freebsd-skq/sys/geom/raid/tr_raid5.c
Alexander Motin b43560ab19 MFprojects/camlock r256445:
Add unmapped I/O support to GEOM RAID.
2013-10-16 09:33:23 +00:00

422 lines
12 KiB
C

/*-
* Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <geom/geom.h>
#include "geom/raid/g_raid.h"
#include "g_raid_tr_if.h"
static MALLOC_DEFINE(M_TR_RAID5, "tr_raid5_data", "GEOM_RAID RAID5 data");
#define TR_RAID5_NONE 0
#define TR_RAID5_REBUILD 1
#define TR_RAID5_RESYNC 2
#define TR_RAID5_F_DOING_SOME 0x1
#define TR_RAID5_F_LOCKED 0x2
#define TR_RAID5_F_ABORT 0x4
struct g_raid_tr_raid5_object {
struct g_raid_tr_object trso_base;
int trso_starting;
int trso_stopping;
int trso_type;
int trso_recover_slabs; /* slabs before rest */
int trso_fair_io;
int trso_meta_update;
int trso_flags;
struct g_raid_subdisk *trso_failed_sd; /* like per volume */
void *trso_buffer; /* Buffer space */
struct bio trso_bio;
};
static g_raid_tr_taste_t g_raid_tr_taste_raid5;
static g_raid_tr_event_t g_raid_tr_event_raid5;
static g_raid_tr_start_t g_raid_tr_start_raid5;
static g_raid_tr_stop_t g_raid_tr_stop_raid5;
static g_raid_tr_iostart_t g_raid_tr_iostart_raid5;
static g_raid_tr_iodone_t g_raid_tr_iodone_raid5;
static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid5;
static g_raid_tr_locked_t g_raid_tr_locked_raid5;
static g_raid_tr_free_t g_raid_tr_free_raid5;
static kobj_method_t g_raid_tr_raid5_methods[] = {
KOBJMETHOD(g_raid_tr_taste, g_raid_tr_taste_raid5),
KOBJMETHOD(g_raid_tr_event, g_raid_tr_event_raid5),
KOBJMETHOD(g_raid_tr_start, g_raid_tr_start_raid5),
KOBJMETHOD(g_raid_tr_stop, g_raid_tr_stop_raid5),
KOBJMETHOD(g_raid_tr_iostart, g_raid_tr_iostart_raid5),
KOBJMETHOD(g_raid_tr_iodone, g_raid_tr_iodone_raid5),
KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid5),
KOBJMETHOD(g_raid_tr_locked, g_raid_tr_locked_raid5),
KOBJMETHOD(g_raid_tr_free, g_raid_tr_free_raid5),
{ 0, 0 }
};
static struct g_raid_tr_class g_raid_tr_raid5_class = {
"RAID5",
g_raid_tr_raid5_methods,
sizeof(struct g_raid_tr_raid5_object),
.trc_enable = 1,
.trc_priority = 100
};
static int
g_raid_tr_taste_raid5(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
{
struct g_raid_tr_raid5_object *trs;
u_int qual;
trs = (struct g_raid_tr_raid5_object *)tr;
qual = tr->tro_volume->v_raid_level_qualifier;
if (tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID4 &&
(qual == G_RAID_VOLUME_RLQ_R4P0 ||
qual == G_RAID_VOLUME_RLQ_R4PN)) {
/* RAID4 */
} else if ((tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5 ||
tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5E ||
tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5EE ||
tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5R ||
tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID6 ||
tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAIDMDF) &&
(qual == G_RAID_VOLUME_RLQ_R5RA ||
qual == G_RAID_VOLUME_RLQ_R5RS ||
qual == G_RAID_VOLUME_RLQ_R5LA ||
qual == G_RAID_VOLUME_RLQ_R5LS)) {
/* RAID5/5E/5EE/5R/6/MDF */
} else
return (G_RAID_TR_TASTE_FAIL);
trs->trso_starting = 1;
return (G_RAID_TR_TASTE_SUCCEED);
}
static int
g_raid_tr_update_state_raid5(struct g_raid_volume *vol,
struct g_raid_subdisk *sd)
{
struct g_raid_tr_raid5_object *trs;
struct g_raid_softc *sc;
