDGIANT Approved by: kib (mentor, blanket) Commented by: kib, gallatin, melifaro Differential Revision: https://reviews.freebsd.org/D23718
1734 lines
44 KiB
C
1734 lines
44 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2008 Robert N. M. Watson
|
|
* Copyright (c) 2010-2011 Juniper Networks, Inc.
|
|
* Copyright (c) 2014 Kevin Lo
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Robert N. M. Watson under
|
|
* contract to Juniper Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/route.h>
|
|
#include <net/rss_config.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#endif
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/icmp_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_options.h>
|
|
#ifdef INET6
|
|
#include <netinet6/ip6_var.h>
|
|
#endif
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <netinet/udplite.h>
|
|
#include <netinet/in_rss.h>
|
|
|
|
#include <netipsec/ipsec_support.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
/*
|
|
* UDP and UDP-Lite protocols implementation.
|
|
* Per RFC 768, August, 1980.
|
|
* Per RFC 3828, July, 2004.
|
|
*/
|
|
|
|
/*
|
|
* BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
|
|
* removes the only data integrity mechanism for packets and malformed
|
|
* packets that would otherwise be discarded due to bad checksums, and may
|
|
* cause problems (especially for NFS data blocks).
|
|
*/
|
|
VNET_DEFINE(int, udp_cksum) = 1;
|
|
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(udp_cksum), 0, "compute udp checksum");
|
|
|
|
VNET_DEFINE(int, udp_log_in_vain) = 0;
|
|
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
|
|
|
|
VNET_DEFINE(int, udp_blackhole) = 0;
|
|
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(udp_blackhole), 0,
|
|
"Do not send port unreachables for refused connects");
|
|
|
|
u_long udp_sendspace = 9216; /* really max datagram size */
|
|
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
|
|
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
|
|
|
|
u_long udp_recvspace = 40 * (1024 +
|
|
#ifdef INET6
|
|
sizeof(struct sockaddr_in6)
|
|
#else
|
|
sizeof(struct sockaddr_in)
|
|
#endif
|
|
); /* 40 1K datagrams */
|
|
|
|
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
|
|
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
|
|
|
|
VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
|
|
VNET_DEFINE(struct inpcbinfo, udbinfo);
|
|
VNET_DEFINE(struct inpcbhead, ulitecb);
|
|
VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
|
|
VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
|
|
#define V_udpcb_zone VNET(udpcb_zone)
|
|
|
|
#ifndef UDBHASHSIZE
|
|
#define UDBHASHSIZE 128
|
|
#endif
|
|
|
|
VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
|
|
VNET_PCPUSTAT_SYSINIT(udpstat);
|
|
SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
|
|
udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
|
|
|
|
#ifdef VIMAGE
|
|
VNET_PCPUSTAT_SYSUNINIT(udpstat);
|
|
#endif /* VIMAGE */
|
|
#ifdef INET
|
|
static void udp_detach(struct socket *so);
|
|
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
|
|
struct mbuf *, struct thread *);
|
|
#endif
|
|
|
|
static void
|
|
udp_zone_change(void *tag)
|
|
{
|
|
|
|
uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
|
|
uma_zone_set_max(V_udpcb_zone, maxsockets);
|
|
}
|
|
|
|
static int
|
|
udp_inpcb_init(void *mem, int size, int flags)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = mem;
|
|
INP_LOCK_INIT(inp, "inp", "udpinp");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
udplite_inpcb_init(void *mem, int size, int flags)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = mem;
|
|
INP_LOCK_INIT(inp, "inp", "udpliteinp");
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
udp_init(void)
|
|
{
|
|
|
|
/*
|
|
* For now default to 2-tuple UDP hashing - until the fragment
|
|
* reassembly code can also update the flowid.
|
|
*
|
|
* Once we can calculate the flowid that way and re-establish
|
|
* a 4-tuple, flip this to 4-tuple.
|
|
*/
|
|
in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
|
|
"udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
|
|
V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
uma_zone_set_max(V_udpcb_zone, maxsockets);
|
|
uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
|
|
EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
|
|
EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
void
|
|
udplite_init(void)
|
|
{
|
|
|
|
in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
|
|
UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
|
|
IPI_HASHFIELDS_2TUPLE);
|
|
}
|
|
|
|
/*
|
|
* Kernel module interface for updating udpstat. The argument is an index
|
|
* into udpstat treated as an array of u_long. While this encodes the
|
|
* general layout of udpstat into the caller, it doesn't encode its location,
|
|
* so that future changes to add, for example, per-CPU stats support won't
|
|
* cause binary compatibility problems for kernel modules.
|
|
*/
|
|
void
|
|
kmod_udpstat_inc(int statnum)
|
|
{
|
|
|
|
counter_u64_add(VNET(udpstat)[statnum], 1);
|
|
}
|
|
|
|
int
|
|
udp_newudpcb(struct inpcb *inp)
|
|
{
|
|
struct udpcb *up;
|
|
|
|
up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
|
|
if (up == NULL)
|
|
return (ENOBUFS);
|
|
inp->inp_ppcb = up;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
udp_discardcb(struct udpcb *up)
|
|
{
|
|
|
|
uma_zfree(V_udpcb_zone, up);
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
static void
|
|
udp_destroy(void *unused __unused)
|
|
{
|
|
|
|
in_pcbinfo_destroy(&V_udbinfo);
|
|
uma_zdestroy(V_udpcb_zone);
|
|
}
|
|
VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
|
|
|
|
static void
|
|
udplite_destroy(void *unused __unused)
|
|
{
|
|
|
|
in_pcbinfo_destroy(&V_ulitecbinfo);
|
|
}
|
|
VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
|
|
NULL);
|
|
#endif
|
|
|
|
#ifdef INET
|
|
/*
|
|
* Subroutine of udp_input(), which appends the provided mbuf chain to the
|
|
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
|
|
* contains the source address. If the socket ends up being an IPv6 socket,
|
|
* udp_append() will convert to a sockaddr_in6 before passing the address
|
|
* into the socket code.
