freebsd-skq/sys/net/if_fwsubr.c
pjd 5055061c5d Add two missing includes and remove two uneeded.
This is quite serious fix, because even with MAC framework compiled in,
MAC entry points in those two files were simply ignored.
2004-06-27 09:03:22 +00:00

806 lines
18 KiB
C

/*
* Copyright (c) 2004 Doug Rabson
* Copyright (c) 1982, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#include <net/if_llc.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/firewire.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#endif
#ifdef INET6
#include <netinet6/nd6.h>
#endif
#define IFP2FC(IFP) ((struct fw_com *)IFP)
struct fw_hwaddr firewire_broadcastaddr = {
0xffffffff,
0xffffffff,
0xff,
0xff,
0xffff,
0xffffffff
};
static int
firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
struct rtentry *rt0)
{
struct fw_com *fc = (struct fw_com *) ifp;
int error, type;
struct rtentry *rt;
struct m_tag *mtag;
union fw_encap *enc;
struct fw_hwaddr *destfw;
uint8_t speed;
uint16_t psize, fsize, dsize;
struct mbuf *mtail;
int unicast, dgl, foff;
static int next_dgl;
GIANT_REQUIRED;
#ifdef MAC
error = mac_check_ifnet_transmit(ifp, m);
if (error)
goto bad;
#endif
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
error = ENETDOWN;
goto bad;
}
error = rt_check(&rt, &rt0, dst);
if (error)
goto bad;
/*
* For unicast, we make a tag to store the lladdr of the
* destination. This might not be the first time we have seen
* the packet (for instance, the arp code might be trying to
* re-send it after receiving an arp reply) so we only
* allocate a tag if there isn't one there already. For
* multicast, we will eventually use a different tag to store
* the channel number.
*/
unicast = !(m->m_flags & (M_BCAST | M_MCAST));
if (unicast) {
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
if (!mtag) {
mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
sizeof (struct fw_hwaddr), M_NOWAIT);
if (!mtag) {
error = ENOMEM;
goto bad;
}
m_tag_prepend(m, mtag);
}
destfw = (struct fw_hwaddr *)(mtag + 1);
} else {
destfw = 0;
}
switch (dst->sa_family) {
#ifdef AF_INET
case AF_INET:
/*
* Only bother with arp for unicast. Allocation of
* channels etc. for firewire is quite different and
* doesn't fit into the arp model.
*/
if (unicast) {
error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
if (error)
return (error == EWOULDBLOCK ? 0 : error);
}
type = ETHERTYPE_IP;
break;
case AF_ARP:
{
struct arphdr *ah;
ah = mtod(m, struct arphdr *);
ah->ar_hrd = htons(ARPHRD_IEEE1394);
type = ETHERTYPE_ARP;
if (unicast)
*destfw = *(struct fw_hwaddr *) ar_tha(ah);
/*
* The standard arp code leaves a hole for the target
* hardware address which we need to close up.
*/
bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
m_adj(m, -ah->ar_hln);
break;
}
#endif
#ifdef INET6
case AF_INET6:
if (unicast) {
error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
(u_char *) destfw);
if (error)
return (error);
}
type = ETHERTYPE_IPV6;
break;
#endif
default:
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
error = EAFNOSUPPORT;
goto bad;
}
/*
* Let BPF tap off a copy before we encapsulate.
*/
if (ifp->if_bpf) {
struct fw_bpfhdr h;
if (unicast)
bcopy(destfw, h.firewire_dhost, 8);
else
bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
h.firewire_type = htons(type);
bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
}
/*
* Punt on MCAP for now and send all multicast packets on the
* broadcast channel.
*/
if (m->m_flags & M_MCAST)
m->m_flags |= M_BCAST;
/*
* Figure out what speed to use and what the largest supported
* packet size is. For unicast, this is the minimum of what we
* can speak and what they can hear. For broadcast, lets be
* conservative and use S100. We could possibly improve that
* by examining the bus manager's speed map or similar. We
* also reduce the packet size for broadcast to account for
* the GASP header.
