5055061c5d
This is quite serious fix, because even with MAC framework compiled in, MAC entry points in those two files were simply ignored.
806 lines
18 KiB
C
806 lines
18 KiB
C
/*
|
|
* Copyright (c) 2004 Doug Rabson
|
|
* Copyright (c) 1982, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/firewire.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#define IFP2FC(IFP) ((struct fw_com *)IFP)
|
|
|
|
struct fw_hwaddr firewire_broadcastaddr = {
|
|
0xffffffff,
|
|
0xffffffff,
|
|
0xff,
|
|
0xff,
|
|
0xffff,
|
|
0xffffffff
|
|
};
|
|
|
|
static int
|
|
firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
|
|
struct rtentry *rt0)
|
|
{
|
|
struct fw_com *fc = (struct fw_com *) ifp;
|
|
int error, type;
|
|
struct rtentry *rt;
|
|
struct m_tag *mtag;
|
|
union fw_encap *enc;
|
|
struct fw_hwaddr *destfw;
|
|
uint8_t speed;
|
|
uint16_t psize, fsize, dsize;
|
|
struct mbuf *mtail;
|
|
int unicast, dgl, foff;
|
|
static int next_dgl;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
#ifdef MAC
|
|
error = mac_check_ifnet_transmit(ifp, m);
|
|
if (error)
|
|
goto bad;
|
|
#endif
|
|
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
|
|
error = ENETDOWN;
|
|
goto bad;
|
|
}
|
|
|
|
error = rt_check(&rt, &rt0, dst);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/*
|
|
* For unicast, we make a tag to store the lladdr of the
|
|
* destination. This might not be the first time we have seen
|
|
* the packet (for instance, the arp code might be trying to
|
|
* re-send it after receiving an arp reply) so we only
|
|
* allocate a tag if there isn't one there already. For
|
|
* multicast, we will eventually use a different tag to store
|
|
* the channel number.
|
|
*/
|
|
unicast = !(m->m_flags & (M_BCAST | M_MCAST));
|
|
if (unicast) {
|
|
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
|
|
if (!mtag) {
|
|
mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
|
|
sizeof (struct fw_hwaddr), M_NOWAIT);
|
|
if (!mtag) {
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
destfw = (struct fw_hwaddr *)(mtag + 1);
|
|
} else {
|
|
destfw = 0;
|
|
}
|
|
|
|
switch (dst->sa_family) {
|
|
#ifdef AF_INET
|
|
case AF_INET:
|
|
/*
|
|
* Only bother with arp for unicast. Allocation of
|
|
* channels etc. for firewire is quite different and
|
|
* doesn't fit into the arp model.
|
|
*/
|
|
if (unicast) {
|
|
error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
|
|
if (error)
|
|
return (error == EWOULDBLOCK ? 0 : error);
|
|
}
|
|
type = ETHERTYPE_IP;
|
|
break;
|
|
|
|
case AF_ARP:
|
|
{
|
|
struct arphdr *ah;
|
|
ah = mtod(m, struct arphdr *);
|
|
ah->ar_hrd = htons(ARPHRD_IEEE1394);
|
|
type = ETHERTYPE_ARP;
|
|
if (unicast)
|
|
*destfw = *(struct fw_hwaddr *) ar_tha(ah);
|
|
|
|
/*
|
|
* The standard arp code leaves a hole for the target
|
|
* hardware address which we need to close up.
|
|
*/
|
|
bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
|
|
m_adj(m, -ah->ar_hln);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (unicast) {
|
|
error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
|
|
(u_char *) destfw);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
type = ETHERTYPE_IPV6;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
|
|
error = EAFNOSUPPORT;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Let BPF tap off a copy before we encapsulate.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
struct fw_bpfhdr h;
|
|
if (unicast)
|
|
bcopy(destfw, h.firewire_dhost, 8);
|
|
else
|
|
bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
|
|
bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
|
|
h.firewire_type = htons(type);
|
|
bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
|
|
}
|
|
|
|
/*
|
|
* Punt on MCAP for now and send all multicast packets on the
|
|
* broadcast channel.
