freebsd-skq/sys/amd64/amd64/vm_machdep.c

535 lines
14 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_isa.h"
#include "opt_cpu.h"
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/kse.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/pioctl.h>
#include <sys/proc.h>
#include <sys/sf_buf.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_param.h>
#include <amd64/isa/isa.h>
#ifdef COMPAT_IA32
extern struct sysentvec ia32_freebsd_sysvec;
#endif
static void cpu_reset_real(void);
#ifdef SMP
static void cpu_reset_proxy(void);
static u_int cpu_reset_proxyid;
static volatile u_int cpu_reset_proxy_active;
#endif
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb, set up the stack so that the child
* ready to run and return to user mode.
*/
void
cpu_fork(td1, p2, td2, flags)
register struct thread *td1;
register struct proc *p2;
struct thread *td2;
int flags;
{
register struct proc *p1;
struct pcb *pcb2;
struct mdproc *mdp2;
p1 = td1->td_proc;
if ((flags & RFPROC) == 0)
return;
/* Ensure that p1's pcb is up to date. */
fpuexit(td1);
/* Point the pcb to the top of the stack */
pcb2 = (struct pcb *)(td2->td_kstack +
td2->td_kstack_pages * PAGE_SIZE) - 1;
td2->td_pcb = pcb2;
/* Copy p1's pcb */
bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
/* Point mdproc and then copy over td1's contents */
mdp2 = &p2->p_md;
bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
/*
* Create a new fresh stack for the new process.
* Copy the trap frame for the return to user mode as if from a
* syscall. This copies most of the user mode register values.
*/
td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
td2->td_frame->tf_rax = 0; /* Child returns zero */
td2->td_frame->tf_rflags &= ~PSL_C; /* success */
td2->td_frame->tf_rdx = 1;
/*
* If the parent process has the trap bit set (i.e. a debugger had
* single stepped the process to the system call), we need to clear
* the trap flag from the new frame unless the debugger had set PF_FORK
* on the parent. Otherwise, the child will receive a (likely
* unexpected) SIGTRAP when it executes the first instruction after
* returning to userland.
*/
if ((p1->p_pfsflags & PF_FORK) == 0)
td2->td_frame->tf_rflags &= ~PSL_T;
/*
* Set registers for trampoline to user mode. Leave space for the
* return address on stack. These are the kernel mode register values.
*/
pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
pcb2->pcb_r12 = (register_t)fork_return; /* fork_trampoline argument */
pcb2->pcb_rbp = 0;
pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
pcb2->pcb_rbx = (register_t)td2; /* fork_trampoline argument */
pcb2->pcb_rip = (register_t)fork_trampoline;
/*-
* pcb2->pcb_dr*: cloned above.
* pcb2->pcb_savefpu: cloned above.
* pcb2->pcb_flags: cloned above.
* pcb2->pcb_onfault: cloned above (always NULL here?).
* pcb2->pcb_[fg]sbase: cloned above
*/
/* Setup to release sched_lock in fork_exit(). */
td2->td_md.md_spinlock_count = 1;
td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
/*
* Now, cpu_switch() can schedule the new process.
* pcb_rsp is loaded pointing to the cpu_switch() stack frame
* containing the return address when exiting cpu_switch.
* This will normally be to fork_trampoline(), which will have
* %ebx loaded with the new proc's pointer. fork_trampoline()
* will set up a stack to call fork_return(p, frame); to complete
* the return to user-mode.
*/
}
/*
* Intercept the return address from a freshly forked process that has NOT
* been scheduled yet.
*
* This is needed to make kernel threads stay in kernel mode.