|
|
*
|
|
* In the normal case udp_append() will return 0, indicating that you
|
|
* must unlock the inp. However if a tunneling protocol is in place we increment
|
|
* the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
|
|
* then decrement the reference count. If the inp_rele returns 1, indicating the
|
|
* inp is gone, we return that to the caller to tell them *not* to unlock
|
|
* the inp. In the case of multi-cast this will cause the distribution
|
|
* to stop (though most tunneling protocols known currently do *not* use
|
|
* multicast).
|
|
*/
|
|
static int
|
|
udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
|
|
struct sockaddr_in *udp_in)
|
|
{
|
|
struct sockaddr *append_sa;
|
|
struct socket *so;
|
|
struct mbuf *tmpopts, *opts = NULL;
|
|
#ifdef INET6
|
|
struct sockaddr_in6 udp_in6;
|
|
#endif
|
|
struct udpcb *up;
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* Engage the tunneling protocol.
|
|
*/
|
|
up = intoudpcb(inp);
|
|
if (up->u_tun_func != NULL) {
|
|
in_pcbref(inp);
|
|
INP_RUNLOCK(inp);
|
|
(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
|
|
up->u_tun_ctx);
|
|
INP_RLOCK(inp);
|
|
return (in_pcbrele_rlocked(inp));
|
|
}
|
|
|
|
off += sizeof(struct udphdr);
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
/* Check AH/ESP integrity. */
|
|
if (IPSEC_ENABLED(ipv4) &&
|
|
IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
|
|
m_freem(n);
|
|
return (0);
|
|
}
|
|
if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
|
|
if (IPSEC_ENABLED(ipv4) &&
|
|
UDPENCAP_INPUT(n, off, AF_INET) != 0)
|
|
return (0); /* Consumed. */
|
|
}
|
|
#endif /* IPSEC */
|
|
#ifdef MAC
|
|
if (mac_inpcb_check_deliver(inp, n) != 0) {
|
|
m_freem(n);
|
|
return (0);
|
|
}
|
|
#endif /* MAC */
|
|
if (inp->inp_flags & INP_CONTROLOPTS ||
|
|
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
|
|
else
|
|
#endif /* INET6 */
|
|
ip_savecontrol(inp, &opts, ip, n);
|
|
}
|
|
if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
|
|
tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
|
|
sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
|
|
if (tmpopts) {
|
|
if (opts) {
|
|
tmpopts->m_next = opts;
|
|
opts = tmpopts;
|
|
} else
|
|
opts = tmpopts;
|
|
}
|
|
}
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
bzero(&udp_in6, sizeof(udp_in6));
|
|
udp_in6.sin6_len = sizeof(udp_in6);
|
|
udp_in6.sin6_family = AF_INET6;
|
|
in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
|
|
append_sa = (struct sockaddr *)&udp_in6;
|
|
} else
|
|
#endif /* INET6 */
|
|
append_sa = (struct sockaddr *)&udp_in[0];
|
|
m_adj(n, off);
|
|
|
|
so = inp->inp_socket;
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
m_freem(n);
|
|
if (opts)
|
|
m_freem(opts);
|
|
UDPSTAT_INC(udps_fullsock);
|
|
} else
|
|
sorwakeup_locked(so);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
udp_input(struct mbuf **mp, int *offp, int proto)
|
|
{
|
|
struct ip *ip;
|
|
struct udphdr *uh;
|
|
struct ifnet *ifp;
|
|
struct inpcb *inp;
|
|
uint16_t len, ip_len;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct ip save_ip;
|
|
struct sockaddr_in udp_in[2];
|
|
struct mbuf *m;
|
|
struct m_tag *fwd_tag;
|
|
int cscov_partial, iphlen;
|
|
|
|
m = *mp;
|
|
iphlen = *offp;
|
|
ifp = m->m_pkthdr.rcvif;
|
|
*mp = NULL;
|
|
UDPSTAT_INC(udps_ipackets);
|
|
|
|
/*
|
|
* Strip IP options, if any; should skip this, make available to
|
|
* user, and use on returned packets, but we don't yet have a way to
|
|
* check the checksum with options still present.
|
|
*/
|
|
if (iphlen > sizeof (struct ip)) {
|
|
ip_stripoptions(m);
|
|
iphlen = sizeof(struct ip);
|
|
}
|
|
|
|
/*
|
|
* Get IP and UDP header together in first mbuf.
|
|
*/
|
|
if (m->m_len < iphlen + sizeof(struct udphdr)) {
|
|
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
|
|
UDPSTAT_INC(udps_hdrops);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
uh = (struct udphdr *)((caddr_t)ip + iphlen);
|
|
cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
|
|
|
|
/*
|
|
* Destination port of 0 is illegal, based on RFC768.
|
|
*/
|
|
if (uh->uh_dport == 0)
|
|
goto badunlocked;
|
|
|
|
/*
|
|
* Construct sockaddr format source address. Stuff source address
|
|
* and datagram in user buffer.
|
|
*/
|
|
bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
|
|
udp_in[0].sin_len = sizeof(struct sockaddr_in);
|
|
udp_in[0].sin_family = AF_INET;
|
|
udp_in[0].sin_port = uh->uh_sport;
|
|
udp_in[0].sin_addr = ip->ip_src;
|
|
udp_in[1].sin_len = sizeof(struct sockaddr_in);
|
|
udp_in[1].sin_family = AF_INET;
|
|
udp_in[1].sin_port = uh->uh_dport;
|
|
udp_in[1].sin_addr = ip->ip_dst;
|
|
|
|
/*
|
|
* Make mbuf data length reflect UDP length. If not enough data to
|
|
* reflect UDP length, drop.
