freebsd-skq/sys/netinet/ip_fw.h
ae 93a7173b74 Add NAT64 CLAT implementation as defined in RFC6877.
CLAT is customer-side translator that algorithmically translates 1:1
private IPv4 addresses to global IPv6 addresses, and vice versa.
It is implemented as part of ipfw_nat64 kernel module. When module
is loaded or compiled into the kernel, it registers "nat64clat" external
action. External action named instance can be created using `create`
command and then used in ipfw rules. The create command accepts two
IPv6 prefixes `plat_prefix` and `clat_prefix`. If plat_prefix is ommitted,
IPv6 NAT64 Well-Known prefix 64:ff9b::/96 will be used.

  # ipfw nat64clat CLAT create clat_prefix SRC_PFX plat_prefix DST_PFX
  # ipfw add nat64clat CLAT ip4 from IPv4_PFX to any out
  # ipfw add nat64clat CLAT ip6 from DST_PFX to SRC_PFX in

Obtained from:	Yandex LLC
Submitted by:	Boris N. Lytochkin
MFC after:	1 month
Relnotes:	yes
Sponsored by:	Yandex LLC
2019-03-18 11:44:53 +00:00

1070 lines
34 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _IPFW2_H
#define _IPFW2_H
/*
* The default rule number. By the design of ip_fw, the default rule
* is the last one, so its number can also serve as the highest number
* allowed for a rule. The ip_fw code relies on both meanings of this
* constant.
*/
#define IPFW_DEFAULT_RULE 65535
#define RESVD_SET 31 /*set for default and persistent rules*/
#define IPFW_MAX_SETS 32 /* Number of sets supported by ipfw*/
/*
* Compat values for old clients
*/
#ifndef _KERNEL
#define IPFW_TABLES_MAX 65535
#define IPFW_TABLES_DEFAULT 128
#endif
/*
* Most commands (queue, pipe, tag, untag, limit...) can have a 16-bit
* argument between 1 and 65534. The value 0 (IP_FW_TARG) is used
* to represent 'tablearg' value, e.g. indicate the use of a 'tablearg'
* result of the most recent table() lookup.
* Note that 16bit is only a historical limit, resulting from
* the use of a 16-bit fields for that value. In reality, we can have
* 2^32 pipes, queues, tag values and so on.
*/
#define IPFW_ARG_MIN 1
#define IPFW_ARG_MAX 65534
#define IP_FW_TABLEARG 65535 /* Compat value for old clients */
#define IP_FW_TARG 0 /* Current tablearg value */
#define IP_FW_NAT44_GLOBAL 65535 /* arg1 value for "nat global" */
/*
* Number of entries in the call stack of the call/return commands.
* Call stack currently is an uint16_t array with rule numbers.
*/
#define IPFW_CALLSTACK_SIZE 16
/* IP_FW3 header/opcodes */
typedef struct _ip_fw3_opheader {
uint16_t opcode; /* Operation opcode */
uint16_t version; /* Opcode version */
uint16_t reserved[2]; /* Align to 64-bit boundary */
} ip_fw3_opheader;
/* IP_FW3 opcodes */
#define IP_FW_TABLE_XADD 86 /* add entry */
#define IP_FW_TABLE_XDEL 87 /* delete entry */
#define IP_FW_TABLE_XGETSIZE 88 /* get table size (deprecated) */
#define IP_FW_TABLE_XLIST 89 /* list table contents */
#define IP_FW_TABLE_XDESTROY 90 /* destroy table */
#define IP_FW_TABLES_XLIST 92 /* list all tables */
#define IP_FW_TABLE_XINFO 93 /* request info for one table */
#define IP_FW_TABLE_XFLUSH 94 /* flush table data */
#define IP_FW_TABLE_XCREATE 95 /* create new table */
#define IP_FW_TABLE_XMODIFY 96 /* modify existing table */
#define IP_FW_XGET 97 /* Retrieve configuration */
#define IP_FW_XADD 98 /* add rule */
#define IP_FW_XDEL 99 /* del rule */
#define IP_FW_XMOVE 100 /* move rules to different set */
#define IP_FW_XZERO 101 /* clear accounting */
#define IP_FW_XRESETLOG 102 /* zero rules logs */
#define IP_FW_SET_SWAP 103 /* Swap between 2 sets */
#define IP_FW_SET_MOVE 104 /* Move one set to another one */
