freebsd-skq/sys/kern/kern_resource.c
jhb 7a9ff8857d Use the reference count API to manage the reference counts for process
limit structures rather than using pool mutexes to protect the reference
counts.

Tested on:	i386, alpha, sparc64
2005-09-27 18:07:05 +00:00

1172 lines
26 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/file.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/time.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
static struct mtx uihashtbl_mtx;
static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
static u_long uihash; /* size of hash table - 1 */
static void calcru1(struct proc *p, struct rusage_ext *ruxp,
struct timeval *up, struct timeval *sp);
static int donice(struct thread *td, struct proc *chgp, int n);
static struct uidinfo *uilookup(uid_t uid);
/*
* Resource controls and accounting.
*/
#ifndef _SYS_SYSPROTO_H_
struct getpriority_args {
int which;
int who;
};
#endif
/*
* MPSAFE
*/
int
getpriority(td, uap)
struct thread *td;
register struct getpriority_args *uap;
{
struct proc *p;
struct pgrp *pg;
int error, low;
error = 0;
low = PRIO_MAX + 1;
switch (uap->which) {
case PRIO_PROCESS:
if (uap->who == 0)
low = td->td_proc->p_nice;
else {
p = pfind(uap->who);
if (p == NULL)
break;
if (p_cansee(td, p) == 0)
low = p->p_nice;
PROC_UNLOCK(p);
}
break;
case PRIO_PGRP:
sx_slock(&proctree_lock);
if (uap->who == 0) {
pg = td->td_proc->p_pgrp;
PGRP_LOCK(pg);
} else {
pg = pgfind(uap->who);
if (pg == NULL) {
sx_sunlock(&proctree_lock);
break;
}
}
sx_sunlock(&proctree_lock);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (!p_cansee(td, p)) {
if (p->p_nice < low)
low = p->p_nice;
}
PROC_UNLOCK(p);
}
PGRP_UNLOCK(pg);
break;
case PRIO_USER:
if (uap->who == 0)
uap->who = td->td_ucred->cr_uid;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
PROC_LOCK(p);
if (!p_cansee(td, p) &&
p->p_ucred->cr_uid == uap->who) {
if (p->p_nice < low)
low = p->p_nice;
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
break;
default:
error = EINVAL;
break;
}
if (low == PRIO_MAX + 1 && error == 0)
error = ESRCH;
td->td_retval[0] = low;
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct setpriority_args {
int which;
int who;
int prio;
};
#endif
/*
* MPSAFE
*/
int
setpriority(td, uap)
struct thread *td;
struct setpriority_args *uap;
{
struct proc *curp, *p;
struct pgrp *pg;
int found = 0, error = 0;
curp = td->td_proc;
switch (uap->which) {
case PRIO_PROCESS:
if (uap->who == 0) {
PROC_LOCK(curp);
error = donice(td, curp, uap->prio);
PROC_UNLOCK(curp);
} else {
p = pfind(uap->who);
if (p == 0)
break;
if (p_cansee(td, p) == 0)
error = donice(td, p, uap->prio);
PROC_UNLOCK(p);
}
found++;
break;
case PRIO_PGRP:
sx_slock(&proctree_lock);
if (uap->who == 0) {
pg = curp->p_pgrp;
PGRP_LOCK(pg);
} else {
pg = pgfind(uap->who);
if (pg == NULL) {
sx_sunlock(&proctree_lock);
break;
}
}
sx_sunlock(&proctree_lock);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (!p_cansee(td, p)) {
error = donice(td, p, uap->prio);
found++;
}
PROC_UNLOCK(p);
}
PGRP_UNLOCK(pg);
break;
case PRIO_USER:
if (uap->who == 0)
uap->who = td->td_ucred->cr_uid;
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_ucred->cr_uid == uap->who &&
!p_cansee(td, p)) {
error = donice(td, p, uap->prio);
found++;
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
break;
default:
error = EINVAL;
break;
}
if (found == 0 && error == 0)
error = ESRCH;
return (error);
}
/*
* Set "nice" for a (whole) process.
