freebsd-skq/sys/pci/if_rl.c
Dan Moschuk 25b803ef49 Add support for Peppercon ROL-F Card.
Submitted by: Sascha Holzeiter <sascha@root-login.org>
PR: 48559
2003-02-23 23:35:35 +00:00

1936 lines
44 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* RealTek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the RealTek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a longword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
MODULE_DEPEND(rl, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Default to using PIO access for this driver. On SMP systems,
* there appear to be problems with memory mapped mode: it looks like
* doing too many memory mapped access back to back in rapid succession
* can hang the bus. I'm inclined to blame this on crummy design/construction
* on the part of RealTek. Memory mapped mode does appear to work on
* uniprocessor systems though.
*/
#define RL_USEIOSPACE
#include <pci/if_rlreg.h>
__FBSDID("$FreeBSD$");
/*
* Various supported device vendors/types and their names.
*/
static struct rl_type rl_devs[] = {
{ RT_VENDORID, RT_DEVICEID_8129,
"RealTek 8129 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8139,
"RealTek 8139 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8138,
"RealTek 8139 10/100BaseTX CardBus" },
{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
"Accton MPX 5030/5038 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_8139,
"Delta Electronics 8139 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
"Addtron Technolgy 8139 10/100BaseTX" },
{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
"D-Link DFE-530TX+ 10/100BaseTX" },
{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
"D-Link DFE-690TXD 10/100BaseTX" },
{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
"Nortel Networks 10/100BaseTX" },
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
"Corega FEther CB-TXD" },
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
"Corega FEtherII CB-TXD" },
{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
"Peppercon AG ROL-F" },
{ 0, 0, NULL }
};
static int rl_probe (device_t);
static int rl_attach (device_t);
static int rl_detach (device_t);
static int rl_encap (struct rl_softc *, struct mbuf * );
static void rl_rxeof (struct rl_softc *);
static void rl_txeof (struct rl_softc *);
static void rl_intr (void *);
static void rl_tick (void *);
static void rl_start (struct ifnet *);
static int rl_ioctl (struct ifnet *, u_long, caddr_t);
static void rl_init (void *);
static void rl_stop (struct rl_softc *);
static void rl_watchdog (struct ifnet *);
static int rl_suspend (device_t);
static int rl_resume (device_t);
static void rl_shutdown (device_t);
static int rl_ifmedia_upd (struct ifnet *);
static void rl_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void rl_eeprom_putbyte (struct rl_softc *, int);
static void rl_eeprom_getword (struct rl_softc *, int, u_int16_t *);
static void rl_read_eeprom (struct rl_softc *, caddr_t, int, int, int);
static void rl_mii_sync (struct rl_softc *);
static void rl_mii_send (struct rl_softc *, u_int32_t, int);
static int rl_mii_readreg (struct rl_softc *, struct rl_mii_frame *);
static int rl_mii_writereg (struct rl_softc *, struct rl_mii_frame *);
static int rl_miibus_readreg (device_t, int, int);
static int rl_miibus_writereg (device_t, int, int, int);
static void rl_miibus_statchg (device_t);
static u_int8_t rl_calchash (caddr_t);
static void rl_setmulti (struct rl_softc *);
static void rl_reset (struct rl_softc *);
static int rl_list_tx_init (struct rl_softc *);
static void rl_dma_map_rxbuf (void *, bus_dma_segment_t *, int, int);
static void rl_dma_map_txbuf (void *, bus_dma_segment_t *, int, int);
#ifdef RL_USEIOSPACE
#define RL_RES SYS_RES_IOPORT
#define RL_RID RL_PCI_LOIO
#else
#define RL_RES SYS_RES_MEMORY
#define RL_RID RL_PCI_LOMEM
#endif
static device_method_t rl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, rl_probe),
DEVMETHOD(device_attach, rl_attach),
DEVMETHOD(device_detach, rl_detach),
DEVMETHOD(device_suspend, rl_suspend),
DEVMETHOD(device_resume, rl_resume),
DEVMETHOD(device_shutdown, rl_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, rl_miibus_readreg),
DEVMETHOD(miibus_writereg, rl_miibus_writereg),
DEVMETHOD(miibus_statchg, rl_miibus_statchg),
{ 0, 0 }
};
static driver_t rl_driver = {
"rl",
rl_methods,
sizeof(struct rl_softc)
};
static devclass_t rl_devclass;
DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
static void
rl_dma_map_rxbuf(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct rl_softc *sc;
sc = arg;
CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
return;
}
static void
rl_dma_map_txbuf(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct rl_softc *sc;
sc = arg;
CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
rl_eeprom_putbyte(sc, addr)
struct rl_softc *sc;
int addr;
{
register int d, i;
d = addr | sc->rl_eecmd_read;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
rl_eeprom_getword(sc, addr, dest)
struct rl_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
rl_eeprom_putbyte(sc, addr);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
rl_read_eeprom(sc, dest, off, cnt, swap)
struct rl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
rl_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* MII access routines are provided for the 8129, which
* doesn't have a built-in PHY. For the 8139, we fake things
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
* direct access PHY registers.