#define IP_FW_SET_ENABLE 105 /* Enable/disable sets */
#define IP_FW_TABLE_XFIND 106 /* finds an entry */
#define IP_FW_XIFLIST 107 /* list tracked interfaces */
#define IP_FW_TABLES_ALIST 108 /* list table algorithms */
#define IP_FW_TABLE_XSWAP 109 /* swap two tables */
#define IP_FW_TABLE_VLIST 110 /* dump table value hash */
#define IP_FW_NAT44_XCONFIG 111 /* Create/modify NAT44 instance */
#define IP_FW_NAT44_DESTROY 112 /* Destroys NAT44 instance */
#define IP_FW_NAT44_XGETCONFIG 113 /* Get NAT44 instance config */
#define IP_FW_NAT44_LIST_NAT 114 /* List all NAT44 instances */
#define IP_FW_NAT44_XGETLOG 115 /* Get log from NAT44 instance */
#define IP_FW_DUMP_SOPTCODES 116 /* Dump available sopts/versions */
#define IP_FW_DUMP_SRVOBJECTS 117 /* Dump existing named objects */
#define IP_FW_NAT64STL_CREATE 130 /* Create stateless NAT64 instance */
#define IP_FW_NAT64STL_DESTROY 131 /* Destroy stateless NAT64 instance */
#define IP_FW_NAT64STL_CONFIG 132 /* Modify stateless NAT64 instance */
#define IP_FW_NAT64STL_LIST 133 /* List stateless NAT64 instances */
#define IP_FW_NAT64STL_STATS 134 /* Get NAT64STL instance statistics */
#define IP_FW_NAT64STL_RESET_STATS 135 /* Reset NAT64STL instance statistics */
#define IP_FW_NAT64LSN_CREATE 140 /* Create stateful NAT64 instance */
#define IP_FW_NAT64LSN_DESTROY 141 /* Destroy stateful NAT64 instance */
#define IP_FW_NAT64LSN_CONFIG 142 /* Modify stateful NAT64 instance */
#define IP_FW_NAT64LSN_LIST 143 /* List stateful NAT64 instances */
#define IP_FW_NAT64LSN_STATS 144 /* Get NAT64LSN instance statistics */
#define IP_FW_NAT64LSN_LIST_STATES 145 /* Get stateful NAT64 states */
#define IP_FW_NAT64LSN_RESET_STATS 146 /* Reset NAT64LSN instance statistics */
#define IP_FW_NPTV6_CREATE 150 /* Create NPTv6 instance */
#define IP_FW_NPTV6_DESTROY 151 /* Destroy NPTv6 instance */
#define IP_FW_NPTV6_CONFIG 152 /* Modify NPTv6 instance */
#define IP_FW_NPTV6_LIST 153 /* List NPTv6 instances */
#define IP_FW_NPTV6_STATS 154 /* Get NPTv6 instance statistics */
#define IP_FW_NPTV6_RESET_STATS 155 /* Reset NPTv6 instance statistics */
#define IP_FW_NAT64CLAT_CREATE 160 /* Create clat NAT64 instance */
#define IP_FW_NAT64CLAT_DESTROY 161 /* Destroy clat NAT64 instance */
#define IP_FW_NAT64CLAT_CONFIG 162 /* Modify clat NAT64 instance */
#define IP_FW_NAT64CLAT_LIST 163 /* List clat NAT64 instances */
#define IP_FW_NAT64CLAT_STATS 164 /* Get NAT64CLAT instance statistics */
#define IP_FW_NAT64CLAT_RESET_STATS 165 /* Reset NAT64CLAT instance statistics */
/*
* The kernel representation of ipfw rules is made of a list of
* 'instructions' (for all practical purposes equivalent to BPF
* instructions), which specify which fields of the packet
* (or its metadata) should be analysed.
*
* Each instruction is stored in a structure which begins with
* "ipfw_insn", and can contain extra fields depending on the
* instruction type (listed below).
* Note that the code is written so that individual instructions
* have a size which is a multiple of 32 bits. This means that, if
* such structures contain pointers or other 64-bit entities,
* (there is just one instance now) they may end up unaligned on
* 64-bit architectures, so the must be handled with care.
*
* "enum ipfw_opcodes" are the opcodes supported. We can have up
* to 256 different opcodes. When adding new opcodes, they should
* be appended to the end of the opcode list before O_LAST_OPCODE,
* this will prevent the ABI from being broken, otherwise users
* will have to recompile ipfw(8) when they update the kernel.