|
|
*/
|
|
len = ntohs((u_short)uh->uh_ulen);
|
|
ip_len = ntohs(ip->ip_len) - iphlen;
|
|
if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
|
|
/* Zero means checksum over the complete packet. */
|
|
if (len == 0)
|
|
len = ip_len;
|
|
cscov_partial = 0;
|
|
}
|
|
if (ip_len != len) {
|
|
if (len > ip_len || len < sizeof(struct udphdr)) {
|
|
UDPSTAT_INC(udps_badlen);
|
|
goto badunlocked;
|
|
}
|
|
if (proto == IPPROTO_UDP)
|
|
m_adj(m, len - ip_len);
|
|
}
|
|
|
|
/*
|
|
* Save a copy of the IP header in case we want restore it for
|
|
* sending an ICMP error message in response.
|
|
*/
|
|
if (!V_udp_blackhole)
|
|
save_ip = *ip;
|
|
else
|
|
memset(&save_ip, 0, sizeof(save_ip));
|
|
|
|
/*
|
|
* Checksum extended UDP header and data.
|
|
*/
|
|
if (uh->uh_sum) {
|
|
u_short uh_sum;
|
|
|
|
if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
|
|
!cscov_partial) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
|
|
uh_sum = m->m_pkthdr.csum_data;
|
|
else
|
|
uh_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htonl((u_short)len +
|
|
m->m_pkthdr.csum_data + proto));
|
|
uh_sum ^= 0xffff;
|
|
} else {
|
|
char b[9];
|
|
|
|
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
|
|
bzero(((struct ipovly *)ip)->ih_x1, 9);
|
|
((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
|
|
uh->uh_ulen : htons(ip_len);
|
|
uh_sum = in_cksum(m, len + sizeof (struct ip));
|
|
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
|
|
}
|
|
if (uh_sum) {
|
|
UDPSTAT_INC(udps_badsum);
|
|
m_freem(m);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
} else {
|
|
if (proto == IPPROTO_UDP) {
|
|
UDPSTAT_INC(udps_nosum);
|
|
} else {
|
|
/* UDPLite requires a checksum */
|
|
/* XXX: What is the right UDPLite MIB counter here? */
|
|
m_freem(m);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
}
|
|
|
|
pcbinfo = udp_get_inpcbinfo(proto);
|
|
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
|
|
in_broadcast(ip->ip_dst, ifp)) {
|
|
struct inpcb *last;
|
|
struct inpcbhead *pcblist;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
pcblist = udp_get_pcblist(proto);
|
|
last = NULL;
|
|
CK_LIST_FOREACH(inp, pcblist, inp_list) {
|
|
if (inp->inp_lport != uh->uh_dport)
|
|
continue;
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY &&
|
|
inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
|
|
continue;
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY &&
|
|
inp->inp_faddr.s_addr != ip->ip_src.s_addr)
|
|
continue;
|
|
if (inp->inp_fport != 0 &&
|
|
inp->inp_fport != uh->uh_sport)
|
|
continue;
|
|
|
|
INP_RLOCK(inp);
|
|
|
|
if (__predict_false(inp->inp_flags2 & INP_FREED)) {
|
|
INP_RUNLOCK(inp);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* XXXRW: Because we weren't holding either the inpcb
|
|
* or the hash lock when we checked for a match
|
|
* before, we should probably recheck now that the
|
|
* inpcb lock is held.
|
|
*/
|
|
|
|
/*
|
|
* Handle socket delivery policy for any-source
|
|
* and source-specific multicast. [RFC3678]
|
|
*/
|
|
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
|
struct ip_moptions *imo;
|
|
struct sockaddr_in group;
|
|
int blocked;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
continue;
|
|
}
|
|
bzero(&group, sizeof(struct sockaddr_in));
|
|
group.sin_len = sizeof(struct sockaddr_in);
|
|
group.sin_family = AF_INET;
|
|
group.sin_addr = ip->ip_dst;
|
|
|
|
blocked = imo_multi_filter(imo, ifp,
|
|
(struct sockaddr *)&group,
|
|
(struct sockaddr *)&udp_in[0]);
|
|
if (blocked != MCAST_PASS) {
|
|
if (blocked == MCAST_NOTGMEMBER)
|
|
IPSTAT_INC(ips_notmember);
|
|
if (blocked == MCAST_NOTSMEMBER ||
|
|
blocked == MCAST_MUTED)
|
|
UDPSTAT_INC(udps_filtermcast);
|
|
INP_RUNLOCK(inp);
|
|
continue;
|
|
}
|
|
}
|
|
if (last != NULL) {
|
|
struct mbuf *n;
|
|
|
|
if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
|
|
NULL) {
|
|
if (proto == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(receive, NULL, last, ip,
|
|
last, uh);
|
|
else
|
|
UDP_PROBE(receive, NULL, last, ip, last,
|
|
uh);
|
|
if (udp_append(last, ip, n, iphlen,
|
|
udp_in)) {
|
|
goto inp_lost;
|
|
}
|
|
}
|
|
INP_RUNLOCK(last);
|
|
}
|
|
last = inp;
|
|
/*
|
|
* Don't look for additional matches if this one does
|
|
* not have either the SO_REUSEPORT or SO_REUSEADDR
|
|
* socket options set. This heuristic avoids
|
|
* searching through all pcbs in the common case of a
|
|
* non-shared port. It assumes that an application
|
|
* will never clear these options after setting them.
|
|
*/
|
|
if ((last->inp_socket->so_options &
|
|
(SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
|
|
break;
|
|
}
|
|
|
|
if (last == NULL) {
|
|
/*
|
|
* No matching pcb found; discard datagram. (No need
|
|
* to send an ICMP Port Unreachable for a broadcast
|
|
* or multicast datgram.)
|
|
*/
|
|
UDPSTAT_INC(udps_noportbcast);
|
|
if (inp)
|
|
INP_RUNLOCK(inp);
|
|
goto badunlocked;
|
|
}
|
|
if (proto == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
|
|
else
|
|
UDP_PROBE(receive, NULL, last, ip, last, uh);
|
|
if (udp_append(last, ip, m, iphlen, udp_in) == 0)
|
|
INP_RUNLOCK(last);
|
|
inp_lost:
|
|
return (IPPROTO_DONE);
|
|
}
|
|
|
|
/*
|
|
* Locate pcb for datagram.
