ae591a440e
On arm64 (and possible other architectures) we are unable to use static DPCPU data in kernel modules. This is because the compiler will generate PC-relative accesses, however the runtime-linker expects to be able to relocate these. In preparation to fix this create two macros depending on if the data is global or static. Reviewed by: bz, emaste, markj Sponsored by: ABT Systems Ltd Differential Revision: https://reviews.freebsd.org/D16140
388 lines
9.4 KiB
C
388 lines
9.4 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright 2003-2011 Netlogic Microsystems (Netlogic). All rights
|
|
* reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Netlogic Microsystems ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* NETLOGIC_BSD */
|
|
|
|
/*
|
|
* Simple driver for the 32-bit interval counter built in to all
|
|
* MIPS32 CPUs.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/power.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timeet.h>
|
|
#include <sys/timetc.h>
|
|
|
|
#include <machine/hwfunc.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/locore.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/intr_machdep.h>
|
|
|
|
#include <mips/nlm/interrupt.h>
|
|
|
|
uint64_t counter_freq;
|
|
|
|
struct timecounter *platform_timecounter;
|
|
|
|
DPCPU_DEFINE_STATIC(uint32_t, cycles_per_tick);
|
|
static uint32_t cycles_per_usec;
|
|
|
|
DPCPU_DEFINE_STATIC(volatile uint32_t, counter_upper);
|
|
DPCPU_DEFINE_STATIC(volatile uint32_t, counter_lower_last);
|
|
DPCPU_DEFINE_STATIC(uint32_t, compare_ticks);
|
|
DPCPU_DEFINE_STATIC(uint32_t, lost_ticks);
|
|
|
|
struct clock_softc {
|
|
int intr_rid;
|
|
struct resource *intr_res;
|
|
void *intr_handler;
|
|
struct timecounter tc;
|
|
struct eventtimer et;
|
|
};
|
|
static struct clock_softc *softc;
|
|
|
|
/*
|
|
* Device methods
|
|
*/
|
|
static int clock_probe(device_t);
|
|
static void clock_identify(driver_t *, device_t);
|
|
static int clock_attach(device_t);
|
|
static unsigned counter_get_timecount(struct timecounter *tc);
|
|
|
|
void
|
|
mips_timer_early_init(uint64_t clock_hz)
|
|
{
|
|
/* Initialize clock early so that we can use DELAY sooner */
|
|
counter_freq = clock_hz;
|
|
cycles_per_usec = (clock_hz / (1000 * 1000));
|
|
}
|
|
|
|
void
|
|
platform_initclocks(void)
|
|
{
|
|
|
|
if (platform_timecounter != NULL)
|
|
tc_init(platform_timecounter);
|
|
}
|
|
|
|
static uint64_t
|
|
tick_ticker(void)
|
|
{
|
|
uint64_t ret;
|
|
uint32_t ticktock;
|
|
uint32_t t_lower_last, t_upper;
|
|
|
|
/*
|
|
* Disable preemption because we are working with cpu specific data.
|
|
*/
|
|
critical_enter();
|
|
|
|
/*
|
|
* Note that even though preemption is disabled, interrupts are
|
|
* still enabled. In particular there is a race with clock_intr()
|
|
* reading the values of 'counter_upper' and 'counter_lower_last'.
|
|
*
|
|
* XXX this depends on clock_intr() being executed periodically
|
|
* so that 'counter_upper' and 'counter_lower_last' are not stale.
|
|
*/
|
|
do {
|
|
t_upper = DPCPU_GET(counter_upper);
|
|
t_lower_last = DPCPU_GET(counter_lower_last);
|
|
} while (t_upper != DPCPU_GET(counter_upper));
|
|
|
|
ticktock = mips_rd_count();
|
|
|
|
critical_exit();
|
|
|
|
/* COUNT register wrapped around */
|
|
if (ticktock < t_lower_last)
|
|
t_upper++;
|
|
|
|
ret = ((uint64_t)t_upper << 32) | ticktock;
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
mips_timer_init_params(uint64_t platform_counter_freq, int double_count)
|
|
{
|
|
|
|
/*
|
|
* XXX: Do not use printf here: uart code 8250 may use DELAY so this
|
|
* function should be called before cninit.