*/
void
cpu_set_fork_handler(td, func, arg)
struct thread *td;
void (*func)(void *);
void *arg;
{
/*
* Note that the trap frame follows the args, so the function
* is really called like this: func(arg, frame);
*/
td->td_pcb->pcb_r12 = (long) func; /* function */
td->td_pcb->pcb_rbx = (long) arg; /* first arg */
}
void
cpu_exit(struct thread *td)
{
}
void
cpu_thread_exit(struct thread *td)
{
if (td == PCPU_GET(fpcurthread))
fpudrop();
/* Disable any hardware breakpoints. */
if (td->td_pcb->pcb_flags & PCB_DBREGS) {
reset_dbregs();
td->td_pcb->pcb_flags &= ~PCB_DBREGS;
}
}
void
cpu_thread_clean(struct thread *td)
{
}
void
cpu_thread_swapin(struct thread *td)
{
}
void
cpu_thread_swapout(struct thread *td)
{
}
void
cpu_thread_setup(struct thread *td)
{
td->td_pcb = (struct pcb *)(td->td_kstack +
td->td_kstack_pages * PAGE_SIZE) - 1;
td->td_frame = (struct trapframe *)td->td_pcb - 1;
}
/*
* Initialize machine state (pcb and trap frame) for a new thread about to
* upcall. Put enough state in the new thread's PCB to get it to go back
* userret(), where we can intercept it again to set the return (upcall)
* Address and stack, along with those from upcals that are from other sources
* such as those generated in thread_userret() itself.
*/
void
cpu_set_upcall(struct thread *td, struct thread *td0)
{
struct pcb *pcb2;
/* Point the pcb to the top of the stack. */
pcb2 = td->td_pcb;
/*
* Copy the upcall pcb. This loads kernel regs.
* Those not loaded individually below get their default
* values here.
*
* XXXKSE It might be a good idea to simply skip this as
* the values of the other registers may be unimportant.
* This would remove any requirement for knowing the KSE
* at this time (see the matching comment below for
* more analysis) (need a good safe default).
*/
bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
pcb2->pcb_flags &= ~PCB_FPUINITDONE;
/*
* Create a new fresh stack for the new thread.
* Don't forget to set this stack value into whatever supplies
* the address for the fault handlers.
* The contexts are filled in at the time we actually DO the
* upcall as only then do we know which KSE we got.
*/
bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
/*
* Set registers for trampoline to user mode. Leave space for the
* return address on stack. These are the kernel mode register values.
*/
pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
pcb2->pcb_r12 = (register_t)fork_return; /* trampoline arg */
pcb2->pcb_rbp = 0;
pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *); /* trampoline arg */
pcb2->pcb_rbx = (register_t)td; /* trampoline arg */
pcb2->pcb_rip = (register_t)fork_trampoline;
/*
* If we didn't copy the pcb, we'd need to do the following registers:
* pcb2->pcb_dr*: cloned above.
* pcb2->pcb_savefpu: cloned above.
* pcb2->pcb_onfault: cloned above (always NULL here?).
* pcb2->pcb_[fg]sbase: cloned above
*/
/* Setup to release sched_lock in fork_exit(). */
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
}
/*
* Set that machine state for performing an upcall that has to
* be done in thread_userret() so that those upcalls generated
* in thread_userret() itself can be done as well.
*/
void
cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
stack_t *stack)
{
/*
* Do any extra cleaning that needs to be done.
* The thread may have optional components
* that are not present in a fresh thread.
* This may be a recycled thread so make it look
* as though it's newly allocated.
*/
cpu_thread_clean(td);
#ifdef COMPAT_IA32
if (td->td_proc->p_sysent == &ia32_freebsd_sysvec) {
/*
* Set the trap frame to point at the beginning of the uts
* function.
*/
td->td_frame->tf_rbp = 0;
td->td_frame->tf_rsp =
(((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
td->td_frame->tf_rip = (uintptr_t)entry;
/*
* Pass the address of the mailbox for this kse to the uts
* function as a parameter on the stack.
*/
suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)),
(uint32_t)(uintptr_t)arg);
return;
}
#endif
/*
* Set the trap frame to point at the beginning of the uts
* function.
*/
td->td_frame->tf_rbp = 0;
td->td_frame->tf_rsp =
((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
td->td_frame->tf_rsp -= 8;
td->td_frame->tf_rip = (register_t)entry;
/*
* Pass the address of the mailbox for this kse to the uts
* function as a parameter on the stack.