*/
if (unicast) {
speed = min(fc->fc_speed, destfw->sspd);
psize = min(512 << speed, 2 << destfw->sender_max_rec);
} else {
speed = 0;
psize = 512 - 2*sizeof(uint32_t);
}
/*
* Next, we encapsulate, possibly fragmenting the original
* datagram if it won't fit into a single packet.
*/
if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
/*
* No fragmentation is necessary.
*/
M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
if (!m) {
error = ENOBUFS;
goto bad;
}
enc = mtod(m, union fw_encap *);
enc->unfrag.ether_type = type;
enc->unfrag.lf = FW_ENCAP_UNFRAG;
/*
* Byte swap the encapsulation header manually.
*/
enc->ul[0] = htonl(enc->ul[0]);
IFQ_HANDOFF(ifp, m, error);
return (error);
} else {
/*
* Fragment the datagram, making sure to leave enough
* space for the encapsulation header in each packet.
*/
fsize = psize - 2*sizeof(uint32_t);
dgl = next_dgl++;
dsize = m->m_pkthdr.len;
foff = 0;
while (m) {
if (m->m_pkthdr.len > fsize) {
/*
* Split off the tail segment from the
* datagram, copying our tags over.
*/
mtail = m_split(m, fsize, M_DONTWAIT);
m_tag_copy_chain(mtail, m, M_NOWAIT);
} else {
mtail = 0;
}
/*
* Add our encapsulation header to this
* fragment and hand it off to the link.
*/
M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
if (!m) {
error = ENOBUFS;
goto bad;
}
enc = mtod(m, union fw_encap *);
if (foff == 0) {
enc->firstfrag.lf = FW_ENCAP_FIRST;
enc->firstfrag.datagram_size = dsize - 1;
enc->firstfrag.ether_type = type;
enc->firstfrag.dgl = dgl;
} else {
if (mtail)
enc->nextfrag.lf = FW_ENCAP_NEXT;
else
enc->nextfrag.lf = FW_ENCAP_LAST;
enc->nextfrag.datagram_size = dsize - 1;
enc->nextfrag.fragment_offset = foff;
enc->nextfrag.dgl = dgl;
}
foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
/*
* Byte swap the encapsulation header manually.
*/
enc->ul[0] = htonl(enc->ul[0]);
enc->ul[1] = htonl(enc->ul[1]);
IFQ_HANDOFF(ifp, m, error);
if (error) {
if (mtail)
m_freem(mtail);
return (ENOBUFS);
}
m = mtail;
}
return (0);
}
bad:
if (m)
m_freem(m);
return (error);
}
static struct mbuf *
firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
{
union fw_encap *enc;
struct fw_reass *r;
struct mbuf *mf, *mprev;
int dsize;
int fstart, fend, start, end, islast;
uint32_t id;
GIANT_REQUIRED;
/*
* Find an existing reassembly buffer or create a new one.
*/
enc = mtod(m, union fw_encap *);
id = enc->firstfrag.dgl | (src << 16);
STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
if (r->fr_id == id)
break;
if (!r) {
r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
if (!r) {
m_freem(m);
return 0;
}
r->fr_id = id;
r->fr_frags = 0;
STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
}
/*
* If this fragment overlaps any other fragment, we must discard
* the partial reassembly and start again.
*/
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
fstart = 0;
else
fstart = enc->nextfrag.fragment_offset;
fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
dsize = enc->nextfrag.datagram_size;
islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
enc = mtod(mf, union fw_encap *);
if (enc->nextfrag.datagram_size != dsize) {
/*
* This fragment must be from a different
* packet.
*/
goto bad;
}
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
start = 0;
else
start = enc->nextfrag.fragment_offset;
end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
if ((fstart < end && fend > start) ||
(islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
/*
* Overlap - discard reassembly buffer and start
* again with this fragment.
*/
goto bad;
}
}
/*
* Find where to put this fragment in the list.
*/
for (mf = r->fr_frags, mprev = NULL; mf;
mprev = mf, mf = mf->m_nextpkt) {
enc = mtod(mf, union fw_encap *);
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
start = 0;
else
start = enc->nextfrag.fragment_offset;
if (start >= fend)
break;
}
/*
* If this is a last fragment and we are not adding at the end
* of the list, discard the buffer.