*/
static int
donice(struct thread *td, struct proc *p, int n)
{
int error;
PROC_LOCK_ASSERT(p, MA_OWNED);
if ((error = p_cansched(td, p)))
return (error);
if (n > PRIO_MAX)
n = PRIO_MAX;
if (n < PRIO_MIN)
n = PRIO_MIN;
if (n < p->p_nice && suser(td) != 0)
return (EACCES);
mtx_lock_spin(&sched_lock);
sched_nice(p, n);
mtx_unlock_spin(&sched_lock);
return (0);
}
/*
* Set realtime priority.
*
* MPSAFE
*/
#ifndef _SYS_SYSPROTO_H_
struct rtprio_args {
int function;
pid_t pid;
struct rtprio *rtp;
};
#endif
int
rtprio(td, uap)
struct thread *td; /* curthread */
register struct rtprio_args *uap;
{
struct proc *curp;
struct proc *p;
struct ksegrp *kg;
struct rtprio rtp;
int cierror, error;
/* Perform copyin before acquiring locks if needed. */
if (uap->function == RTP_SET)
cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
else
cierror = 0;
curp = td->td_proc;
if (uap->pid == 0) {
p = curp;
PROC_LOCK(p);
} else {
p = pfind(uap->pid);
if (p == NULL)
return (ESRCH);
}
switch (uap->function) {
case RTP_LOOKUP:
if ((error = p_cansee(td, p)))
break;
mtx_lock_spin(&sched_lock);
/*
* Return OUR priority if no pid specified,
* or if one is, report the highest priority
* in the process. There isn't much more you can do as
* there is only room to return a single priority.
* XXXKSE: maybe need a new interface to report
* priorities of multiple system scope threads.
* Note: specifying our own pid is not the same
* as leaving it zero.
*/
if (uap->pid == 0) {
pri_to_rtp(td->td_ksegrp, &rtp);
} else {
struct rtprio rtp2;
rtp.type = RTP_PRIO_IDLE;
rtp.prio = RTP_PRIO_MAX;
FOREACH_KSEGRP_IN_PROC(p, kg) {
pri_to_rtp(kg, &rtp2);
if (rtp2.type < rtp.type ||
(rtp2.type == rtp.type &&
rtp2.prio < rtp.prio)) {
rtp.type = rtp2.type;
rtp.prio = rtp2.prio;
}
}
}
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
case RTP_SET:
if ((error = p_cansched(td, p)) || (error = cierror))
break;
/* Disallow setting rtprio in most cases if not superuser. */
if (suser(td) != 0) {
/* can't set someone else's */
if (uap->pid) {
error = EPERM;
break;
}
/* can't set realtime priority */
/*
* Realtime priority has to be restricted for reasons which should be
* obvious. However, for idle priority, there is a potential for
* system deadlock if an idleprio process gains a lock on a resource
* that other processes need (and the idleprio process can't run
* due to a CPU-bound normal process). Fix me! XXX
*/
#if 0
if (RTP_PRIO_IS_REALTIME(rtp.type)) {
#else
if (rtp.type != RTP_PRIO_NORMAL) {
#endif
error = EPERM;
break;
}
}
/*
* If we are setting our own priority, set just our
* KSEGRP but if we are doing another process,
* do all the groups on that process. If we
* specify our own pid we do the latter.