*/
#define MII_SET(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) | (x))
#define MII_CLR(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) & ~(x))
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
rl_mii_sync(sc)
struct rl_softc *sc;
{
register int i;
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
for (i = 0; i < 32; i++) {
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void
rl_mii_send(sc, bits, cnt)
struct rl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
MII_CLR(RL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(RL_MII_DATAOUT);
} else {
MII_CLR(RL_MII_DATAOUT);
}
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
rl_mii_readreg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
int i, ack;
RL_LOCK(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, RL_MII, 0);
/*
* Turn on data xmit.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
/*
* Send command/address info.
*/
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(RL_MII_DIR);
/* Check for ack */
MII_CLR(RL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
MII_SET(RL_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(RL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(RL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
RL_UNLOCK(sc);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int
rl_mii_writereg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
RL_LOCK(sc);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_WRITEOP;
frame->mii_turnaround = RL_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
rl_mii_send(sc, frame->mii_turnaround, 2);
rl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(RL_MII_DIR);
RL_UNLOCK(sc);
return(0);
}
static int
rl_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct rl_softc *sc;
struct rl_mii_frame frame;
u_int16_t rval = 0;
u_int16_t rl8139_reg = 0;
sc = device_get_softc(dev);
RL_LOCK(sc);
if (sc->rl_type == RL_8139) {
/* Pretend the internal PHY is only at address 0 */
if (phy) {
RL_UNLOCK(sc);
return(0);
}
switch(reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
RL_UNLOCK(sc);
return(0);
break;
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RL_MEDIASTAT:
rval = CSR_READ_1(sc, RL_MEDIASTAT);
RL_UNLOCK(sc);
return(rval);
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
RL_UNLOCK(sc);
return(0);
}
rval = CSR_READ_2(sc, rl8139_reg);
RL_UNLOCK(sc);
return(rval);
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
rl_mii_readreg(sc, &frame);
RL_UNLOCK(sc);
return(frame.mii_data);
}
static int
rl_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct rl_softc *sc;
struct rl_mii_frame frame;
u_int16_t rl8139_reg = 0;
sc = device_get_softc(dev);
RL_LOCK(sc);
if (sc->rl_type == RL_8139) {
/* Pretend the internal PHY is only at address 0 */
if (phy) {
RL_UNLOCK(sc);
return(0);
}
switch(reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
RL_UNLOCK(sc);
return(0);
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
RL_UNLOCK(sc);
return(0);
}
CSR_WRITE_2(sc, rl8139_reg, data);
RL_UNLOCK(sc);
return(0);
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
rl_mii_writereg(sc, &frame);
RL_UNLOCK(sc);
return(0);
}
static void
rl_miibus_statchg(dev)
device_t dev;
{
return;
}
/*
* Calculate CRC of a multicast group address, return the upper 6 bits.
*/
static u_int8_t
rl_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc >> 26);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
rl_setmulti(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, RL_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, RL_MAR0, 0);
CSR_WRITE_4(sc, RL_MAR4, 0);
/* now program new ones */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = rl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= RL_RXCFG_RX_MULTI;
else
rxfilt &= ~RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
return;
}
static void
rl_reset(sc)
struct rl_softc *sc;
{
register int i;
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
printf("rl%d: reset never completed!\n", sc->rl_unit);
return;
}
/*
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
rl_probe(dev)
device_t dev;
{
struct rl_type *t;
t = rl_devs;
while(t->rl_name != NULL) {
if ((pci_get_vendor(dev) == t->rl_vid) &&
(pci_get_device(dev) == t->rl_did)) {
device_set_desc(dev, t->rl_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
rl_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
u_int16_t as[3];
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t rl_did = 0;
int unit, error = 0, rid, i;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct rl_softc));
mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
/* Reset the power state. */
printf("rl%d: chip is is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_IOPORT);
pci_enable_io(dev, SYS_RES_MEMORY);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef RL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("rl%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("rl%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = RL_RID;
sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->rl_res == NULL) {
printf ("rl%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
/* Detect the Realtek 8139B. For some reason, this chip is very
* unstable when left to autoselect the media
* The best workaround is to set the device to the required
* media type or to set it to the 10 Meg speed.