|
|
*/
|
|
if (m->m_flags & M_MCAST)
|
|
m->m_flags |= M_BCAST;
|
|
|
|
/*
|
|
* Figure out what speed to use and what the largest supported
|
|
* packet size is. For unicast, this is the minimum of what we
|
|
* can speak and what they can hear. For broadcast, lets be
|
|
* conservative and use S100. We could possibly improve that
|
|
* by examining the bus manager's speed map or similar. We
|
|
* also reduce the packet size for broadcast to account for
|
|
* the GASP header.
|
|
*/
|
|
if (unicast) {
|
|
speed = min(fc->fc_speed, destfw->sspd);
|
|
psize = min(512 << speed, 2 << destfw->sender_max_rec);
|
|
} else {
|
|
speed = 0;
|
|
psize = 512 - 2*sizeof(uint32_t);
|
|
}
|
|
|
|
/*
|
|
* Next, we encapsulate, possibly fragmenting the original
|
|
* datagram if it won't fit into a single packet.
|
|
*/
|
|
if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
|
|
/*
|
|
* No fragmentation is necessary.
|
|
*/
|
|
M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
|
|
if (!m) {
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
enc = mtod(m, union fw_encap *);
|
|
enc->unfrag.ether_type = type;
|
|
enc->unfrag.lf = FW_ENCAP_UNFRAG;
|
|
|
|
/*
|
|
* Byte swap the encapsulation header manually.
|
|
*/
|
|
enc->ul[0] = htonl(enc->ul[0]);
|
|
|
|
IFQ_HANDOFF(ifp, m, error);
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Fragment the datagram, making sure to leave enough
|
|
* space for the encapsulation header in each packet.
|
|
*/
|
|
fsize = psize - 2*sizeof(uint32_t);
|
|
dgl = next_dgl++;
|
|
dsize = m->m_pkthdr.len;
|
|
foff = 0;
|
|
while (m) {
|
|
if (m->m_pkthdr.len > fsize) {
|
|
/*
|
|
* Split off the tail segment from the
|
|
* datagram, copying our tags over.
|
|
*/
|
|
mtail = m_split(m, fsize, M_DONTWAIT);
|
|
m_tag_copy_chain(mtail, m, M_NOWAIT);
|
|
} else {
|
|
mtail = 0;
|
|
}
|
|
|
|
/*
|
|
* Add our encapsulation header to this
|
|
* fragment and hand it off to the link.
|
|
*/
|
|
M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
|
|
if (!m) {
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
enc = mtod(m, union fw_encap *);
|
|
if (foff == 0) {
|
|
enc->firstfrag.lf = FW_ENCAP_FIRST;
|
|
enc->firstfrag.datagram_size = dsize - 1;
|
|
enc->firstfrag.ether_type = type;
|
|
enc->firstfrag.dgl = dgl;
|
|
} else {
|
|
if (mtail)
|
|
enc->nextfrag.lf = FW_ENCAP_NEXT;
|
|
else
|
|
enc->nextfrag.lf = FW_ENCAP_LAST;
|
|
enc->nextfrag.datagram_size = dsize - 1;
|
|
enc->nextfrag.fragment_offset = foff;
|
|
enc->nextfrag.dgl = dgl;
|
|
}
|
|
foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
|
|
|
|
/*
|
|
* Byte swap the encapsulation header manually.
|
|
*/
|
|
enc->ul[0] = htonl(enc->ul[0]);
|
|
enc->ul[1] = htonl(enc->ul[1]);
|
|
|
|
IFQ_HANDOFF(ifp, m, error);
|
|
if (error) {
|
|
if (mtail)
|
|
m_freem(mtail);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m = mtail;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
bad:
|
|
if (m)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
static struct mbuf *
|
|
firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
|
|
{
|
|
union fw_encap *enc;
|
|
struct fw_reass *r;
|
|
struct mbuf *mf, *mprev;
|
|
int dsize;
|
|
int fstart, fend, start, end, islast;
|
|
uint32_t id;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
/*
|
|
* Find an existing reassembly buffer or create a new one.