*/
mtx_lock_spin(&sched_lock);
if (uap->pid == 0) {
error = rtp_to_pri(&rtp, td->td_ksegrp);
} else {
FOREACH_KSEGRP_IN_PROC(p, kg) {
if ((error = rtp_to_pri(&rtp, kg)) != 0) {
break;
}
}
}
mtx_unlock_spin(&sched_lock);
break;
default:
error = EINVAL;
break;
}
PROC_UNLOCK(p);
return (error);
}
int
rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
{
mtx_assert(&sched_lock, MA_OWNED);
if (rtp->prio > RTP_PRIO_MAX)
return (EINVAL);
switch (RTP_PRIO_BASE(rtp->type)) {
case RTP_PRIO_REALTIME:
kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
break;
case RTP_PRIO_NORMAL:
kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
break;
case RTP_PRIO_IDLE:
kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
break;
default:
return (EINVAL);
}
sched_class(kg, rtp->type);
if (curthread->td_ksegrp == kg) {
sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
}
return (0);
}
void
pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
{
mtx_assert(&sched_lock, MA_OWNED);
switch (PRI_BASE(kg->kg_pri_class)) {
case PRI_REALTIME:
rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
break;
case PRI_TIMESHARE:
rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
break;
case PRI_IDLE:
rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
break;
default:
break;
}
rtp->type = kg->kg_pri_class;
}
#if defined(COMPAT_43)
#ifndef _SYS_SYSPROTO_H_
struct osetrlimit_args {
u_int which;
struct orlimit *rlp;
};
#endif
/*
* MPSAFE
*/
int
osetrlimit(td, uap)
struct thread *td;
register struct osetrlimit_args *uap;
{
struct orlimit olim;
struct rlimit lim;
int error;
if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
return (error);
lim.rlim_cur = olim.rlim_cur;
lim.rlim_max = olim.rlim_max;
error = kern_setrlimit(td, uap->which, &lim);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct ogetrlimit_args {
u_int which;
struct orlimit *rlp;
};
#endif
/*
* MPSAFE
*/
int
ogetrlimit(td, uap)
struct thread *td;
register struct ogetrlimit_args *uap;
{
struct orlimit olim;
struct rlimit rl;
struct proc *p;
int error;
if (uap->which >= RLIM_NLIMITS)
return (EINVAL);
p = td->td_proc;
PROC_LOCK(p);
lim_rlimit(p, uap->which, &rl);
PROC_UNLOCK(p);
/*
* XXX would be more correct to convert only RLIM_INFINITY to the
* old RLIM_INFINITY and fail with EOVERFLOW for other larger
* values. Most 64->32 and 32->16 conversions, including not
* unimportant ones of uids are even more broken than what we
* do here (they blindly truncate). We don't do this correctly
* here since we have little experience with EOVERFLOW yet.
* Elsewhere, getuid() can't fail...
*/
olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
error = copyout(&olim, uap->rlp, sizeof(olim));
return (error);
}
#endif /* COMPAT_43 */
#ifndef _SYS_SYSPROTO_H_
struct __setrlimit_args {
u_int which;
struct rlimit *rlp;
};
#endif
/*
* MPSAFE
*/
int
setrlimit(td, uap)
struct thread *td;
register struct __setrlimit_args *uap;
{
struct rlimit alim;
int error;
if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
return (error);
error = kern_setrlimit(td, uap->which, &alim);
return (error);
}
int
kern_setrlimit(td, which, limp)
struct thread *td;
u_int which;
struct rlimit *limp;
{
struct plimit *newlim, *oldlim;
struct proc *p;
register struct rlimit *alimp;
rlim_t oldssiz;
int error;
if (which >= RLIM_NLIMITS)
return (EINVAL);
/*
* Preserve historical bugs by treating negative limits as unsigned.