|
|
*/
|
|
|
|
/*
|
|
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
|
|
*/
|
|
if ((m->m_flags & M_IP_NEXTHOP) &&
|
|
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
|
|
struct sockaddr_in *next_hop;
|
|
|
|
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
|
|
|
|
/*
|
|
* Transparently forwarded. Pretend to be the destination.
|
|
* Already got one like this?
|
|
*/
|
|
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
|
|
ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
|
|
if (!inp) {
|
|
/*
|
|
* It's new. Try to find the ambushing socket.
|
|
* Because we've rewritten the destination address,
|
|
* any hardware-generated hash is ignored.
|
|
*/
|
|
inp = in_pcblookup(pcbinfo, ip->ip_src,
|
|
uh->uh_sport, next_hop->sin_addr,
|
|
next_hop->sin_port ? htons(next_hop->sin_port) :
|
|
uh->uh_dport, INPLOOKUP_WILDCARD |
|
|
INPLOOKUP_RLOCKPCB, ifp);
|
|
}
|
|
/* Remove the tag from the packet. We don't need it anymore. */
|
|
m_tag_delete(m, fwd_tag);
|
|
m->m_flags &= ~M_IP_NEXTHOP;
|
|
} else
|
|
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
|
|
ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
|
|
INPLOOKUP_RLOCKPCB, ifp, m);
|
|
if (inp == NULL) {
|
|
if (V_udp_log_in_vain) {
|
|
char src[INET_ADDRSTRLEN];
|
|
char dst[INET_ADDRSTRLEN];
|
|
|
|
log(LOG_INFO,
|
|
"Connection attempt to UDP %s:%d from %s:%d\n",
|
|
inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
|
|
inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
|
|
}
|
|
if (proto == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
|
|
else
|
|
UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
|
|
UDPSTAT_INC(udps_noport);
|
|
if (m->m_flags & (M_BCAST | M_MCAST)) {
|
|
UDPSTAT_INC(udps_noportbcast);
|
|
goto badunlocked;
|
|
}
|
|
if (V_udp_blackhole)
|
|
goto badunlocked;
|
|
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
|
|
goto badunlocked;
|
|
*ip = save_ip;
|
|
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
|
|
/*
|
|
* Check the minimum TTL for socket.
|
|
*/
|
|
INP_RLOCK_ASSERT(inp);
|
|
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
|
|
if (proto == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
|
|
else
|
|
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
|
|
INP_RUNLOCK(inp);
|
|
m_freem(m);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
if (cscov_partial) {
|
|
struct udpcb *up;
|
|
|
|
up = intoudpcb(inp);
|
|
if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
|
|
INP_RUNLOCK(inp);
|
|
m_freem(m);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
}
|
|
|
|
if (proto == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
|
|
else
|
|
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
|
|
if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
|
|
INP_RUNLOCK(inp);
|
|
return (IPPROTO_DONE);
|
|
|
|
badunlocked:
|
|
m_freem(m);
|
|
return (IPPROTO_DONE);
|
|
}
|
|
#endif /* INET */
|
|
|
|
/*
|
|
* Notify a udp user of an asynchronous error; just wake up so that they can
|
|
* collect error status.
|
|
*/
|
|
struct inpcb *
|
|
udp_notify(struct inpcb *inp, int errno)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
|
|
errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
|
|
RTFREE(inp->inp_route.ro_rt);
|
|
inp->inp_route.ro_rt = (struct rtentry *)NULL;
|
|
}
|
|
|
|
inp->inp_socket->so_error = errno;
|
|
sorwakeup(inp->inp_socket);
|
|
sowwakeup(inp->inp_socket);
|
|
return (inp);
|
|
}
|
|
|
|
#ifdef INET
|
|
static void
|
|
udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
|
|
struct inpcbinfo *pcbinfo)
|
|
{
|
|
struct ip *ip = vip;
|
|
struct udphdr *uh;
|
|
struct in_addr faddr;
|
|
struct inpcb *inp;
|
|
|
|
faddr = ((struct sockaddr_in *)sa)->sin_addr;
|
|
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
|
|
return;
|
|
|
|
if (PRC_IS_REDIRECT(cmd)) {
|
|
/* signal EHOSTDOWN, as it flushes the cached route */
|
|
in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Hostdead is ugly because it goes linearly through all PCBs.
|
|
*
|
|
* XXX: We never get this from ICMP, otherwise it makes an excellent
|
|
* DoS attack on machines with many connections.