*/
enum ipfw_opcodes { /* arguments (4 byte each) */
O_NOP,
O_IP_SRC, /* u32 = IP */
O_IP_SRC_MASK, /* ip = IP/mask */
O_IP_SRC_ME, /* none */
O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */
O_IP_DST, /* u32 = IP */
O_IP_DST_MASK, /* ip = IP/mask */
O_IP_DST_ME, /* none */
O_IP_DST_SET, /* u32=base, arg1=len, bitmap */
O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */
O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */
O_PROTO, /* arg1=protocol */
O_MACADDR2, /* 2 mac addr:mask */
O_MAC_TYPE, /* same as srcport */
O_LAYER2, /* none */
O_IN, /* none */
O_FRAG, /* none */
O_RECV, /* none */
O_XMIT, /* none */
O_VIA, /* none */
O_IPOPT, /* arg1 = 2*u8 bitmap */
O_IPLEN, /* arg1 = len */
O_IPID, /* arg1 = id */
O_IPTOS, /* arg1 = id */
O_IPPRECEDENCE, /* arg1 = precedence << 5 */
O_IPTTL, /* arg1 = TTL */
O_IPVER, /* arg1 = version */
O_UID, /* u32 = id */
O_GID, /* u32 = id */
O_ESTAB, /* none (tcp established) */
O_TCPFLAGS, /* arg1 = 2*u8 bitmap */
O_TCPWIN, /* arg1 = desired win */
O_TCPSEQ, /* u32 = desired seq. */
O_TCPACK, /* u32 = desired seq. */
O_ICMPTYPE, /* u32 = icmp bitmap */
O_TCPOPTS, /* arg1 = 2*u8 bitmap */
O_VERREVPATH, /* none */
O_VERSRCREACH, /* none */
O_PROBE_STATE, /* none */
O_KEEP_STATE, /* none */
O_LIMIT, /* ipfw_insn_limit */
O_LIMIT_PARENT, /* dyn_type, not an opcode. */
/*
* These are really 'actions'.
*/
O_LOG, /* ipfw_insn_log */
O_PROB, /* u32 = match probability */
O_CHECK_STATE, /* none */
O_ACCEPT, /* none */
O_DENY, /* none */
O_REJECT, /* arg1=icmp arg (same as deny) */
O_COUNT, /* none */
O_SKIPTO, /* arg1=next rule number */
O_PIPE, /* arg1=pipe number */
O_QUEUE, /* arg1=queue number */
O_DIVERT, /* arg1=port number */
O_TEE, /* arg1=port number */
O_FORWARD_IP, /* fwd sockaddr */
O_FORWARD_MAC, /* fwd mac */
O_NAT, /* nope */
O_REASS, /* none */
/*
* More opcodes.
*/
O_IPSEC, /* has ipsec history */
O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */
O_IP_DST_LOOKUP, /* arg1=table number, u32=value */
O_ANTISPOOF, /* none */
O_JAIL, /* u32 = id */
O_ALTQ, /* u32 = altq classif. qid */
O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */
O_TCPDATALEN, /* arg1 = tcp data len */
O_IP6_SRC, /* address without mask */
O_IP6_SRC_ME, /* my addresses */
O_IP6_SRC_MASK, /* address with the mask */
O_IP6_DST,
O_IP6_DST_ME,
O_IP6_DST_MASK,
O_FLOW6ID, /* for flow id tag in the ipv6 pkt */
O_ICMP6TYPE, /* icmp6 packet type filtering */
O_EXT_HDR, /* filtering for ipv6 extension header */
O_IP6,
/*
* actions for ng_ipfw
*/
O_NETGRAPH, /* send to ng_ipfw */
O_NGTEE, /* copy to ng_ipfw */
O_IP4,
O_UNREACH6, /* arg1=icmpv6 code arg (deny) */
O_TAG, /* arg1=tag number */
O_TAGGED, /* arg1=tag number */
O_SETFIB, /* arg1=FIB number */
O_FIB, /* arg1=FIB desired fib number */
O_SOCKARG, /* socket argument */
O_CALLRETURN, /* arg1=called rule number */
O_FORWARD_IP6, /* fwd sockaddr_in6 */
O_DSCP, /* 2 u32 = DSCP mask */
O_SETDSCP, /* arg1=DSCP value */
O_IP_FLOW_LOOKUP, /* arg1=table number, u32=value */
O_EXTERNAL_ACTION, /* arg1=id of external action handler */
O_EXTERNAL_INSTANCE, /* arg1=id of eaction handler instance */
O_EXTERNAL_DATA, /* variable length data */
O_SKIP_ACTION, /* none */
O_LAST_OPCODE /* not an opcode! */
};
/*
* The extension header are filtered only for presence using a bit
* vector with a flag for each header.
*/
#define EXT_FRAGMENT 0x1
#define EXT_HOPOPTS 0x2
#define EXT_ROUTING 0x4
#define EXT_AH 0x8
#define EXT_ESP 0x10
#define EXT_DSTOPTS 0x20
#define EXT_RTHDR0 0x40
#define EXT_RTHDR2 0x80
/*
* Template for instructions.
*
* ipfw_insn is used for all instructions which require no operands,
* a single 16-bit value (arg1), or a couple of 8-bit values.