*/
if (limp->rlim_cur < 0)
limp->rlim_cur = RLIM_INFINITY;
if (limp->rlim_max < 0)
limp->rlim_max = RLIM_INFINITY;
oldssiz = 0;
p = td->td_proc;
newlim = lim_alloc();
PROC_LOCK(p);
oldlim = p->p_limit;
alimp = &oldlim->pl_rlimit[which];
if (limp->rlim_cur > alimp->rlim_max ||
limp->rlim_max > alimp->rlim_max)
if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
PROC_UNLOCK(p);
lim_free(newlim);
return (error);
}
if (limp->rlim_cur > limp->rlim_max)
limp->rlim_cur = limp->rlim_max;
lim_copy(newlim, oldlim);
alimp = &newlim->pl_rlimit[which];
switch (which) {
case RLIMIT_CPU:
mtx_lock_spin(&sched_lock);
p->p_cpulimit = limp->rlim_cur;
mtx_unlock_spin(&sched_lock);
break;
case RLIMIT_DATA:
if (limp->rlim_cur > maxdsiz)
limp->rlim_cur = maxdsiz;
if (limp->rlim_max > maxdsiz)
limp->rlim_max = maxdsiz;
break;
case RLIMIT_STACK:
if (limp->rlim_cur > maxssiz)
limp->rlim_cur = maxssiz;
if (limp->rlim_max > maxssiz)
limp->rlim_max = maxssiz;
oldssiz = alimp->rlim_cur;
break;
case RLIMIT_NOFILE:
if (limp->rlim_cur > maxfilesperproc)
limp->rlim_cur = maxfilesperproc;
if (limp->rlim_max > maxfilesperproc)
limp->rlim_max = maxfilesperproc;
break;
case RLIMIT_NPROC:
if (limp->rlim_cur > maxprocperuid)
limp->rlim_cur = maxprocperuid;
if (limp->rlim_max > maxprocperuid)
limp->rlim_max = maxprocperuid;
if (limp->rlim_cur < 1)
limp->rlim_cur = 1;
if (limp->rlim_max < 1)
limp->rlim_max = 1;
break;
}
*alimp = *limp;
p->p_limit = newlim;
PROC_UNLOCK(p);
lim_free(oldlim);
if (which == RLIMIT_STACK) {
/*
* Stack is allocated to the max at exec time with only
* "rlim_cur" bytes accessible. If stack limit is going
* up make more accessible, if going down make inaccessible.
*/
if (limp->rlim_cur != oldssiz) {
vm_offset_t addr;
vm_size_t size;
vm_prot_t prot;
if (limp->rlim_cur > oldssiz) {
prot = p->p_sysent->sv_stackprot;
size = limp->rlim_cur - oldssiz;
addr = p->p_sysent->sv_usrstack -
limp->rlim_cur;
} else {
prot = VM_PROT_NONE;
size = oldssiz - limp->rlim_cur;
addr = p->p_sysent->sv_usrstack - oldssiz;
}
addr = trunc_page(addr);
size = round_page(size);
(void)vm_map_protect(&p->p_vmspace->vm_map,
addr, addr + size, prot, FALSE);
}
}
return (0);
}
#ifndef _SYS_SYSPROTO_H_
struct __getrlimit_args {
u_int which;
struct rlimit *rlp;
};
#endif
/*
* MPSAFE
*/
/* ARGSUSED */
int
getrlimit(td, uap)
struct thread *td;
register struct __getrlimit_args *uap;
{
struct rlimit rlim;
struct proc *p;
int error;
if (uap->which >= RLIM_NLIMITS)
return (EINVAL);
p = td->td_proc;
PROC_LOCK(p);
lim_rlimit(p, uap->which, &rlim);
PROC_UNLOCK(p);
error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
return (error);
}
/*
* Transform the running time and tick information in proc p into user,
* system, and interrupt time usage.
*/
void
calcru(p, up, sp)
struct proc *p;
struct timeval *up;
struct timeval *sp;
{
struct bintime bt;
struct rusage_ext rux;
struct thread *td;
int bt_valid;
PROC_LOCK_ASSERT(p, MA_OWNED);
mtx_assert(&sched_lock, MA_NOTOWNED);
bt_valid = 0;
mtx_lock_spin(&sched_lock);
rux = p->p_rux;
FOREACH_THREAD_IN_PROC(p, td) {
if (TD_IS_RUNNING(td)) {
/*
* Adjust for the current time slice. This is
* actually fairly important since the error here is
* on the order of a time quantum which is much
* greater than the precision of binuptime().