|
|
*/
|
|
if (cmd == PRC_HOSTDEAD)
|
|
ip = NULL;
|
|
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
|
|
return;
|
|
if (ip != NULL) {
|
|
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
|
|
inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
|
|
ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
|
|
if (inp != NULL) {
|
|
INP_WLOCK_ASSERT(inp);
|
|
if (inp->inp_socket != NULL) {
|
|
udp_notify(inp, inetctlerrmap[cmd]);
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
|
|
ip->ip_src, uh->uh_sport,
|
|
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
|
|
if (inp != NULL) {
|
|
struct udpcb *up;
|
|
void *ctx;
|
|
udp_tun_icmp_t func;
|
|
|
|
up = intoudpcb(inp);
|
|
ctx = up->u_tun_ctx;
|
|
func = up->u_icmp_func;
|
|
INP_RUNLOCK(inp);
|
|
if (func != NULL)
|
|
(*func)(cmd, sa, vip, ctx);
|
|
}
|
|
}
|
|
} else
|
|
in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
|
|
udp_notify);
|
|
}
|
|
void
|
|
udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
|
|
{
|
|
|
|
return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
|
|
}
|
|
|
|
void
|
|
udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
|
|
{
|
|
|
|
return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
|
|
}
|
|
#endif /* INET */
|
|
|
|
static int
|
|
udp_pcblist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct xinpgen xig;
|
|
struct epoch_tracker et;
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
if (req->newptr != 0)
|
|
return (EPERM);
|
|
|
|
if (req->oldptr == 0) {
|
|
int n;
|
|
|
|
n = V_udbinfo.ipi_count;
|
|
n += imax(n / 8, 10);
|
|
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
|
|
return (0);
|
|
}
|
|
|
|
if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
|
|
return (error);
|
|
|
|
bzero(&xig, sizeof(xig));
|
|
xig.xig_len = sizeof xig;
|
|
xig.xig_count = V_udbinfo.ipi_count;
|
|
xig.xig_gen = V_udbinfo.ipi_gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
if (error)
|
|
return (error);
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead);
|
|
inp != NULL;
|
|
inp = CK_LIST_NEXT(inp, inp_list)) {
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_gencnt <= xig.xig_gen &&
|
|
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
|
|
struct xinpcb xi;
|
|
|
|
in_pcbtoxinpcb(inp, &xi);
|
|
INP_RUNLOCK(inp);
|
|
error = SYSCTL_OUT(req, &xi, sizeof xi);
|
|
if (error)
|
|
break;
|
|
} else
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
if (!error) {
|
|
/*
|
|
* Give the user an updated idea of our state. If the
|
|
* generation differs from what we told her before, she knows
|
|
* that something happened while we were processing this
|
|
* request, and it might be necessary to retry.
|
|
*/
|
|
xig.xig_gen = V_udbinfo.ipi_gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
xig.xig_count = V_udbinfo.ipi_count;
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
|
|
udp_pcblist, "S,xinpcb",
|
|
"List of active UDP sockets");
|
|
|
|
#ifdef INET
|
|
static int
|
|
udp_getcred(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct xucred xuc;
|
|
struct sockaddr_in addrs[2];
|
|
struct epoch_tracker et;
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
error = priv_check(req->td, PRIV_NETINET_GETCRED);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_IN(req, addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
NET_EPOCH_ENTER(et);
|
|
inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
|
|
addrs[0].sin_addr, addrs[0].sin_port,
|
|
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
|
|
NET_EPOCH_EXIT(et);
|
|
if (inp != NULL) {
|
|
INP_RLOCK_ASSERT(inp);
|
|
if (inp->inp_socket == NULL)
|
|
error = ENOENT;
|
|
if (error == 0)
|
|
error = cr_canseeinpcb(req->td->td_ucred, inp);
|
|
if (error == 0)
|
|
cru2x(inp->inp_cred, &xuc);
|
|
INP_RUNLOCK(inp);
|
|
} else
|
|
error = ENOENT;
|
|
if (error == 0)
|
|
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
|
|
0, 0, udp_getcred, "S,xucred",
|
|
"Get the xucred of a UDP connection");
|
|
#endif /* INET */
|
|
|
|
int
|
|
udp_ctloutput(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct inpcb *inp;
|
|
struct udpcb *up;
|
|
int isudplite, error, optval;
|
|
|
|
error = 0;
|
|
isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
|
|
INP_WLOCK(inp);
|
|
if (sopt->sopt_level != so->so_proto->pr_protocol) {
|
|
#ifdef INET6
|
|
if (INP_CHECK_SOCKAF(so, AF_INET6)) {
|
|
INP_WUNLOCK(inp);
|
|
error = ip6_ctloutput(so, sopt);
|
|
}
|
|
#endif
|
|
#if defined(INET) && defined(INET6)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
{
|
|
INP_WUNLOCK(inp);
|
|
error = ip_ctloutput(so, sopt);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
switch (sopt->sopt_dir) {
|
|
case SOPT_SET:
|
|
switch (sopt->sopt_name) {
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
#ifdef INET
|
|
case UDP_ENCAP:
|
|
if (!IPSEC_ENABLED(ipv4)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ENOPROTOOPT);
|
|
}
|
|
error = UDPENCAP_PCBCTL(inp, sopt);
|
|
break;
|
|
#endif /* INET */
|
|
#endif /* IPSEC */
|
|
case UDPLITE_SEND_CSCOV:
|
|
case UDPLITE_RECV_CSCOV:
|
|
if (!isudplite) {
|
|
INP_WUNLOCK(inp);
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyin(sopt, &optval, sizeof(optval),
|
|
sizeof(optval));
|
|
if (error != 0)
|
|
break;
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
|
|
INP_WLOCK(inp);
|
|
up = intoudpcb(inp);
|
|
KASSERT(up != NULL, ("%s: up == NULL", __func__));
|
|
if ((optval != 0 && optval < 8) || (optval > 65535)) {
|
|
INP_WUNLOCK(inp);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
|
|
up->u_txcslen = optval;
|
|
else
|
|
up->u_rxcslen = optval;
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
default:
|
|
INP_WUNLOCK(inp);
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
case SOPT_GET:
|
|
switch (sopt->sopt_name) {
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
#ifdef INET
|
|
case UDP_ENCAP:
|
|
if (!IPSEC_ENABLED(ipv4)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ENOPROTOOPT);
|
|
}
|
|
error = UDPENCAP_PCBCTL(inp, sopt);
|
|
break;
|
|
#endif /* INET */
|
|
#endif /* IPSEC */
|
|
case UDPLITE_SEND_CSCOV:
|
|
case UDPLITE_RECV_CSCOV:
|
|
if (!isudplite) {
|
|
INP_WUNLOCK(inp);
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
up = intoudpcb(inp);
|
|
KASSERT(up != NULL, ("%s: up == NULL", __func__));
|
|
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
|
|
optval = up->u_txcslen;
|
|
else
|
|
optval = up->u_rxcslen;
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyout(sopt, &optval, sizeof(optval));
|
|
break;
|
|
default:
|
|
INP_WUNLOCK(inp);
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifdef INET
|
|
static int
|
|
udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
|
|
struct mbuf *control, struct thread *td)
|
|
{
|
|
struct udpiphdr *ui;
|
|
int len = m->m_pkthdr.len;
|
|
struct in_addr faddr, laddr;
|
|
struct cmsghdr *cm;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct sockaddr_in *sin, src;
|
|
struct epoch_tracker et;
|
|
int cscov_partial = 0;
|
|
int error = 0;
|
|
int ipflags;
|
|
u_short fport, lport;
|
|
u_char tos;
|
|
uint8_t pr;
|
|
uint16_t cscov = 0;
|
|
uint32_t flowid = 0;
|
|
uint8_t flowtype = M_HASHTYPE_NONE;
|
|
|
|
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
|
|
if (control)
|
|
m_freem(control);
|
|
m_freem(m);
|
|
return (EMSGSIZE);
|
|
}
|
|
|
|
src.sin_family = 0;
|
|
sin = (struct sockaddr_in *)addr;
|
|
|
|
/*
|
|
* udp_output() may need to temporarily bind or connect the current
|
|
* inpcb. As such, we don't know up front whether we will need the
|
|
* pcbinfo lock or not. Do any work to decide what is needed up
|
|
* front before acquiring any locks.