u_int s;
int na, ns, nu;
sc = vol->v_softc;
trs = (struct g_raid_tr_raid5_object *)vol->v_tr;
if (trs->trso_stopping &&
(trs->trso_flags & TR_RAID5_F_DOING_SOME) == 0)
s = G_RAID_VOLUME_S_STOPPED;
else if (trs->trso_starting)
s = G_RAID_VOLUME_S_STARTING;
else {
na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
nu = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
if (na == vol->v_disks_count)
s = G_RAID_VOLUME_S_OPTIMAL;
else if (na + ns == vol->v_disks_count ||
na + ns + nu == vol->v_disks_count /* XXX: Temporary. */)
s = G_RAID_VOLUME_S_SUBOPTIMAL;
else if (na == vol->v_disks_count - 1 ||
na + ns + nu == vol->v_disks_count)
s = G_RAID_VOLUME_S_DEGRADED;
else
s = G_RAID_VOLUME_S_BROKEN;
}
if (s != vol->v_state) {
g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
G_RAID_EVENT_VOLUME);
g_raid_change_volume_state(vol, s);
if (!trs->trso_starting && !trs->trso_stopping)
g_raid_write_metadata(sc, vol, NULL, NULL);
}
return (0);
}
static int
g_raid_tr_event_raid5(struct g_raid_tr_object *tr,
struct g_raid_subdisk *sd, u_int event)
{
g_raid_tr_update_state_raid5(tr->tro_volume, sd);
return (0);
}
static int
g_raid_tr_start_raid5(struct g_raid_tr_object *tr)
{
struct g_raid_tr_raid5_object *trs;
struct g_raid_volume *vol;
trs = (struct g_raid_tr_raid5_object *)tr;
trs->trso_starting = 0;
vol = tr->tro_volume;
vol->v_read_only = 1;
g_raid_tr_update_state_raid5(vol, NULL);
return (0);
}
static int
g_raid_tr_stop_raid5(struct g_raid_tr_object *tr)
{
struct g_raid_tr_raid5_object *trs;
struct g_raid_volume *vol;
trs = (struct g_raid_tr_raid5_object *)tr;
vol = tr->tro_volume;
trs->trso_starting = 0;
trs->trso_stopping = 1;
g_raid_tr_update_state_raid5(vol, NULL);
return (0);
}
static void
g_raid_tr_iostart_raid5_read(struct g_raid_tr_object *tr, struct bio *bp)
{
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct bio_queue_head queue;
struct bio *cbp;
char *addr;
off_t offset, start, length, nstripe, remain;
int no, pno, ddisks, pdisks, protate, pleft;
u_int strip_size, lvl, qual;
vol = tr->tro_volume;
addr = bp->bio_data;
strip_size = vol->v_strip_size;
lvl = tr->tro_volume->v_raid_level;
qual = tr->tro_volume->v_raid_level_qualifier;
protate = tr->tro_volume->v_rotate_parity;
/* Stripe number. */
nstripe = bp->bio_offset / strip_size;
/* Start position in stripe. */
start = bp->bio_offset % strip_size;
/* Number of data and parity disks. */
if (lvl == G_RAID_VOLUME_RL_RAIDMDF)
pdisks = tr->tro_volume->v_mdf_pdisks;
else if (lvl == G_RAID_VOLUME_RL_RAID5EE ||
lvl == G_RAID_VOLUME_RL_RAID6)
pdisks = 2;
else
pdisks = 1;
ddisks = vol->v_disks_count - pdisks;
/* Parity disk number. */
if (lvl == G_RAID_VOLUME_RL_RAID4) {
if (qual == 0) /* P0 */
pno = 0;
else /* PN */
pno = ddisks;
pleft = -1;
} else {
pno = (nstripe / (ddisks * protate)) % vol->v_disks_count;
pleft = protate - (nstripe / ddisks) % protate;
if (qual >= 2) { /* PN/Left */
pno = ddisks - pno;
if (pno < 0)
pno += vol->v_disks_count;
}
}
/* Data disk number. */
no = nstripe % ddisks;
if (lvl == G_RAID_VOLUME_RL_RAID4) {
if (qual == 0)
no += pdisks;
} else if (qual & 1) { /* Continuation/Symmetric */
no = (pno + pdisks + no) % vol->v_disks_count;
} else if (no >= pno) /* Restart/Asymmetric */
no += pdisks;