*/
KASSERT(td->td_oncpu != NOCPU,
("%s: running thread has no CPU", __func__));
if (!bt_valid) {
binuptime(&bt);
bt_valid = 1;
}
bintime_add(&rux.rux_runtime, &bt);
bintime_sub(&rux.rux_runtime,
&pcpu_find(td->td_oncpu)->pc_switchtime);
}
}
mtx_unlock_spin(&sched_lock);
calcru1(p, &rux, up, sp);
p->p_rux.rux_uu = rux.rux_uu;
p->p_rux.rux_su = rux.rux_su;
p->p_rux.rux_iu = rux.rux_iu;
}
void
calccru(p, up, sp)
struct proc *p;
struct timeval *up;
struct timeval *sp;
{
PROC_LOCK_ASSERT(p, MA_OWNED);
calcru1(p, &p->p_crux, up, sp);
}
static void
calcru1(p, ruxp, up, sp)
struct proc *p;
struct rusage_ext *ruxp;
struct timeval *up;
struct timeval *sp;
{
struct timeval tv;
/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
ut = ruxp->rux_uticks;
st = ruxp->rux_sticks;
it = ruxp->rux_iticks;
tt = ut + st + it;
if (tt == 0) {
st = 1;
tt = 1;
}
bintime2timeval(&ruxp->rux_runtime, &tv);
tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
ptu = ruxp->rux_uu + ruxp->rux_su + ruxp->rux_iu;
if (tu < ptu) {
printf(
"calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
(uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
tu = ptu;
}
if ((int64_t)tu < 0) {
printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
(intmax_t)tu, p->p_pid, p->p_comm);
tu = ptu;
}
/* Subdivide tu. */
uu = (tu * ut) / tt;
su = (tu * st) / tt;
iu = tu - uu - su;
/* Enforce monotonicity. */
if (uu < ruxp->rux_uu || su < ruxp->rux_su || iu < ruxp->rux_iu) {
if (uu < ruxp->rux_uu)
uu = ruxp->rux_uu;
else if (uu + ruxp->rux_su + ruxp->rux_iu > tu)
uu = tu - ruxp->rux_su - ruxp->rux_iu;
if (st == 0)
su = ruxp->rux_su;
else {
su = ((tu - uu) * st) / (st + it);
if (su < ruxp->rux_su)
su = ruxp->rux_su;
else if (uu + su + ruxp->rux_iu > tu)
su = tu - uu - ruxp->rux_iu;
}
KASSERT(uu + su + ruxp->rux_iu <= tu,
("calcru: monotonisation botch 1"));
iu = tu - uu - su;
KASSERT(iu >= ruxp->rux_iu,
("calcru: monotonisation botch 2"));
}
ruxp->rux_uu = uu;
ruxp->rux_su = su;
ruxp->rux_iu = iu;
up->tv_sec = uu / 1000000;
up->tv_usec = uu % 1000000;
sp->tv_sec = su / 1000000;
sp->tv_usec = su % 1000000;
}
#ifndef _SYS_SYSPROTO_H_
struct getrusage_args {
int who;
struct rusage *rusage;
};
#endif
/*
* MPSAFE
*/
int
getrusage(td, uap)
register struct thread *td;
register struct getrusage_args *uap;
{
struct rusage ru;
int error;
error = kern_getrusage(td, uap->who, &ru);
if (error == 0)
error = copyout(&ru, uap->rusage, sizeof(struct rusage));
return (error);
}
int
kern_getrusage(td, who, rup)
struct thread *td;
int who;
struct rusage *rup;
{
struct proc *p;
p = td->td_proc;
PROC_LOCK(p);
switch (who) {
case RUSAGE_SELF:
*rup = p->p_stats->p_ru;
calcru(p, &rup->ru_utime, &rup->ru_stime);
break;
case RUSAGE_CHILDREN:
*rup = p->p_stats->p_cru;
calccru(p, &rup->ru_utime, &rup->ru_stime);
break;
default:
PROC_UNLOCK(p);
return (EINVAL);
}
PROC_UNLOCK(p);
return (0);
}
void
ruadd(ru, rux, ru2, rux2)
struct rusage *ru;