*/
if ((rman_get_end(sc->rl_res)-rman_get_start(sc->rl_res))==0xff) {
printf("rl%d: Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n", unit);
}
sc->rl_btag = rman_get_bustag(sc->rl_res);
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
rid = 0;
sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->rl_irq == NULL) {
printf("rl%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
rl_reset(sc);
sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
rl_read_eeprom(sc, (caddr_t)&rl_did, 0, 1, 0);
if (rl_did != 0x8129)
sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
/*
* Get station address from the EEPROM.
*/
rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
for (i = 0; i < 3; i++) {
eaddr[(i * 2) + 0] = as[i] & 0xff;
eaddr[(i * 2) + 1] = as[i] >> 8;
}
/*
* A RealTek chip was detected. Inform the world.
*/
printf("rl%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->rl_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
/*
* Now read the exact device type from the EEPROM to find
* out if it's an 8129 or 8139.
*/
rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
rl_did == RT_DEVICEID_8138 || rl_did == DLINK_DEVICEID_530TXPLUS ||
rl_did == DLINK_DEVICEID_690TXD ||
rl_did == COREGA_DEVICEID_FETHERCBTXD ||
rl_did == COREGA_DEVICEID_FETHERIICBTXD)
sc->rl_type = RL_8139;
else if (rl_did == RT_DEVICEID_8129)
sc->rl_type = RL_8129;
else {
printf("rl%d: unknown device ID: %x\n", unit, rl_did);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
error = ENXIO;
goto fail;
}
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define RL_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
&sc->rl_parent_tag);
/*
* Now allocate a tag for the DMA descriptor lists.
* All of our lists are allocated as a contiguous block
* of memory.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RL_RXBUFLEN + 1518, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->rl_tag);
/*
* Now allocate a chunk of DMA-able memory based on the
* tag we just created.
*/
error = bus_dmamem_alloc(sc->rl_tag,
(void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT,
&sc->rl_cdata.rl_rx_dmamap);
if (sc->rl_cdata.rl_rx_buf == NULL) {
printf("rl%d: no memory for list buffers!\n", unit);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
bus_dma_tag_destroy(sc->rl_tag);
error = ENXIO;
goto fail;
}
/* Leave a few bytes before the start of the RX ring buffer. */
sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
/* Do MII setup */
if (mii_phy_probe(dev, &sc->rl_miibus,
rl_ifmedia_upd, rl_ifmedia_sts)) {
printf("rl%d: MII without any phy!\n", sc->rl_unit);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
bus_dmamem_free(sc->rl_tag,
sc->rl_cdata.rl_rx_buf, sc->rl_cdata.rl_rx_dmamap);
bus_dma_tag_destroy(sc->rl_tag);
error = ENXIO;
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "rl";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rl_ioctl;
ifp->if_output = ether_output;
ifp->if_start = rl_start;
ifp->if_watchdog = rl_watchdog;
ifp->if_init = rl_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
rl_intr, sc, &sc->rl_intrhand);
if (error) {
printf("rl%d: couldn't set up irq\n", unit);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
bus_dmamem_free(sc->rl_tag,
sc->rl_cdata.rl_rx_buf, sc->rl_cdata.rl_rx_dmamap);
bus_dma_tag_destroy(sc->rl_tag);
goto fail;
}
callout_handle_init(&sc->rl_stat_ch);
fail:
if (error != 0)
mtx_destroy(&sc->rl_mtx);
return (error);
}
static int
rl_detach(dev)
device_t dev;
{
struct rl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
RL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ether_ifdetach(ifp);
rl_stop(sc);
bus_generic_detach(dev);
device_delete_child(dev, sc->rl_miibus);
bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
sc->rl_cdata.rl_rx_dmamap);
bus_dma_tag_destroy(sc->rl_tag);
bus_dma_tag_destroy(sc->rl_parent_tag);
RL_UNLOCK(sc);
mtx_destroy(&sc->rl_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
rl_list_tx_init(sc)
struct rl_softc *sc;
{
struct rl_chain_data *cd;
int i;
cd = &sc->rl_cdata;
for (i = 0; i < RL_TX_LIST_CNT; i++) {
cd->rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc,
RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
}
sc->rl_cdata.cur_tx = 0;
sc->rl_cdata.last_tx = 0;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design
* when you have to use m_devget().