|
|
*/
|
|
enc = mtod(m, union fw_encap *);
|
|
id = enc->firstfrag.dgl | (src << 16);
|
|
STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
|
|
if (r->fr_id == id)
|
|
break;
|
|
if (!r) {
|
|
r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
|
|
if (!r) {
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
r->fr_id = id;
|
|
r->fr_frags = 0;
|
|
STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
|
|
}
|
|
|
|
/*
|
|
* If this fragment overlaps any other fragment, we must discard
|
|
* the partial reassembly and start again.
|
|
*/
|
|
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
|
|
fstart = 0;
|
|
else
|
|
fstart = enc->nextfrag.fragment_offset;
|
|
fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
|
|
dsize = enc->nextfrag.datagram_size;
|
|
islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
|
|
|
|
for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
|
|
enc = mtod(mf, union fw_encap *);
|
|
if (enc->nextfrag.datagram_size != dsize) {
|
|
/*
|
|
* This fragment must be from a different
|
|
* packet.
|
|
*/
|
|
goto bad;
|
|
}
|
|
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
|
|
start = 0;
|
|
else
|
|
start = enc->nextfrag.fragment_offset;
|
|
end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
|
|
if ((fstart < end && fend > start) ||
|
|
(islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
|
|
/*
|
|
* Overlap - discard reassembly buffer and start
|
|
* again with this fragment.
|
|
*/
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find where to put this fragment in the list.
|
|
*/
|
|
for (mf = r->fr_frags, mprev = NULL; mf;
|
|
mprev = mf, mf = mf->m_nextpkt) {
|
|
enc = mtod(mf, union fw_encap *);
|
|
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
|
|
start = 0;
|
|
else
|
|
start = enc->nextfrag.fragment_offset;
|
|
if (start >= fend)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this is a last fragment and we are not adding at the end
|
|
* of the list, discard the buffer.
|
|
*/
|
|
if (islast && mprev && mprev->m_nextpkt)
|
|
goto bad;
|
|
|
|
if (mprev) {
|
|
m->m_nextpkt = mprev->m_nextpkt;
|
|
mprev->m_nextpkt = m;
|
|
|
|
/*
|
|
* Coalesce forwards and see if we can make a whole
|
|
* datagram.
|
|
*/
|
|
enc = mtod(mprev, union fw_encap *);
|
|
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
|
|
start = 0;
|
|
else
|
|
start = enc->nextfrag.fragment_offset;
|
|
end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
|
|
while (end == fstart) {
|
|
/*
|
|
* Strip off the encap header from m and
|
|
* append it to mprev, freeing m.
|
|
*/
|
|
m_adj(m, 2*sizeof(uint32_t));
|
|
mprev->m_nextpkt = m->m_nextpkt;
|
|
mprev->m_pkthdr.len += m->m_pkthdr.len;
|
|
m_cat(mprev, m);
|
|
|
|
if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
|
|
/*
|
|
* We have assembled a complete packet
|
|
* we must be finished. Make sure we have
|
|
* merged the whole chain.
|
|
*/
|
|
STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
|
|
free(r, M_TEMP);
|
|
m = mprev->m_nextpkt;
|
|
while (m) {
|
|
mf = m->m_nextpkt;
|
|
m_freem(m);
|
|
m = mf;
|
|
}
|
|
mprev->m_nextpkt = NULL;
|
|
|
|
return (mprev);
|
|
}
|
|
|
|
/*
|
|
* See if we can continue merging forwards.