struct rusage_ext *rux;
struct rusage *ru2;
struct rusage_ext *rux2;
{
register long *ip, *ip2;
register int i;
bintime_add(&rux->rux_runtime, &rux2->rux_runtime);
rux->rux_uticks += rux2->rux_uticks;
rux->rux_sticks += rux2->rux_sticks;
rux->rux_iticks += rux2->rux_iticks;
rux->rux_uu += rux2->rux_uu;
rux->rux_su += rux2->rux_su;
rux->rux_iu += rux2->rux_iu;
if (ru->ru_maxrss < ru2->ru_maxrss)
ru->ru_maxrss = ru2->ru_maxrss;
ip = &ru->ru_first;
ip2 = &ru2->ru_first;
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
*ip++ += *ip2++;
}
/*
* Allocate a new resource limits structure and initialize its
* reference count and mutex pointer.
*/
struct plimit *
lim_alloc()
{
struct plimit *limp;
limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
refcount_init(&limp->pl_refcnt, 1);
return (limp);
}
struct plimit *
lim_hold(limp)
struct plimit *limp;
{
refcount_acquire(&limp->pl_refcnt);
return (limp);
}
void
lim_free(limp)
struct plimit *limp;
{
KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
if (refcount_release(&limp->pl_refcnt))
free((void *)limp, M_PLIMIT);
}
/*
* Make a copy of the plimit structure.
* We share these structures copy-on-write after fork.
*/
void
lim_copy(dst, src)
struct plimit *dst, *src;
{
KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
}
/*
* Return the hard limit for a particular system resource. The
* which parameter specifies the index into the rlimit array.
*/
rlim_t
lim_max(struct proc *p, int which)
{
struct rlimit rl;
lim_rlimit(p, which, &rl);
return (rl.rlim_max);
}
/*
* Return the current (soft) limit for a particular system resource.
* The which parameter which specifies the index into the rlimit array
*/
rlim_t
lim_cur(struct proc *p, int which)
{
struct rlimit rl;
lim_rlimit(p, which, &rl);
return (rl.rlim_cur);
}
/*
* Return a copy of the entire rlimit structure for the system limit
* specified by 'which' in the rlimit structure pointed to by 'rlp'.
*/
void
lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
{
PROC_LOCK_ASSERT(p, MA_OWNED);
KASSERT(which >= 0 && which < RLIM_NLIMITS,
("request for invalid resource limit"));
*rlp = p->p_limit->pl_rlimit[which];
}
/*
* Find the uidinfo structure for a uid. This structure is used to
* track the total resource consumption (process count, socket buffer
* size, etc.) for the uid and impose limits.
*/
void
uihashinit()
{
uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
}
/*
* Look up a uidinfo struct for the parameter uid.
* uihashtbl_mtx must be locked.
*/
static struct uidinfo *
uilookup(uid)
uid_t uid;
{
struct uihashhead *uipp;
struct uidinfo *uip;
mtx_assert(&uihashtbl_mtx, MA_OWNED);
uipp = UIHASH(uid);
LIST_FOREACH(uip, uipp, ui_hash)
if (uip->ui_uid == uid)
break;
return (uip);
}
/*
* Find or allocate a struct uidinfo for a particular uid.
* Increase refcount on uidinfo struct returned.
* uifree() should be called on a struct uidinfo when released.