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*
* Note: to make the Alpha happy, the frame payload needs to be aligned
* on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
* as the offset argument to m_devget().
*/
static void
rl_rxeof(sc)
struct rl_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int32_t rxstat;
caddr_t rxbufpos;
int wrap = 0;
u_int16_t cur_rx;
u_int16_t limit;
u_int16_t rx_bytes = 0, max_bytes;
ifp = &sc->arpcom.ac_if;
bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
BUS_DMASYNC_POSTREAD);
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif /* DEVICE_POLLING */
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
rxstat = le32toh(*(u_int32_t *)rxbufpos);
/*
* Here's a totally undocumented fact for you. When the
* RealTek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* RealTek should be shot for this.
*/
if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
break;
if (!(rxstat & RL_RXSTAT_RXOK)) {
ifp->if_ierrors++;
rl_init(sc);
return;
}
/* No errors; receive the packet. */
total_len = rxstat >> 16;
rx_bytes += total_len + 4;
/*
* XXX The RealTek chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes)
break;
rxbufpos = sc->rl_cdata.rl_rx_buf +
((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
rxbufpos = sc->rl_cdata.rl_rx_buf;
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
if (total_len > wrap) {
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
NULL);
if (m == NULL) {
ifp->if_ierrors++;
} else {
m_copyback(m, wrap, total_len - wrap,
sc->rl_cdata.rl_rx_buf);
}
cur_rx = (total_len - wrap + ETHER_CRC_LEN);
} else {
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
NULL);
if (m == NULL) {
ifp->if_ierrors++;
}
cur_rx += total_len + 4 + ETHER_CRC_LEN;
}
/*
* Round up to 32-bit boundary.
*/
cur_rx = (cur_rx + 3) & ~3;
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
if (m == NULL)
continue;
ifp->if_ipackets++;
(*ifp->if_input)(ifp, m);
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
rl_txeof(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
u_int32_t txstat;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
do {
txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
if (!(txstat & (RL_TXSTAT_TX_OK|
RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
break;
ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
if (RL_LAST_TXMBUF(sc) != NULL) {
bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
m_freem(RL_LAST_TXMBUF(sc));
RL_LAST_TXMBUF(sc) = NULL;
}
if (txstat & RL_TXSTAT_TX_OK)
ifp->if_opackets++;
else {
int oldthresh;
ifp->if_oerrors++;
if ((txstat & RL_TXSTAT_TXABRT) ||
(txstat & RL_TXSTAT_OUTOFWIN))
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
oldthresh = sc->rl_txthresh;
/* error recovery */
rl_reset(sc);
rl_init(sc);
/*
* If there was a transmit underrun,
* bump the TX threshold.
*/
if (txstat & RL_TXSTAT_TX_UNDERRUN)
sc->rl_txthresh = oldthresh + 32;
return;
}
RL_INC(sc->rl_cdata.last_tx);
ifp->if_flags &= ~IFF_OACTIVE;
} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
ifp->if_timer =
(sc->rl_cdata.last_tx == sc->rl_cdata.cur_tx) ? 0 : 5;
return;
}
static void
rl_tick(xsc)
void *xsc;
{
struct rl_softc *sc;
struct mii_data *mii;
sc = xsc;
RL_LOCK(sc);
mii = device_get_softc(sc->rl_miibus);
mii_tick(mii);
sc->rl_stat_ch = timeout(rl_tick, sc, hz);
RL_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
static void
rl_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
RL_LOCK(sc);
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
goto done;
}
sc->rxcycles = count;
rl_rxeof(sc);
rl_txeof(sc);
if (ifp->if_snd.ifq_head != NULL)
rl_start(ifp);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
u_int16_t status;
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xffff)
goto done;
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & RL_ISR_SYSTEM_ERR) {
rl_reset(sc);
rl_init(sc);
}
}
done:
RL_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static void
rl_intr(arg)
void *arg;
{
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
if (sc->suspended) {
return;
}
RL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done;
if (ether_poll_register(rl_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
rl_poll(ifp, 0, 1);
goto done;
}
#endif /* DEVICE_POLLING */
for (;;) {
status = CSR_READ_2(sc, RL_ISR);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xffff)
break;
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & RL_INTRS) == 0)
break;
if (status & RL_ISR_RX_OK)
rl_rxeof(sc);
if (status & RL_ISR_RX_ERR)
rl_rxeof(sc);
if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
rl_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
rl_reset(sc);
rl_init(sc);
}
}
if (ifp->if_snd.ifq_head != NULL)
rl_start(ifp);
#ifdef DEVICE_POLLING
done:
#endif
RL_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
rl_encap(sc, m_head)
struct rl_softc *sc;
struct mbuf *m_head;
{
struct mbuf *m_new = NULL;
/*
* The RealTek is brain damaged and wants longword-aligned
* TX buffers, plus we can only have one fragment buffer
* per packet. We have to copy pretty much all the time.