*
* For other instructions which require different/larger arguments
* we have derived structures, ipfw_insn_*.
*
* The size of the instruction (in 32-bit words) is in the low
* 6 bits of "len". The 2 remaining bits are used to implement
* NOT and OR on individual instructions. Given a type, you can
* compute the length to be put in "len" using F_INSN_SIZE(t)
*
* F_NOT negates the match result of the instruction.
*
* F_OR is used to build or blocks. By default, instructions
* are evaluated as part of a logical AND. An "or" block
* { X or Y or Z } contains F_OR set in all but the last
* instruction of the block. A match will cause the code
* to skip past the last instruction of the block.
*
* NOTA BENE: in a couple of places we assume that
* sizeof(ipfw_insn) == sizeof(u_int32_t)
* this needs to be fixed.
*
*/
typedef struct _ipfw_insn { /* template for instructions */
u_int8_t opcode;
u_int8_t len; /* number of 32-bit words */
#define F_NOT 0x80
#define F_OR 0x40
#define F_LEN_MASK 0x3f
#define F_LEN(cmd) ((cmd)->len & F_LEN_MASK)
u_int16_t arg1;
} ipfw_insn;
/*
* The F_INSN_SIZE(type) computes the size, in 4-byte words, of
* a given type.
*/
#define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t))
/*
* This is used to store an array of 16-bit entries (ports etc.)
*/
typedef struct _ipfw_insn_u16 {
ipfw_insn o;
u_int16_t ports[2]; /* there may be more */
} ipfw_insn_u16;
/*
* This is used to store an array of 32-bit entries
* (uid, single IPv4 addresses etc.)
*/
typedef struct _ipfw_insn_u32 {
ipfw_insn o;
u_int32_t d[1]; /* one or more */
} ipfw_insn_u32;
/*
* This is used to store IP addr-mask pairs.
*/
typedef struct _ipfw_insn_ip {
ipfw_insn o;
struct in_addr addr;
struct in_addr mask;
} ipfw_insn_ip;
/*
* This is used to forward to a given address (ip).
*/
typedef struct _ipfw_insn_sa {
ipfw_insn o;
struct sockaddr_in sa;
} ipfw_insn_sa;
/*
* This is used to forward to a given address (ipv6).
*/
typedef struct _ipfw_insn_sa6 {
ipfw_insn o;
struct sockaddr_in6 sa;
} ipfw_insn_sa6;
/*
* This is used for MAC addr-mask pairs.
*/
typedef struct _ipfw_insn_mac {
ipfw_insn o;
u_char addr[12]; /* dst[6] + src[6] */
u_char mask[12]; /* dst[6] + src[6] */
} ipfw_insn_mac;
/*
* This is used for interface match rules (recv xx, xmit xx).
*/
typedef struct _ipfw_insn_if {
ipfw_insn o;
union {
struct in_addr ip;
int glob;
uint16_t kidx;
} p;
char name[IFNAMSIZ];
} ipfw_insn_if;
/*
* This is used for storing an altq queue id number.
*/
typedef struct _ipfw_insn_altq {
ipfw_insn o;
u_int32_t qid;
} ipfw_insn_altq;
/*
* This is used for limit rules.
*/
typedef struct _ipfw_insn_limit {
ipfw_insn o;
u_int8_t _pad;
u_int8_t limit_mask; /* combination of DYN_* below */
#define DYN_SRC_ADDR 0x1
#define DYN_SRC_PORT 0x2
#define DYN_DST_ADDR 0x4
#define DYN_DST_PORT 0x8
u_int16_t conn_limit;
} ipfw_insn_limit;
/*
* This is used for log instructions.
*/
typedef struct _ipfw_insn_log {
ipfw_insn o;
u_int32_t max_log; /* how many do we log -- 0 = all */
u_int32_t log_left; /* how many left to log */
} ipfw_insn_log;
/* Legacy NAT structures, compat only */
#ifndef _KERNEL
/*
* Data structures required by both ipfw(8) and ipfw(4) but not part of the
* management API are protected by IPFW_INTERNAL.