|
|
*/
|
|
counter_freq = platform_counter_freq;
|
|
/*
|
|
* XXX: Some MIPS32 cores update the Count register only every two
|
|
* pipeline cycles.
|
|
* We know this because of status registers in CP0, make it automatic.
|
|
*/
|
|
if (double_count != 0)
|
|
counter_freq /= 2;
|
|
|
|
cycles_per_usec = counter_freq / (1 * 1000 * 1000);
|
|
set_cputicker(tick_ticker, counter_freq, 1);
|
|
}
|
|
|
|
static int
|
|
sysctl_machdep_counter_freq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
uint64_t freq;
|
|
|
|
if (softc == NULL)
|
|
return (EOPNOTSUPP);
|
|
freq = counter_freq;
|
|
error = sysctl_handle_64(oidp, &freq, sizeof(freq), req);
|
|
if (error == 0 && req->newptr != NULL) {
|
|
counter_freq = freq;
|
|
softc->et.et_frequency = counter_freq;
|
|
softc->tc.tc_frequency = counter_freq;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, OID_AUTO, counter_freq, CTLTYPE_U64 | CTLFLAG_RW,
|
|
NULL, 0, sysctl_machdep_counter_freq, "QU",
|
|
"Timecounter frequency in Hz");
|
|
|
|
static unsigned
|
|
counter_get_timecount(struct timecounter *tc)
|
|
{
|
|
|
|
return (mips_rd_count());
|
|
}
|
|
|
|
/*
|
|
* Wait for about n microseconds (at least!).
|
|
*/
|
|
void
|
|
DELAY(int n)
|
|
{
|
|
uint32_t cur, last, delta, usecs;
|
|
|
|
TSENTER();
|
|
/*
|
|
* This works by polling the timer and counting the number of
|
|
* microseconds that go by.
|
|
*/
|
|
last = mips_rd_count();
|
|
delta = usecs = 0;
|
|
|
|
while (n > usecs) {
|
|
cur = mips_rd_count();
|
|
|
|
/* Check to see if the timer has wrapped around. */
|
|
if (cur < last)
|
|
delta += cur + (0xffffffff - last) + 1;
|
|
else
|
|
delta += cur - last;
|
|
|
|
last = cur;
|
|
|
|
if (delta >= cycles_per_usec) {
|
|
usecs += delta / cycles_per_usec;
|
|
delta %= cycles_per_usec;
|
|
}
|
|
}
|
|
TSEXIT();
|
|
}
|
|
|
|
static int
|
|
clock_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
|
|
{
|
|
uint32_t fdiv, div, next;
|
|
|
|
if (period != 0)
|
|
div = (et->et_frequency * period) >> 32;
|
|
else
|
|
div = 0;
|
|
if (first != 0)
|
|
fdiv = (et->et_frequency * first) >> 32;
|
|
else
|
|
fdiv = div;
|
|
DPCPU_SET(cycles_per_tick, div);
|
|
next = mips_rd_count() + fdiv;
|
|
DPCPU_SET(compare_ticks, next);
|
|
mips_wr_compare(next);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
clock_stop(struct eventtimer *et)
|
|
{
|
|
|
|
DPCPU_SET(cycles_per_tick, 0);
|
|
mips_wr_compare(0xffffffff);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device section of file below
|
|
*/
|
|
static int
|
|
clock_intr(void *arg)
|
|
{
|
|
struct clock_softc *sc = (struct clock_softc *)arg;
|
|
uint32_t cycles_per_tick;
|
|
uint32_t count, compare_last, compare_next, lost_ticks;
|
|
|
|
cycles_per_tick = DPCPU_GET(cycles_per_tick);
|
|
/*
|
|
* Set next clock edge.