*/
if (islast && mprev && mprev->m_nextpkt)
goto bad;
if (mprev) {
m->m_nextpkt = mprev->m_nextpkt;
mprev->m_nextpkt = m;
/*
* Coalesce forwards and see if we can make a whole
* datagram.
*/
enc = mtod(mprev, union fw_encap *);
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
start = 0;
else
start = enc->nextfrag.fragment_offset;
end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
while (end == fstart) {
/*
* Strip off the encap header from m and
* append it to mprev, freeing m.
*/
m_adj(m, 2*sizeof(uint32_t));
mprev->m_nextpkt = m->m_nextpkt;
mprev->m_pkthdr.len += m->m_pkthdr.len;
m_cat(mprev, m);
if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
/*
* We have assembled a complete packet
* we must be finished. Make sure we have
* merged the whole chain.
*/
STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
free(r, M_TEMP);
m = mprev->m_nextpkt;
while (m) {
mf = m->m_nextpkt;
m_freem(m);
m = mf;
}
mprev->m_nextpkt = NULL;
return (mprev);
}
/*
* See if we can continue merging forwards.
*/
end = fend;
m = mprev->m_nextpkt;
if (m) {
enc = mtod(m, union fw_encap *);
if (enc->firstfrag.lf == FW_ENCAP_FIRST)
fstart = 0;
else
fstart = enc->nextfrag.fragment_offset;
fend = fstart + m->m_pkthdr.len
- 2*sizeof(uint32_t);
} else {
break;
}
}
} else {
m->m_nextpkt = 0;
r->fr_frags = m;
}
return (0);
bad:
while (r->fr_frags) {
mf = r->fr_frags;
r->fr_frags = mf->m_nextpkt;
m_freem(mf);
}
m->m_nextpkt = 0;
r->fr_frags = m;
return (0);
}
void
firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
{
struct fw_com *fc = (struct fw_com *) ifp;
union fw_encap *enc;
int type, isr;
GIANT_REQUIRED;
/*
* The caller has already stripped off the packet header
* (stream or wreqb) and marked the mbuf's M_BCAST flag
* appropriately. We de-encapsulate the IP packet and pass it
* up the line after handling link-level fragmentation.
*/
if (m->m_pkthdr.len < sizeof(uint32_t)) {
if_printf(ifp, "discarding frame without "
"encapsulation header (len %u pkt len %u)\n",
m->m_len, m->m_pkthdr.len);
}
m = m_pullup(m, sizeof(uint32_t));
enc = mtod(m, union fw_encap *);
/*
* Byte swap the encapsulation header manually.
*/
enc->ul[0] = htonl(enc->ul[0]);
if (enc->unfrag.lf != 0) {
m = m_pullup(m, 2*sizeof(uint32_t));
if (!m)
return;
enc = mtod(m, union fw_encap *);
enc->ul[1] = htonl(enc->ul[1]);
m = firewire_input_fragment(fc, m, src);
if (!m)
return;
enc = mtod(m, union fw_encap *);
type = enc->firstfrag.ether_type;
m_adj(m, 2*sizeof(uint32_t));
} else {
type = enc->unfrag.ether_type;
m_adj(m, sizeof(uint32_t));
}
if (m->m_pkthdr.rcvif == NULL) {
if_printf(ifp, "discard frame w/o interface pointer\n");
ifp->if_ierrors++;
m_freem(m);
return;
}
#ifdef DIAGNOSTIC
if (m->m_pkthdr.rcvif != ifp) {
if_printf(ifp, "Warning, frame marked as received on %s\n",
m->m_pkthdr.rcvif->if_xname);
}
#endif
#ifdef MAC
/*
* Tag the mbuf with an appropriate MAC label before any other
* consumers can get to it.
*/
mac_create_mbuf_from_ifnet(ifp, m);
#endif
/*
* Give bpf a chance at the packet. The link-level driver
* should have left us a tag with the EUID of the sender.
*/
if (ifp->if_bpf) {
struct fw_bpfhdr h;
struct m_tag *mtag;
mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
if (mtag)
bcopy(mtag + 1, h.firewire_shost, 8);
else
bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
h.firewire_type = htons(type);
bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
}
if (ifp->if_flags & IFF_MONITOR) {
/*
* Interface marked for monitoring; discard packet.