|
|
*
|
|
* We will need network epoch in either case, to safely lookup into
|
|
* pcb hash.
|
|
*/
|
|
if (sin == NULL ||
|
|
(inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0))
|
|
INP_WLOCK(inp);
|
|
else
|
|
INP_RLOCK(inp);
|
|
NET_EPOCH_ENTER(et);
|
|
tos = inp->inp_ip_tos;
|
|
if (control != NULL) {
|
|
/*
|
|
* XXX: Currently, we assume all the optional information is
|
|
* stored in a single mbuf.
|
|
*/
|
|
if (control->m_next) {
|
|
m_freem(control);
|
|
error = EINVAL;
|
|
goto release;
|
|
}
|
|
for (; control->m_len > 0;
|
|
control->m_data += CMSG_ALIGN(cm->cmsg_len),
|
|
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
|
|
cm = mtod(control, struct cmsghdr *);
|
|
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
|
|
|| cm->cmsg_len > control->m_len) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (cm->cmsg_level != IPPROTO_IP)
|
|
continue;
|
|
|
|
switch (cm->cmsg_type) {
|
|
case IP_SENDSRCADDR:
|
|
if (cm->cmsg_len !=
|
|
CMSG_LEN(sizeof(struct in_addr))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
bzero(&src, sizeof(src));
|
|
src.sin_family = AF_INET;
|
|
src.sin_len = sizeof(src);
|
|
src.sin_port = inp->inp_lport;
|
|
src.sin_addr =
|
|
*(struct in_addr *)CMSG_DATA(cm);
|
|
break;
|
|
|
|
case IP_TOS:
|
|
if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
tos = *(u_char *)CMSG_DATA(cm);
|
|
break;
|
|
|
|
case IP_FLOWID:
|
|
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
flowid = *(uint32_t *) CMSG_DATA(cm);
|
|
break;
|
|
|
|
case IP_FLOWTYPE:
|
|
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
flowtype = *(uint32_t *) CMSG_DATA(cm);
|
|
break;
|
|
|
|
#ifdef RSS
|
|
case IP_RSSBUCKETID:
|
|
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* This is just a placeholder for now */
|
|
break;
|
|
#endif /* RSS */
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
if (error)
|
|
break;
|
|
}
|
|
m_freem(control);
|
|
}
|
|
if (error)
|
|
goto release;
|
|
|
|
pr = inp->inp_socket->so_proto->pr_protocol;
|
|
pcbinfo = udp_get_inpcbinfo(pr);
|
|
|
|
/*
|
|
* If the IP_SENDSRCADDR control message was specified, override the
|
|
* source address for this datagram. Its use is invalidated if the
|
|
* address thus specified is incomplete or clobbers other inpcbs.
|
|
*/
|
|
laddr = inp->inp_laddr;
|
|
lport = inp->inp_lport;
|
|
if (src.sin_family == AF_INET) {
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
if ((lport == 0) ||
|
|
(laddr.s_addr == INADDR_ANY &&
|
|
src.sin_addr.s_addr == INADDR_ANY)) {
|
|
error = EINVAL;
|
|
goto release;
|
|
}
|
|
error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
|
|
&laddr.s_addr, &lport, td->td_ucred);
|
|
if (error)
|
|
goto release;
|
|
}
|
|
|
|
/*
|
|
* If a UDP socket has been connected, then a local address/port will
|
|
* have been selected and bound.
|
|
*
|
|
* If a UDP socket has not been connected to, then an explicit
|
|
* destination address must be used, in which case a local
|
|
* address/port may not have been selected and bound.
|
|
*/
|
|
if (sin != NULL) {
|
|
INP_LOCK_ASSERT(inp);
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
error = EISCONN;
|
|
goto release;
|
|
}
|
|
|
|
/*
|
|
* Jail may rewrite the destination address, so let it do
|
|
* that before we use it.
|
|
*/
|
|
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
|
|
if (error)
|
|
goto release;
|
|
|
|
/*
|
|
* If a local address or port hasn't yet been selected, or if
|
|
* the destination address needs to be rewritten due to using
|
|
* a special INADDR_ constant, invoke in_pcbconnect_setup()
|
|
* to do the heavy lifting. Once a port is selected, we
|
|
* commit the binding back to the socket; we also commit the
|
|
* binding of the address if in jail.
|
|
*
|
|
* If we already have a valid binding and we're not
|
|
* requesting a destination address rewrite, use a fast path.