|
|
*/
|
|
count = mips_rd_count();
|
|
compare_last = DPCPU_GET(compare_ticks);
|
|
if (cycles_per_tick > 0) {
|
|
compare_next = count + cycles_per_tick;
|
|
DPCPU_SET(compare_ticks, compare_next);
|
|
mips_wr_compare(compare_next);
|
|
} else /* In one-shot mode timer should be stopped after the event. */
|
|
mips_wr_compare(0xffffffff);
|
|
|
|
/* COUNT register wrapped around */
|
|
if (count < DPCPU_GET(counter_lower_last)) {
|
|
DPCPU_SET(counter_upper, DPCPU_GET(counter_upper) + 1);
|
|
}
|
|
DPCPU_SET(counter_lower_last, count);
|
|
|
|
if (cycles_per_tick > 0) {
|
|
|
|
/*
|
|
* Account for the "lost time" between when the timer interrupt
|
|
* fired and when 'clock_intr' actually started executing.
|
|
*/
|
|
lost_ticks = DPCPU_GET(lost_ticks);
|
|
lost_ticks += count - compare_last;
|
|
|
|
/*
|
|
* If the COUNT and COMPARE registers are no longer in sync
|
|
* then make up some reasonable value for the 'lost_ticks'.
|
|
*
|
|
* This could happen, for e.g., after we resume normal
|
|
* operations after exiting the debugger.
|
|
*/
|
|
if (lost_ticks > 2 * cycles_per_tick)
|
|
lost_ticks = cycles_per_tick;
|
|
|
|
while (lost_ticks >= cycles_per_tick) {
|
|
if (sc->et.et_active)
|
|
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
|
|
lost_ticks -= cycles_per_tick;
|
|
}
|
|
DPCPU_SET(lost_ticks, lost_ticks);
|
|
}
|
|
if (sc->et.et_active)
|
|
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static int
|
|
clock_probe(device_t dev)
|
|
{
|
|
|
|
device_set_desc(dev, "Generic MIPS32 ticker");
|
|
return (BUS_PROBE_NOWILDCARD);
|
|
}
|
|
|
|
static void
|
|
clock_identify(driver_t * drv, device_t parent)
|
|
{
|
|
|
|
BUS_ADD_CHILD(parent, 0, "clock", 0);
|
|
}
|
|
|
|
static int
|
|
clock_attach(device_t dev)
|
|
{
|
|
struct clock_softc *sc;
|
|
|
|
if (device_get_unit(dev) != 0)
|
|
panic("can't attach more clocks");
|
|
|
|
softc = sc = device_get_softc(dev);
|
|
cpu_establish_hardintr("compare", clock_intr, NULL,
|
|
sc, IRQ_TIMER, INTR_TYPE_CLK, &sc->intr_handler);
|
|
|
|
sc->tc.tc_get_timecount = counter_get_timecount;
|
|
sc->tc.tc_counter_mask = 0xffffffff;
|
|
sc->tc.tc_frequency = counter_freq;
|
|
sc->tc.tc_name = "MIPS32";
|
|
sc->tc.tc_quality = 800;
|
|
sc->tc.tc_priv = sc;
|
|
tc_init(&sc->tc);
|
|
sc->et.et_name = "MIPS32";
|
|
#if 0
|
|
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT |
|
|
ET_FLAGS_PERCPU;
|
|
#endif
|
|
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_PERCPU;
|
|
sc->et.et_quality = 800;
|
|
sc->et.et_frequency = counter_freq;
|
|
sc->et.et_min_period = 0x00004000LLU; /* To be safe. */
|
|
sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
|
|
sc->et.et_start = clock_start;
|
|
sc->et.et_stop = clock_stop;
|
|
sc->et.et_priv = sc;
|
|
et_register(&sc->et);
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t clock_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, clock_probe),
|
|
DEVMETHOD(device_identify, clock_identify),
|
|
DEVMETHOD(device_attach, clock_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t clock_driver = {
|
|
"clock",
|
|
clock_methods,
|
|
sizeof(struct clock_softc),
|
|
};
|
|
|
|
static devclass_t clock_devclass;
|
|
|
|
DRIVER_MODULE(clock, nexus, clock_driver, clock_devclass, 0, 0);
|