*/
#ifdef IPFW_INTERNAL
/* Server pool support (LSNAT). */
struct cfg_spool {
LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */
struct in_addr addr;
u_short port;
};
#endif
/* Redirect modes id. */
#define REDIR_ADDR 0x01
#define REDIR_PORT 0x02
#define REDIR_PROTO 0x04
#ifdef IPFW_INTERNAL
/* Nat redirect configuration. */
struct cfg_redir {
LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */
u_int16_t mode; /* type of redirect mode */
struct in_addr laddr; /* local ip address */
struct in_addr paddr; /* public ip address */
struct in_addr raddr; /* remote ip address */
u_short lport; /* local port */
u_short pport; /* public port */
u_short rport; /* remote port */
u_short pport_cnt; /* number of public ports */
u_short rport_cnt; /* number of remote ports */
int proto; /* protocol: tcp/udp */
struct alias_link **alink;
/* num of entry in spool chain */
u_int16_t spool_cnt;
/* chain of spool instances */
LIST_HEAD(spool_chain, cfg_spool) spool_chain;
};
#endif
#ifdef IPFW_INTERNAL
/* Nat configuration data struct. */
struct cfg_nat {
/* chain of nat instances */
LIST_ENTRY(cfg_nat) _next;
int id; /* nat id */
struct in_addr ip; /* nat ip address */
char if_name[IF_NAMESIZE]; /* interface name */
int mode; /* aliasing mode */
struct libalias *lib; /* libalias instance */
/* number of entry in spool chain */
int redir_cnt;
/* chain of redir instances */
LIST_HEAD(redir_chain, cfg_redir) redir_chain;
};
#endif
#define SOF_NAT sizeof(struct cfg_nat)
#define SOF_REDIR sizeof(struct cfg_redir)
#define SOF_SPOOL sizeof(struct cfg_spool)
#endif /* ifndef _KERNEL */
struct nat44_cfg_spool {
struct in_addr addr;
uint16_t port;
uint16_t spare;
};
#define NAT44_REDIR_ADDR 0x01
#define NAT44_REDIR_PORT 0x02
#define NAT44_REDIR_PROTO 0x04
/* Nat redirect configuration. */
struct nat44_cfg_redir {
struct in_addr laddr; /* local ip address */
struct in_addr paddr; /* public ip address */
struct in_addr raddr; /* remote ip address */
uint16_t lport; /* local port */
uint16_t pport; /* public port */
uint16_t rport; /* remote port */
uint16_t pport_cnt; /* number of public ports */
uint16_t rport_cnt; /* number of remote ports */
uint16_t mode; /* type of redirect mode */
uint16_t spool_cnt; /* num of entry in spool chain */
uint16_t spare;
uint32_t proto; /* protocol: tcp/udp */
};
/* Nat configuration data struct. */
struct nat44_cfg_nat {
char name[64]; /* nat name */
char if_name[64]; /* interface name */
uint32_t size; /* structure size incl. redirs */
struct in_addr ip; /* nat IPv4 address */
uint32_t mode; /* aliasing mode */
uint32_t redir_cnt; /* number of entry in spool chain */
};
/* Nat command. */
typedef struct _ipfw_insn_nat {
ipfw_insn o;
struct cfg_nat *nat;
} ipfw_insn_nat;
/* Apply ipv6 mask on ipv6 addr */
#define APPLY_MASK(addr,mask) do { \
(addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
(addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
(addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
(addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; \
} while (0)
/* Structure for ipv6 */
typedef struct _ipfw_insn_ip6 {
ipfw_insn o;
struct in6_addr addr6;
struct in6_addr mask6;
} ipfw_insn_ip6;
/* Used to support icmp6 types */
typedef struct _ipfw_insn_icmp6 {
ipfw_insn o;
uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
* define ICMP6_MAXTYPE
* as follows: n = ICMP6_MAXTYPE/32 + 1
* Actually is 203
*/
} ipfw_insn_icmp6;
/*
* Here we have the structure representing an ipfw rule.
*
* Layout:
* struct ip_fw_rule
* [ counter block, size = rule->cntr_len ]
* [ one or more instructions, size = rule->cmd_len * 4 ]
*
* It starts with a general area (with link fields).
* Counter block may be next (if rule->cntr_len > 0),
* followed by an array of one or more instructions, which the code
* accesses as an array of 32-bit values. rule->cmd_len represents
* the total instructions legth in u32 worrd, while act_ofs represents
* rule action offset in u32 words.
*
* When assembling instruction, remember the following:
*
* + if a rule has a "keep-state" (or "limit") option, then the
* first instruction (at r->cmd) MUST BE an O_PROBE_STATE
* + if a rule has a "log" option, then the first action
* (at ACTION_PTR(r)) MUST be O_LOG
* + if a rule has an "altq" option, it comes after "log"
* + if a rule has an O_TAG option, it comes after "log" and "altq"
*
*
* All structures (excluding instructions) are u64-aligned.
* Please keep this.