|
|
*/
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY ||
|
|
inp->inp_lport == 0 ||
|
|
sin->sin_addr.s_addr == INADDR_ANY ||
|
|
sin->sin_addr.s_addr == INADDR_BROADCAST) {
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
|
|
&lport, &faddr.s_addr, &fport, NULL,
|
|
td->td_ucred);
|
|
if (error)
|
|
goto release;
|
|
|
|
/*
|
|
* XXXRW: Why not commit the port if the address is
|
|
* !INADDR_ANY?
|
|
*/
|
|
/* Commit the local port if newly assigned. */
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY &&
|
|
inp->inp_lport == 0) {
|
|
INP_WLOCK_ASSERT(inp);
|
|
/*
|
|
* Remember addr if jailed, to prevent
|
|
* rebinding.
|
|
*/
|
|
if (prison_flag(td->td_ucred, PR_IP4))
|
|
inp->inp_laddr = laddr;
|
|
inp->inp_lport = lport;
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
error = in_pcbinshash(inp);
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
if (error != 0) {
|
|
inp->inp_lport = 0;
|
|
error = EAGAIN;
|
|
goto release;
|
|
}
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
}
|
|
} else {
|
|
faddr = sin->sin_addr;
|
|
fport = sin->sin_port;
|
|
}
|
|
} else {
|
|
INP_LOCK_ASSERT(inp);
|
|
faddr = inp->inp_faddr;
|
|
fport = inp->inp_fport;
|
|
if (faddr.s_addr == INADDR_ANY) {
|
|
error = ENOTCONN;
|
|
goto release;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate data length and get a mbuf for UDP, IP, and possible
|
|
* link-layer headers. Immediate slide the data pointer back forward
|
|
* since we won't use that space at this layer.
|
|
*/
|
|
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
goto release;
|
|
}
|
|
m->m_data += max_linkhdr;
|
|
m->m_len -= max_linkhdr;
|
|
m->m_pkthdr.len -= max_linkhdr;
|
|
|
|
/*
|
|
* Fill in mbuf with extended UDP header and addresses and length put
|
|
* into network format.
|
|
*/
|
|
ui = mtod(m, struct udpiphdr *);
|
|
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
|
|
ui->ui_v = IPVERSION << 4;
|
|
ui->ui_pr = pr;
|
|
ui->ui_src = laddr;
|
|
ui->ui_dst = faddr;
|
|
ui->ui_sport = lport;
|
|
ui->ui_dport = fport;
|
|
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
|
|
if (pr == IPPROTO_UDPLITE) {
|
|
struct udpcb *up;
|
|
uint16_t plen;
|
|
|
|
up = intoudpcb(inp);
|
|
cscov = up->u_txcslen;
|
|
plen = (u_short)len + sizeof(struct udphdr);
|
|
if (cscov >= plen)
|
|
cscov = 0;
|
|
ui->ui_len = htons(plen);
|
|
ui->ui_ulen = htons(cscov);
|
|
/*
|
|
* For UDP-Lite, checksum coverage length of zero means
|
|
* the entire UDPLite packet is covered by the checksum.
|
|
*/
|
|
cscov_partial = (cscov == 0) ? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
* Set the Don't Fragment bit in the IP header.
|
|
*/
|
|
if (inp->inp_flags & INP_DONTFRAG) {
|
|
struct ip *ip;
|
|
|
|
ip = (struct ip *)&ui->ui_i;
|
|
ip->ip_off |= htons(IP_DF);
|
|
}
|
|
|
|
ipflags = 0;
|
|
if (inp->inp_socket->so_options & SO_DONTROUTE)
|
|
ipflags |= IP_ROUTETOIF;
|
|
if (inp->inp_socket->so_options & SO_BROADCAST)
|
|
ipflags |= IP_ALLOWBROADCAST;
|
|
if (inp->inp_flags & INP_ONESBCAST)
|
|
ipflags |= IP_SENDONES;
|
|
|
|
#ifdef MAC
|
|
mac_inpcb_create_mbuf(inp, m);
|
|
#endif
|
|
|
|
/*
|
|
* Set up checksum and output datagram.
|
|
*/
|
|
ui->ui_sum = 0;
|
|
if (pr == IPPROTO_UDPLITE) {
|
|
if (inp->inp_flags & INP_ONESBCAST)
|
|
faddr.s_addr = INADDR_BROADCAST;
|
|
if (cscov_partial) {
|
|
if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
|
|
ui->ui_sum = 0xffff;
|
|
} else {
|
|
if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
|
|
ui->ui_sum = 0xffff;
|
|
}
|
|
} else if (V_udp_cksum) {
|
|
if (inp->inp_flags & INP_ONESBCAST)
|
|
faddr.s_addr = INADDR_BROADCAST;
|
|
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
|
|
htons((u_short)len + sizeof(struct udphdr) + pr));
|
|
m->m_pkthdr.csum_flags = CSUM_UDP;
|
|
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
|
|
}
|
|
((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
|
|
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
|
|
((struct ip *)ui)->ip_tos = tos; /* XXX */
|
|
UDPSTAT_INC(udps_opackets);
|
|
|
|
/*
|
|
* Setup flowid / RSS information for outbound socket.
|
|
*
|
|
* Once the UDP code decides to set a flowid some other way,
|
|
* this allows the flowid to be overridden by userland.
|
|
*/
|
|
if (flowtype != M_HASHTYPE_NONE) {
|
|
m->m_pkthdr.flowid = flowid;
|
|
M_HASHTYPE_SET(m, flowtype);
|
|
}
|
|
#ifdef RSS
|
|
else {
|
|
uint32_t hash_val, hash_type;
|
|
/*
|
|
* Calculate an appropriate RSS hash for UDP and
|
|
* UDP Lite.
|
|
*
|
|
* The called function will take care of figuring out
|
|
* whether a 2-tuple or 4-tuple hash is required based
|
|
* on the currently configured scheme.
|
|
*
|
|
* Later later on connected socket values should be
|
|
* cached in the inpcb and reused, rather than constantly
|
|
* re-calculating it.
|
|
*
|
|
* UDP Lite is a different protocol number and will
|
|
* likely end up being hashed as a 2-tuple until
|
|
* RSS / NICs grow UDP Lite protocol awareness.