*/
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(1);
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
/* Pad frames to at least 60 bytes. */
if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
/*
* Make security concious people happy: zero out the
* bytes in the pad area, since we don't know what
* this mbuf cluster buffer's previous user might
* have left in it.
*/
bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
m_head->m_pkthdr.len +=
(RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
m_head->m_len = m_head->m_pkthdr.len;
}
RL_CUR_TXMBUF(sc) = m_head;
return(0);
}
/*
* Main transmit routine.
*/
static void
rl_start(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
RL_LOCK(sc);
while(RL_CUR_TXMBUF(sc) == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (rl_encap(sc, m_head)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
/*
* Transmit the frame.
*/
bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
mtod(RL_CUR_TXMBUF(sc), void *),
RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, 0);
bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
BUS_DMASYNC_PREREAD);
CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
RL_TXTHRESH(sc->rl_txthresh) |
RL_CUR_TXMBUF(sc)->m_pkthdr.len);
RL_INC(sc->rl_cdata.cur_tx);
}
/*
* We broke out of the loop because all our TX slots are
* full. Mark the NIC as busy until it drains some of the
* packets from the queue.
*/
if (RL_CUR_TXMBUF(sc) != NULL)
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
RL_UNLOCK(sc);
return;
}
static void
rl_init(xsc)
void *xsc;
{
struct rl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int i;
u_int32_t rxcfg = 0;
RL_LOCK(sc);
mii = device_get_softc(sc->rl_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
rl_stop(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, RL_IDR0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init the RX buffer pointer register. */
bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, 0);
bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
BUS_DMASYNC_PREWRITE);
/* Init TX descriptors. */
rl_list_tx_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RL_RXCFG);
rxcfg |= RL_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxcfg |= RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Program the multicast filter, if necessary.
*/
rl_setmulti(sc);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_flags & IFF_POLLING)
CSR_WRITE_2(sc, RL_IMR, 0);
else /* otherwise ... */
#endif /* DEVICE_POLLING */
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
/* Set initial TX threshold */
sc->rl_txthresh = RL_TX_THRESH_INIT;
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
mii_mediachg(mii);
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->rl_stat_ch = timeout(rl_tick, sc, hz);
RL_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
rl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
rl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct rl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
rl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
RL_LOCK(sc);
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
rl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
rl_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
rl_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->rl_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
RL_UNLOCK(sc);
return(error);
}
static void
rl_watchdog(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
sc = ifp->if_softc;
RL_LOCK(sc);
printf("rl%d: watchdog timeout\n", sc->rl_unit);
ifp->if_oerrors++;
rl_txeof(sc);
rl_rxeof(sc);
rl_init(sc);
RL_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
rl_stop(sc)
struct rl_softc *sc;
{
register int i;
struct ifnet *ifp;
RL_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(rl_tick, sc, sc->rl_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
/*
* Free the TX list buffers.
*/
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
bus_dmamap_unload(sc->rl_tag,
sc->rl_cdata.rl_tx_dmamap[i]);
bus_dmamap_destroy(sc->rl_tag,
sc->rl_cdata.rl_tx_dmamap[i]);
m_freem(sc->rl_cdata.rl_tx_chain[i]);
sc->rl_cdata.rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc, RL_TXADDR0 + i, 0x0000000);
}
}
RL_UNLOCK(sc);
return;
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
rl_suspend(dev)
device_t dev;
{
register int i;
struct rl_softc *sc;
sc = device_get_softc(dev);
rl_stop(sc);
for (i = 0; i < 5; i++)
sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
rl_resume(dev)
device_t dev;
{
register int i;
struct rl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
/* better way to do this? */
for (i = 0; i < 5; i++)
pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
/* reenable busmastering */
pci_enable_busmaster(dev);
pci_enable_io(dev, RL_RES);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
rl_init(sc);
sc->suspended = 0;
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
rl_shutdown(dev)
device_t dev;
{
struct rl_softc *sc;
sc = device_get_softc(dev);
rl_stop(sc);
return;
}