*/
struct ip_fw_rule {
uint16_t act_ofs; /* offset of action in 32-bit units */
uint16_t cmd_len; /* # of 32-bit words in cmd */
uint16_t spare;
uint8_t set; /* rule set (0..31) */
uint8_t flags; /* rule flags */
uint32_t rulenum; /* rule number */
uint32_t id; /* rule id */
ipfw_insn cmd[1]; /* storage for commands */
};
#define IPFW_RULE_NOOPT 0x01 /* Has no options in body */
#define IPFW_RULE_JUSTOPTS 0x02 /* new format of rule body */
/* Unaligned version */
/* Base ipfw rule counter block. */
struct ip_fw_bcounter {
uint16_t size; /* Size of counter block, bytes */
uint8_t flags; /* flags for given block */
uint8_t spare;
uint32_t timestamp; /* tv_sec of last match */
uint64_t pcnt; /* Packet counter */
uint64_t bcnt; /* Byte counter */
};
#ifndef _KERNEL
/*
* Legacy rule format
*/
struct ip_fw {
struct ip_fw *x_next; /* linked list of rules */
struct ip_fw *next_rule; /* ptr to next [skipto] rule */
/* 'next_rule' is used to pass up 'set_disable' status */
uint16_t act_ofs; /* offset of action in 32-bit units */
uint16_t cmd_len; /* # of 32-bit words in cmd */
uint16_t rulenum; /* rule number */
uint8_t set; /* rule set (0..31) */
uint8_t _pad; /* padding */
uint32_t id; /* rule id */
/* These fields are present in all rules. */
uint64_t pcnt; /* Packet counter */
uint64_t bcnt; /* Byte counter */
uint32_t timestamp; /* tv_sec of last match */
ipfw_insn cmd[1]; /* storage for commands */
};
#endif
#define ACTION_PTR(rule) \
(ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
#define RULESIZE(rule) (sizeof(*(rule)) + (rule)->cmd_len * 4 - 4)
#if 1 // should be moved to in.h
/*
* This structure is used as a flow mask and a flow id for various
* parts of the code.
* addr_type is used in userland and kernel to mark the address type.
* fib is used in the kernel to record the fib in use.
* _flags is used in the kernel to store tcp flags for dynamic rules.
*/
struct ipfw_flow_id {
uint32_t dst_ip;
uint32_t src_ip;
uint16_t dst_port;
uint16_t src_port;
uint8_t fib; /* XXX: must be uint16_t */
uint8_t proto;
uint8_t _flags; /* protocol-specific flags */
uint8_t addr_type; /* 4=ip4, 6=ip6, 1=ether ? */
struct in6_addr dst_ip6;
struct in6_addr src_ip6;
uint32_t flow_id6;
uint32_t extra; /* queue/pipe or frag_id */
};
#endif
#define IS_IP4_FLOW_ID(id) ((id)->addr_type == 4)
#define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6)
/*
* Dynamic ipfw rule.
*/
typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
struct _ipfw_dyn_rule {
ipfw_dyn_rule *next; /* linked list of rules. */
struct ip_fw *rule; /* pointer to rule */
/* 'rule' is used to pass up the rule number (from the parent) */
ipfw_dyn_rule *parent; /* pointer to parent rule */
u_int64_t pcnt; /* packet match counter */
u_int64_t bcnt; /* byte match counter */
struct ipfw_flow_id id; /* (masked) flow id */
u_int32_t expire; /* expire time */
u_int32_t bucket; /* which bucket in hash table */
u_int32_t state; /* state of this rule (typically a
* combination of TCP flags)
*/
#define IPFW_DYN_ORPHANED 0x40000 /* state's parent rule was deleted */
u_int32_t ack_fwd; /* most recent ACKs in forward */
u_int32_t ack_rev; /* and reverse directions (used */
/* to generate keepalives) */
u_int16_t dyn_type; /* rule type */
u_int16_t count; /* refcount */
u_int16_t kidx; /* index of named object */
} __packed __aligned(8);
/*
* Definitions for IP option names.
*/
#define IP_FW_IPOPT_LSRR 0x01
#define IP_FW_IPOPT_SSRR 0x02
#define IP_FW_IPOPT_RR 0x04
#define IP_FW_IPOPT_TS 0x08
/*
* Definitions for TCP option names.
*/
#define IP_FW_TCPOPT_MSS 0x01
#define IP_FW_TCPOPT_WINDOW 0x02
#define IP_FW_TCPOPT_SACK 0x04
#define IP_FW_TCPOPT_TS 0x08
#define IP_FW_TCPOPT_CC 0x10
#define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */
#define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */
#define ICMP_REJECT_ABORT 0x101 /* fake ICMP code (send an SCTP ABORT) */
#define ICMP6_UNREACH_ABORT 0x101 /* fake ICMPv6 code (send an SCTP ABORT) */
/*
* These are used for lookup tables.