*/
td->td_frame->tf_rdi = (register_t)arg;
}
int
cpu_set_user_tls(struct thread *td, void *tls_base)
{
if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
return (EINVAL);
#ifdef COMPAT_IA32
if (td->td_proc->p_sysent == &ia32_freebsd_sysvec) {
if (td == curthread) {
critical_enter();
td->td_pcb->pcb_gsbase = (register_t)tls_base;
wrmsr(MSR_KGSBASE, td->td_pcb->pcb_gsbase);
critical_exit();
} else {
td->td_pcb->pcb_gsbase = (register_t)tls_base;
}
return (0);
}
#endif
if (td == curthread) {
critical_enter();
td->td_pcb->pcb_fsbase = (register_t)tls_base;
wrmsr(MSR_FSBASE, td->td_pcb->pcb_fsbase);
critical_exit();
} else {
td->td_pcb->pcb_fsbase = (register_t)tls_base;
}
return (0);
}
#ifdef SMP
static void
cpu_reset_proxy()
{
cpu_reset_proxy_active = 1;
while (cpu_reset_proxy_active == 1)
; /* Wait for other cpu to see that we've started */
stop_cpus((1<<cpu_reset_proxyid));
printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
DELAY(1000000);
cpu_reset_real();
}
#endif
void
cpu_reset()
{
#ifdef SMP
u_int cnt, map;
if (smp_active) {
map = PCPU_GET(other_cpus) & ~stopped_cpus;
if (map != 0) {
printf("cpu_reset: Stopping other CPUs\n");
stop_cpus(map);
}
if (PCPU_GET(cpuid) != 0) {
cpu_reset_proxyid = PCPU_GET(cpuid);
cpustop_restartfunc = cpu_reset_proxy;
cpu_reset_proxy_active = 0;
printf("cpu_reset: Restarting BSP\n");
/* Restart CPU #0. */
atomic_store_rel_int(&started_cpus, 1 << 0);
cnt = 0;
while (cpu_reset_proxy_active == 0 && cnt < 10000000)
cnt++; /* Wait for BSP to announce restart */
if (cpu_reset_proxy_active == 0)
printf("cpu_reset: Failed to restart BSP\n");
enable_intr();
cpu_reset_proxy_active = 2;
while (1);
/* NOTREACHED */
}
DELAY(1000000);
}
#endif
cpu_reset_real();
/* NOTREACHED */
}
static void
cpu_reset_real()
{
/*
* Attempt to do a CPU reset via the keyboard controller,
* do not turn off GateA20, as any machine that fails
* to do the reset here would then end up in no man's land.
*/
outb(IO_KBD + 4, 0xFE);
DELAY(500000); /* wait 0.5 sec to see if that did it */
printf("Keyboard reset did not work, attempting CPU shutdown\n");
DELAY(1000000); /* wait 1 sec for printf to complete */
/* Force a shutdown by unmapping entire address space. */
bzero((caddr_t)PML4map, PAGE_SIZE);
/* "good night, sweet prince .... <THUNK!>" */
invltlb();
/* NOTREACHED */
while(1);
}
/*
* Allocate an sf_buf for the given vm_page. On this machine, however, there
* is no sf_buf object. Instead, an opaque pointer to the given vm_page is
* returned.
*/
struct sf_buf *
sf_buf_alloc(struct vm_page *m, int pri)
{
return ((struct sf_buf *)m);
}
/*
* Free the sf_buf. In fact, do nothing because there are no resources
* associated with the sf_buf.
*/
void
sf_buf_free(struct sf_buf *sf)
{
}
/*
* Software interrupt handler for queued VM system processing.
*/
void
swi_vm(void *dummy)
{
if (busdma_swi_pending != 0)
busdma_swi();
}
/*
* Tell whether this address is in some physical memory region.
* Currently used by the kernel coredump code in order to avoid
* dumping the ``ISA memory hole'' which could cause indefinite hangs,
* or other unpredictable behaviour.
*/
int
is_physical_memory(vm_paddr_t addr)
{
#ifdef DEV_ISA
/* The ISA ``memory hole''. */
if (addr >= 0xa0000 && addr < 0x100000)
return 0;
#endif
/*
* stuff other tests for known memory-mapped devices (PCI?)
* here
*/
return 1;
}