else
no += imax(0, pno + pdisks - vol->v_disks_count);
/* Stripe start position in disk. */
offset = (nstripe / ddisks) * strip_size;
/* Length of data to operate. */
remain = bp->bio_length;
bioq_init(&queue);
do {
length = MIN(strip_size - start, remain);
cbp = g_clone_bio(bp);
if (cbp == NULL)
goto failure;
cbp->bio_offset = offset + start;
cbp->bio_data = addr;
cbp->bio_length = length;
cbp->bio_caller1 = &vol->v_subdisks[no];
bioq_insert_tail(&queue, cbp);
no++;
if (lvl == G_RAID_VOLUME_RL_RAID4) {
no %= vol->v_disks_count;
if (no == pno)
no = (no + pdisks) % vol->v_disks_count;
} else if (qual & 1) { /* Continuation/Symmetric */
no %= vol->v_disks_count;
if (no == pno) {
if ((--pleft) <= 0) {
pleft += protate;
if (qual < 2) /* P0/Right */
pno++;
else /* PN/Left */
pno += vol->v_disks_count - 1;
pno %= vol->v_disks_count;
}
no = (pno + pdisks) % vol->v_disks_count;
offset += strip_size;
}
} else { /* Restart/Asymmetric */
if (no == pno)
no += pdisks;
if (no >= vol->v_disks_count) {
no -= vol->v_disks_count;
if ((--pleft) <= 0) {
pleft += protate;
if (qual < 2) /* P0/Right */
pno++;
else /* PN/Left */
pno += vol->v_disks_count - 1;
pno %= vol->v_disks_count;
}
if (no == pno)
no += pdisks;
else
no += imax(0, pno + pdisks - vol->v_disks_count);
offset += strip_size;
}
}
remain -= length;
addr += length;
start = 0;
} while (remain > 0);
while ((cbp = bioq_takefirst(&queue)) != NULL) {
sd = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
g_raid_subdisk_iostart(sd, cbp);
}
return;
failure:
while ((cbp = bioq_takefirst(&queue)) != NULL)
g_destroy_bio(cbp);
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_raid_iodone(bp, bp->bio_error);
}
static void
g_raid_tr_iostart_raid5(struct g_raid_tr_object *tr, struct bio *bp)
{
struct g_raid_volume *vol;
struct g_raid_tr_raid5_object *trs;
vol = tr->tro_volume;
trs = (struct g_raid_tr_raid5_object *)tr;
if (vol->v_state < G_RAID_VOLUME_S_SUBOPTIMAL) {
g_raid_iodone(bp, EIO);
return;
}
switch (bp->bio_cmd) {
case BIO_READ:
g_raid_tr_iostart_raid5_read(tr, bp);
break;
case BIO_WRITE:
case BIO_DELETE:
case BIO_FLUSH:
g_raid_iodone(bp, ENODEV);
break;
default:
KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
bp->bio_cmd, vol->v_name));
break;
}
}
static void
g_raid_tr_iodone_raid5(struct g_raid_tr_object *tr,
struct g_raid_subdisk *sd, struct bio *bp)
{
struct bio *pbp;
int error;
pbp = bp->bio_parent;
pbp->bio_inbed++;
error = bp->bio_error;
g_destroy_bio(bp);
if (pbp->bio_children == pbp->bio_inbed) {
pbp->bio_completed = pbp->bio_length;
g_raid_iodone(pbp, error);
}
}
static int
g_raid_tr_kerneldump_raid5(struct g_raid_tr_object *tr,
void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
return (ENODEV);
}
static int
g_raid_tr_locked_raid5(struct g_raid_tr_object *tr, void *argp)
{
struct bio *bp;
struct g_raid_subdisk *sd;
bp = (struct bio *)argp;
sd = (struct g_raid_subdisk *)bp->bio_caller1;
g_raid_subdisk_iostart(sd, bp);
return (0);
}
static int
g_raid_tr_free_raid5(struct g_raid_tr_object *tr)
{
struct g_raid_tr_raid5_object *trs;
trs = (struct g_raid_tr_raid5_object *)tr;
if (trs->trso_buffer != NULL) {
free(trs->trso_buffer, M_TR_RAID5);
trs->trso_buffer = NULL;
}
return (0);
}
G_RAID_TR_DECLARE(raid5, "RAID5");