*/
#define IPFW_TABLE_ADDR 1 /* Table for holding IPv4/IPv6 prefixes */
#define IPFW_TABLE_INTERFACE 2 /* Table for holding interface names */
#define IPFW_TABLE_NUMBER 3 /* Table for holding ports/uid/gid/etc */
#define IPFW_TABLE_FLOW 4 /* Table for holding flow data */
#define IPFW_TABLE_MAXTYPE 4 /* Maximum valid number */
#define IPFW_TABLE_CIDR IPFW_TABLE_ADDR /* compat */
/* Value types */
#define IPFW_VTYPE_LEGACY 0xFFFFFFFF /* All data is filled in */
#define IPFW_VTYPE_SKIPTO 0x00000001 /* skipto/call/callreturn */
#define IPFW_VTYPE_PIPE 0x00000002 /* pipe/queue */
#define IPFW_VTYPE_FIB 0x00000004 /* setfib */
#define IPFW_VTYPE_NAT 0x00000008 /* nat */
#define IPFW_VTYPE_DSCP 0x00000010 /* dscp */
#define IPFW_VTYPE_TAG 0x00000020 /* tag/untag */
#define IPFW_VTYPE_DIVERT 0x00000040 /* divert/tee */
#define IPFW_VTYPE_NETGRAPH 0x00000080 /* netgraph/ngtee */
#define IPFW_VTYPE_LIMIT 0x00000100 /* limit */
#define IPFW_VTYPE_NH4 0x00000200 /* IPv4 nexthop */
#define IPFW_VTYPE_NH6 0x00000400 /* IPv6 nexthop */
typedef struct _ipfw_table_entry {
in_addr_t addr; /* network address */
u_int32_t value; /* value */
u_int16_t tbl; /* table number */
u_int8_t masklen; /* mask length */
} ipfw_table_entry;
typedef struct _ipfw_table_xentry {
uint16_t len; /* Total entry length */
uint8_t type; /* entry type */
uint8_t masklen; /* mask length */
uint16_t tbl; /* table number */
uint16_t flags; /* record flags */
uint32_t value; /* value */
union {
/* Longest field needs to be aligned by 4-byte boundary */
struct in6_addr addr6; /* IPv6 address */
char iface[IF_NAMESIZE]; /* interface name */
} k;
} ipfw_table_xentry;
#define IPFW_TCF_INET 0x01 /* CIDR flags: IPv4 record */
typedef struct _ipfw_table {
u_int32_t size; /* size of entries in bytes */
u_int32_t cnt; /* # of entries */
u_int16_t tbl; /* table number */
ipfw_table_entry ent[0]; /* entries */
} ipfw_table;
typedef struct _ipfw_xtable {
ip_fw3_opheader opheader; /* IP_FW3 opcode */
uint32_t size; /* size of entries in bytes */
uint32_t cnt; /* # of entries */
uint16_t tbl; /* table number */
uint8_t type; /* table type */
ipfw_table_xentry xent[0]; /* entries */
} ipfw_xtable;
typedef struct _ipfw_obj_tlv {
uint16_t type; /* TLV type */
uint16_t flags; /* TLV-specific flags */
uint32_t length; /* Total length, aligned to u64 */
} ipfw_obj_tlv;
#define IPFW_TLV_TBL_NAME 1
#define IPFW_TLV_TBLNAME_LIST 2
#define IPFW_TLV_RULE_LIST 3
#define IPFW_TLV_DYNSTATE_LIST 4
#define IPFW_TLV_TBL_ENT 5
#define IPFW_TLV_DYN_ENT 6
#define IPFW_TLV_RULE_ENT 7
#define IPFW_TLV_TBLENT_LIST 8
#define IPFW_TLV_RANGE 9
#define IPFW_TLV_EACTION 10
#define IPFW_TLV_COUNTERS 11
#define IPFW_TLV_OBJDATA 12
#define IPFW_TLV_STATE_NAME 14
#define IPFW_TLV_EACTION_BASE 1000
#define IPFW_TLV_EACTION_NAME(arg) (IPFW_TLV_EACTION_BASE + (arg))
typedef struct _ipfw_obj_data {
ipfw_obj_tlv head;
void *data[0];
} ipfw_obj_data;
/* Object name TLV */
typedef struct _ipfw_obj_ntlv {
ipfw_obj_tlv head; /* TLV header */
uint16_t idx; /* Name index */
uint8_t set; /* set, if applicable */
uint8_t type; /* object type, if applicable */
uint32_t spare; /* unused */
char name[64]; /* Null-terminated name */
} ipfw_obj_ntlv;
/* IPv4/IPv6 L4 flow description */
struct tflow_entry {
uint8_t af;
uint8_t proto;
uint16_t spare;
uint16_t sport;
uint16_t dport;
union {
struct {
struct in_addr sip;
struct in_addr dip;
} a4;
struct {
struct in6_addr sip6;
struct in6_addr dip6;