|
|
*/
|
|
end = fend;
|
|
m = mprev->m_nextpkt;
|
|
if (m) {
|
|
enc = mtod(m, union fw_encap *);
|
|
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
|
|
fstart = 0;
|
|
else
|
|
fstart = enc->nextfrag.fragment_offset;
|
|
fend = fstart + m->m_pkthdr.len
|
|
- 2*sizeof(uint32_t);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
m->m_nextpkt = 0;
|
|
r->fr_frags = m;
|
|
}
|
|
|
|
return (0);
|
|
|
|
bad:
|
|
while (r->fr_frags) {
|
|
mf = r->fr_frags;
|
|
r->fr_frags = mf->m_nextpkt;
|
|
m_freem(mf);
|
|
}
|
|
m->m_nextpkt = 0;
|
|
r->fr_frags = m;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
|
|
{
|
|
struct fw_com *fc = (struct fw_com *) ifp;
|
|
union fw_encap *enc;
|
|
int type, isr;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
/*
|
|
* The caller has already stripped off the packet header
|
|
* (stream or wreqb) and marked the mbuf's M_BCAST flag
|
|
* appropriately. We de-encapsulate the IP packet and pass it
|
|
* up the line after handling link-level fragmentation.
|
|
*/
|
|
if (m->m_pkthdr.len < sizeof(uint32_t)) {
|
|
if_printf(ifp, "discarding frame without "
|
|
"encapsulation header (len %u pkt len %u)\n",
|
|
m->m_len, m->m_pkthdr.len);
|
|
}
|
|
|
|
m = m_pullup(m, sizeof(uint32_t));
|
|
enc = mtod(m, union fw_encap *);
|
|
|
|
/*
|
|
* Byte swap the encapsulation header manually.
|
|
*/
|
|
enc->ul[0] = htonl(enc->ul[0]);
|
|
|
|
if (enc->unfrag.lf != 0) {
|
|
m = m_pullup(m, 2*sizeof(uint32_t));
|
|
if (!m)
|
|
return;
|
|
enc = mtod(m, union fw_encap *);
|
|
enc->ul[1] = htonl(enc->ul[1]);
|
|
m = firewire_input_fragment(fc, m, src);
|
|
if (!m)
|
|
return;
|
|
enc = mtod(m, union fw_encap *);
|
|
type = enc->firstfrag.ether_type;
|
|
m_adj(m, 2*sizeof(uint32_t));
|
|
} else {
|
|
type = enc->unfrag.ether_type;
|
|
m_adj(m, sizeof(uint32_t));
|
|
}
|
|
|
|
if (m->m_pkthdr.rcvif == NULL) {
|
|
if_printf(ifp, "discard frame w/o interface pointer\n");
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (m->m_pkthdr.rcvif != ifp) {
|
|
if_printf(ifp, "Warning, frame marked as received on %s\n",
|
|
m->m_pkthdr.rcvif->if_xname);
|
|
}
|
|
#endif
|
|
|
|
#ifdef MAC
|
|
/*
|
|
* Tag the mbuf with an appropriate MAC label before any other
|
|
* consumers can get to it.
|
|
*/
|
|
mac_create_mbuf_from_ifnet(ifp, m);
|
|
#endif
|
|
|
|
/*
|
|
* Give bpf a chance at the packet. The link-level driver
|
|
* should have left us a tag with the EUID of the sender.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
struct fw_bpfhdr h;
|
|
struct m_tag *mtag;
|
|
|
|
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
|
|
if (mtag)
|
|
bcopy(mtag + 1, h.firewire_shost, 8);
|
|
else
|
|
bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
|
|
bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
|
|
h.firewire_type = htons(type);
|
|
bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_MONITOR) {
|
|
/*
|
|
* Interface marked for monitoring; discard packet.
|
|
*/
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
ifp->if_ibytes += m->m_pkthdr.len;
|
|
|
|
/* Discard packet if interface is not up */
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
|
ifp->if_imcasts++;
|
|
|
|
switch (type) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
if (ip_fastforward(m))
|
|
return;
|
|
isr = NETISR_IP;
|
|
break;
|
|
|
|
case ETHERTYPE_ARP:
|
|
{
|
|
struct arphdr *ah;
|
|
ah = mtod(m, struct arphdr *);
|
|
|
|
/*
|
|
* Adjust the arp packet to insert an empty tha slot.