*/
m_freem(m);
return;
}
ifp->if_ibytes += m->m_pkthdr.len;
/* Discard packet if interface is not up */
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
if (m->m_flags & (M_BCAST|M_MCAST))
ifp->if_imcasts++;
switch (type) {
#ifdef INET
case ETHERTYPE_IP:
if (ip_fastforward(m))
return;
isr = NETISR_IP;
break;
case ETHERTYPE_ARP:
{
struct arphdr *ah;
ah = mtod(m, struct arphdr *);
/*
* Adjust the arp packet to insert an empty tha slot.
*/
m->m_len += ah->ar_hln;
m->m_pkthdr.len += ah->ar_hln;
bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
isr = NETISR_ARP;
break;
}
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
isr = NETISR_IPV6;
break;
#endif
default:
m_freem(m);
return;
}
netisr_dispatch(isr, m);
}
int
firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
{
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ifp->if_init(ifp->if_softc); /* before arpwhohas */
arp_ifinit(ifp, ifa);
break;
#endif
default:
ifp->if_init(ifp->if_softc);
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) & ifr->ifr_data;
bcopy(&IFP2FC(ifp)->fc_hwaddr,
(caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
}
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > 1500) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
default:
error = EINVAL; /* XXX netbsd has ENOTTY??? */
break;
}
return (error);
}
static int
firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
struct sockaddr *sa)
{
#ifdef INET
struct sockaddr_in *sin;
#endif
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
switch(sa->sa_family) {
case AF_LINK:
/*
* No mapping needed.
*/
*llsa = 0;
return 0;
#ifdef INET
case AF_INET:
sin = (struct sockaddr_in *)sa;
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
return EADDRNOTAVAIL;
*llsa = 0;
return 0;
#endif
#ifdef INET6
case AF_INET6:
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/*
* An IP6 address of 0 means listen to all
* of the Ethernet multicast address used for IP6.
* (This is used for multicast routers.)
*/
ifp->if_flags |= IFF_ALLMULTI;
*llsa = 0;
return 0;
}
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
return EADDRNOTAVAIL;
*llsa = 0;
return 0;
#endif
default:
/*
* Well, the text isn't quite right, but it's the name
* that counts...
*/
return EAFNOSUPPORT;
}
}
void
firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
{
struct fw_com *fc = (struct fw_com *) ifp;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
static const char* speeds[] = {
"S100", "S200", "S400", "S800",
"S1600", "S3200"
};
fc->fc_speed = llc->sspd;
STAILQ_INIT(&fc->fc_frags);
ifp->if_type = IFT_IEEE1394;
ifp->if_addrlen = sizeof(struct fw_hwaddr);
ifp->if_hdrlen = 0;
if_attach(ifp);
ifp->if_mtu = 1500; /* XXX */
ifp->if_output = firewire_output;
ifp->if_resolvemulti = firewire_resolvemulti;
ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
ifa = ifaddr_byindex(ifp->if_index);
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_type = IFT_IEEE1394;
sdl->sdl_alen = ifp->if_addrlen;
bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
sizeof(struct fw_hwaddr));
if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
(uint8_t *) &llc->sender_unique_ID_hi, ":",
ntohs(llc->sender_unicast_FIFO_hi),
ntohl(llc->sender_unicast_FIFO_lo),
speeds[llc->sspd],
(2 << llc->sender_max_rec));
}
void
firewire_ifdetach(struct ifnet *ifp)
{
bpfdetach(ifp);
if_detach(ifp);
}
void
firewire_busreset(struct ifnet *ifp)
{
struct fw_com *fc = (struct fw_com *) ifp;
struct fw_reass *r;
struct mbuf *m;
/*
* Discard any partial datagrams since the host ids may have changed.
*/
while ((r = STAILQ_FIRST(&fc->fc_frags))) {
STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
while (r->fr_frags) {
m = r->fr_frags;
r->fr_frags = m->m_nextpkt;
m_freem(m);
}
free(r, M_TEMP);
}
}