*/
struct uidinfo *
uifind(uid)
uid_t uid;
{
struct uidinfo *old_uip, *uip;
mtx_lock(&uihashtbl_mtx);
uip = uilookup(uid);
if (uip == NULL) {
mtx_unlock(&uihashtbl_mtx);
uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
mtx_lock(&uihashtbl_mtx);
/*
* There's a chance someone created our uidinfo while we
* were in malloc and not holding the lock, so we have to
* make sure we don't insert a duplicate uidinfo.
*/
if ((old_uip = uilookup(uid)) != NULL) {
/* Someone else beat us to it. */
free(uip, M_UIDINFO);
uip = old_uip;
} else {
uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
uip->ui_uid = uid;
LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
}
}
uihold(uip);
mtx_unlock(&uihashtbl_mtx);
return (uip);
}
/*
* Place another refcount on a uidinfo struct.
*/
void
uihold(uip)
struct uidinfo *uip;
{
UIDINFO_LOCK(uip);
uip->ui_ref++;
UIDINFO_UNLOCK(uip);
}
/*-
* Since uidinfo structs have a long lifetime, we use an
* opportunistic refcounting scheme to avoid locking the lookup hash
* for each release.
*
* If the refcount hits 0, we need to free the structure,
* which means we need to lock the hash.
* Optimal case:
* After locking the struct and lowering the refcount, if we find
* that we don't need to free, simply unlock and return.
* Suboptimal case:
* If refcount lowering results in need to free, bump the count
* back up, loose the lock and aquire the locks in the proper
* order to try again.
*/
void
uifree(uip)
struct uidinfo *uip;
{
/* Prepare for optimal case. */
UIDINFO_LOCK(uip);
if (--uip->ui_ref != 0) {
UIDINFO_UNLOCK(uip);
return;
}
/* Prepare for suboptimal case. */
uip->ui_ref++;
UIDINFO_UNLOCK(uip);
mtx_lock(&uihashtbl_mtx);
UIDINFO_LOCK(uip);
/*
* We must subtract one from the count again because we backed out
* our initial subtraction before dropping the lock.
* Since another thread may have added a reference after we dropped the
* initial lock we have to test for zero again.
*/
if (--uip->ui_ref == 0) {
LIST_REMOVE(uip, ui_hash);
mtx_unlock(&uihashtbl_mtx);
if (uip->ui_sbsize != 0)
printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
uip->ui_uid, (intmax_t)uip->ui_sbsize);
if (uip->ui_proccnt != 0)
printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
uip->ui_uid, uip->ui_proccnt);
UIDINFO_UNLOCK(uip);
FREE(uip, M_UIDINFO);
return;
}
mtx_unlock(&uihashtbl_mtx);
UIDINFO_UNLOCK(uip);
}
/*
* Change the count associated with number of processes
* a given user is using. When 'max' is 0, don't enforce a limit
*/
int
chgproccnt(uip, diff, max)
struct uidinfo *uip;
int diff;
int max;
{
UIDINFO_LOCK(uip);
/* Don't allow them to exceed max, but allow subtraction. */
if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
UIDINFO_UNLOCK(uip);
return (0);
}
uip->ui_proccnt += diff;
if (uip->ui_proccnt < 0)
printf("negative proccnt for uid = %d\n", uip->ui_uid);
UIDINFO_UNLOCK(uip);
return (1);
}
/*
* Change the total socket buffer size a user has used.
*/
int
chgsbsize(uip, hiwat, to, max)
struct uidinfo *uip;
u_int *hiwat;
u_int to;
rlim_t max;
{
rlim_t new;
UIDINFO_LOCK(uip);
new = uip->ui_sbsize + to - *hiwat;
/* Don't allow them to exceed max, but allow subtraction. */
if (to > *hiwat && new > max) {
UIDINFO_UNLOCK(uip);
return (0);
}
uip->ui_sbsize = new;
UIDINFO_UNLOCK(uip);
*hiwat = to;
if (new < 0)
printf("negative sbsize for uid = %d\n", uip->ui_uid);
return (1);
}