|
|
*/
|
|
m->m_len += ah->ar_hln;
|
|
m->m_pkthdr.len += ah->ar_hln;
|
|
bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
|
|
isr = NETISR_ARP;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
isr = NETISR_IPV6;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
netisr_dispatch(isr, m);
|
|
}
|
|
|
|
int
|
|
firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
|
|
{
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
ifp->if_init(ifp->if_softc); /* before arpwhohas */
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
{
|
|
struct sockaddr *sa;
|
|
|
|
sa = (struct sockaddr *) & ifr->ifr_data;
|
|
bcopy(&IFP2FC(ifp)->fc_hwaddr,
|
|
(caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
if (ifr->ifr_mtu > 1500) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL; /* XXX netbsd has ENOTTY??? */
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
|
|
struct sockaddr *sa)
|
|
{
|
|
#ifdef INET
|
|
struct sockaddr_in *sin;
|
|
#endif
|
|
#ifdef INET6
|
|
struct sockaddr_in6 *sin6;
|
|
#endif
|
|
|
|
switch(sa->sa_family) {
|
|
case AF_LINK:
|
|
/*
|
|
* No mapping needed.
|
|
*/
|
|
*llsa = 0;
|
|
return 0;
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
|
|
return EADDRNOTAVAIL;
|
|
*llsa = 0;
|
|
return 0;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sin6 = (struct sockaddr_in6 *)sa;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
|
|
/*
|
|
* An IP6 address of 0 means listen to all
|
|
* of the Ethernet multicast address used for IP6.
|
|
* (This is used for multicast routers.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
*llsa = 0;
|
|
return 0;
|
|
}
|
|
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
|
|
return EADDRNOTAVAIL;
|
|
*llsa = 0;
|
|
return 0;
|
|
#endif
|
|
|
|
default:
|
|
/*
|
|
* Well, the text isn't quite right, but it's the name
|
|
* that counts...
|
|
*/
|
|
return EAFNOSUPPORT;
|
|
}
|
|
}
|
|
|
|
void
|
|
firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
|
|
{
|
|
struct fw_com *fc = (struct fw_com *) ifp;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
static const char* speeds[] = {
|
|
"S100", "S200", "S400", "S800",
|
|
"S1600", "S3200"
|
|
};
|
|
|
|
fc->fc_speed = llc->sspd;
|
|
STAILQ_INIT(&fc->fc_frags);
|
|
|
|
ifp->if_type = IFT_IEEE1394;
|
|
ifp->if_addrlen = sizeof(struct fw_hwaddr);
|
|
ifp->if_hdrlen = 0;
|
|
if_attach(ifp);
|
|
ifp->if_mtu = 1500; /* XXX */
|
|
ifp->if_output = firewire_output;
|
|
ifp->if_resolvemulti = firewire_resolvemulti;
|
|
ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
|
|
|
|
ifa = ifaddr_byindex(ifp->if_index);
|
|
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_IEEE1394;
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
|
|
|
|
bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
|
|
sizeof(struct fw_hwaddr));
|
|
|
|
if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
|
|
(uint8_t *) &llc->sender_unique_ID_hi, ":",
|
|
ntohs(llc->sender_unicast_FIFO_hi),
|
|
ntohl(llc->sender_unicast_FIFO_lo),
|
|
speeds[llc->sspd],
|
|
(2 << llc->sender_max_rec));
|
|
}
|
|
|
|
void
|
|
firewire_ifdetach(struct ifnet *ifp)
|
|
{
|
|
bpfdetach(ifp);
|
|
if_detach(ifp);
|
|
}
|
|
|
|
void
|
|
firewire_busreset(struct ifnet *ifp)
|
|
{
|
|
struct fw_com *fc = (struct fw_com *) ifp;
|
|
struct fw_reass *r;
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* Discard any partial datagrams since the host ids may have changed.
|
|
*/
|
|
while ((r = STAILQ_FIRST(&fc->fc_frags))) {
|
|
STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
|
|
while (r->fr_frags) {
|
|
m = r->fr_frags;
|
|
r->fr_frags = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
free(r, M_TEMP);
|
|
}
|
|
}
|