|
|
*/
|
|
if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
|
|
pr, &hash_val, &hash_type) == 0) {
|
|
m->m_pkthdr.flowid = hash_val;
|
|
M_HASHTYPE_SET(m, hash_type);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't override with the inp cached flowid value.
|
|
*
|
|
* Depending upon the kind of send being done, the inp
|
|
* flowid/flowtype values may actually not be appropriate
|
|
* for this particular socket send.
|
|
*
|
|
* We should either leave the flowid at zero (which is what is
|
|
* currently done) or set it to some software generated
|
|
* hash value based on the packet contents.
|
|
*/
|
|
ipflags |= IP_NODEFAULTFLOWID;
|
|
#endif /* RSS */
|
|
|
|
if (pr == IPPROTO_UDPLITE)
|
|
UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
|
|
else
|
|
UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
|
|
error = ip_output(m, inp->inp_options,
|
|
INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags,
|
|
inp->inp_moptions, inp);
|
|
INP_UNLOCK(inp);
|
|
NET_EPOCH_EXIT(et);
|
|
return (error);
|
|
|
|
release:
|
|
INP_UNLOCK(inp);
|
|
NET_EPOCH_EXIT(et);
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
udp_abort(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
in_pcbdisconnect(inp);
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
soisdisconnected(so);
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
static int
|
|
udp_attach(struct socket *so, int proto, struct thread *td)
|
|
{
|
|
static uint32_t udp_flowid;
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
int error;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
|
|
error = soreserve(so, udp_sendspace, udp_recvspace);
|
|
if (error)
|
|
return (error);
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
error = in_pcballoc(so, pcbinfo);
|
|
if (error) {
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
return (error);
|
|
}
|
|
|
|
inp = sotoinpcb(so);
|
|
inp->inp_vflag |= INP_IPV4;
|
|
inp->inp_ip_ttl = V_ip_defttl;
|
|
inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
|
|
inp->inp_flowtype = M_HASHTYPE_OPAQUE;
|
|
|
|
error = udp_newudpcb(inp);
|
|
if (error) {
|
|
in_pcbdetach(inp);
|
|
in_pcbfree(inp);
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
return (error);
|
|
}
|
|
|
|
INP_WUNLOCK(inp);
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
return (0);
|
|
}
|
|
#endif /* INET */
|
|
|
|
int
|
|
udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
|
|
{
|
|
struct inpcb *inp;
|
|
struct udpcb *up;
|
|
|
|
KASSERT(so->so_type == SOCK_DGRAM,
|
|
("udp_set_kernel_tunneling: !dgram"));
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
up = intoudpcb(inp);
|
|
if ((up->u_tun_func != NULL) ||
|
|
(up->u_icmp_func != NULL)) {
|
|
INP_WUNLOCK(inp);
|
|
return (EBUSY);
|
|
}
|
|
up->u_tun_func = f;
|
|
up->u_icmp_func = i;
|
|
up->u_tun_ctx = ctx;
|
|
INP_WUNLOCK(inp);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef INET
|
|
static int
|
|
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
int error;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
error = in_pcbbind(inp, nam, td->td_ucred);
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
udp_close(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_close: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
in_pcbdisconnect(inp);
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
soisdisconnected(so);
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
static int
|
|
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct sockaddr_in *sin;
|
|
int error;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
|
INP_WUNLOCK(inp);
|
|
return (EISCONN);
|
|
}
|
|
sin = (struct sockaddr_in *)nam;
|
|
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
|
|
if (error != 0) {
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
NET_EPOCH_ENTER(et);
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
error = in_pcbconnect(inp, nam, td->td_ucred);
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
NET_EPOCH_EXIT(et);
|
|
if (error == 0)
|
|
soisconnected(so);
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
udp_detach(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct udpcb *up;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
|
|
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
|
|
("udp_detach: not disconnected"));
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
INP_WLOCK(inp);
|
|
up = intoudpcb(inp);
|
|
KASSERT(up != NULL, ("%s: up == NULL", __func__));
|
|
inp->inp_ppcb = NULL;
|
|
in_pcbdetach(inp);
|
|
in_pcbfree(inp);
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
udp_discardcb(up);
|
|
}
|
|
|
|
static int
|
|
udp_disconnect(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
|
|
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY) {
|
|
INP_WUNLOCK(inp);
|
|
return (ENOTCONN);
|
|
}
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
in_pcbdisconnect(inp);
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
SOCK_LOCK(so);
|
|
so->so_state &= ~SS_ISCONNECTED; /* XXX */
|
|
SOCK_UNLOCK(so);
|
|
INP_WUNLOCK(inp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
|
|
struct mbuf *control, struct thread *td)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
|
|
return (udp_output(inp, m, addr, control, td));
|
|
}
|
|
#endif /* INET */
|
|
|
|
int
|
|
udp_shutdown(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
|
|
INP_WLOCK(inp);
|
|
socantsendmore(so);
|
|
INP_WUNLOCK(inp);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef INET
|
|
struct pr_usrreqs udp_usrreqs = {
|
|
.pru_abort = udp_abort,
|
|
.pru_attach = udp_attach,
|
|
.pru_bind = udp_bind,
|
|
.pru_connect = udp_connect,
|
|
.pru_control = in_control,
|
|
.pru_detach = udp_detach,
|
|
.pru_disconnect = udp_disconnect,
|
|
.pru_peeraddr = in_getpeeraddr,
|
|
.pru_send = udp_send,
|
|
.pru_soreceive = soreceive_dgram,
|
|
.pru_sosend = sosend_dgram,
|
|
.pru_shutdown = udp_shutdown,
|
|
.pru_sockaddr = in_getsockaddr,
|
|
.pru_sosetlabel = in_pcbsosetlabel,
|
|
.pru_close = udp_close,
|
|
};
|
|
#endif /* INET */
|