} a6;
} a;
};
typedef struct _ipfw_table_value {
uint32_t tag; /* O_TAG/O_TAGGED */
uint32_t pipe; /* O_PIPE/O_QUEUE */
uint16_t divert; /* O_DIVERT/O_TEE */
uint16_t skipto; /* skipto, CALLRET */
uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */
uint32_t fib; /* O_SETFIB */
uint32_t nat; /* O_NAT */
uint32_t nh4;
uint8_t dscp;
uint8_t spare0;
uint16_t spare1;
struct in6_addr nh6;
uint32_t limit; /* O_LIMIT */
uint32_t zoneid; /* scope zone id for nh6 */
uint64_t reserved;
} ipfw_table_value;
/* Table entry TLV */
typedef struct _ipfw_obj_tentry {
ipfw_obj_tlv head; /* TLV header */
uint8_t subtype; /* subtype (IPv4,IPv6) */
uint8_t masklen; /* mask length */
uint8_t result; /* request result */
uint8_t spare0;
uint16_t idx; /* Table name index */
uint16_t spare1;
union {
/* Longest field needs to be aligned by 8-byte boundary */
struct in_addr addr; /* IPv4 address */
uint32_t key; /* uid/gid/port */
struct in6_addr addr6; /* IPv6 address */
char iface[IF_NAMESIZE]; /* interface name */
struct tflow_entry flow;
} k;
union {
ipfw_table_value value; /* value data */
uint32_t kidx; /* value kernel index */
} v;
} ipfw_obj_tentry;
#define IPFW_TF_UPDATE 0x01 /* Update record if exists */
/* Container TLV */
#define IPFW_CTF_ATOMIC 0x01 /* Perform atomic operation */
/* Operation results */
#define IPFW_TR_IGNORED 0 /* Entry was ignored (rollback) */
#define IPFW_TR_ADDED 1 /* Entry was successfully added */
#define IPFW_TR_UPDATED 2 /* Entry was successfully updated*/
#define IPFW_TR_DELETED 3 /* Entry was successfully deleted*/
#define IPFW_TR_LIMIT 4 /* Entry was ignored (limit) */
#define IPFW_TR_NOTFOUND 5 /* Entry was not found */
#define IPFW_TR_EXISTS 6 /* Entry already exists */
#define IPFW_TR_ERROR 7 /* Request has failed (unknown) */
typedef struct _ipfw_obj_dyntlv {
ipfw_obj_tlv head;
ipfw_dyn_rule state;
} ipfw_obj_dyntlv;
#define IPFW_DF_LAST 0x01 /* Last state in chain */
/* Containter TLVs */
typedef struct _ipfw_obj_ctlv {
ipfw_obj_tlv head; /* TLV header */
uint32_t count; /* Number of sub-TLVs */
uint16_t objsize; /* Single object size */
uint8_t version; /* TLV version */
uint8_t flags; /* TLV-specific flags */
} ipfw_obj_ctlv;
/* Range TLV */
typedef struct _ipfw_range_tlv {
ipfw_obj_tlv head; /* TLV header */
uint32_t flags; /* Range flags */
uint16_t start_rule; /* Range start */
uint16_t end_rule; /* Range end */
uint32_t set; /* Range set to match */
uint32_t new_set; /* New set to move/swap to */
} ipfw_range_tlv;
#define IPFW_RCFLAG_RANGE 0x01 /* rule range is set */
#define IPFW_RCFLAG_ALL 0x02 /* match ALL rules */
#define IPFW_RCFLAG_SET 0x04 /* match rules in given set */
#define IPFW_RCFLAG_DYNAMIC 0x08 /* match only dynamic states */
/* User-settable flags */
#define IPFW_RCFLAG_USER (IPFW_RCFLAG_RANGE | IPFW_RCFLAG_ALL | \
IPFW_RCFLAG_SET | IPFW_RCFLAG_DYNAMIC)
/* Internally used flags */
#define IPFW_RCFLAG_DEFAULT 0x0100 /* Do not skip defaul rule */
typedef struct _ipfw_ta_tinfo {
uint32_t flags; /* Format flags */
uint32_t spare;
uint8_t taclass4; /* algorithm class */
uint8_t spare4;
uint16_t itemsize4; /* item size in runtime */
uint32_t size4; /* runtime structure size */
uint32_t count4; /* number of items in runtime */
uint8_t taclass6; /* algorithm class */
uint8_t spare6;
uint16_t itemsize6; /* item size in runtime */
uint32_t size6; /* runtime structure size */
uint32_t count6; /* number of items in runtime */
} ipfw_ta_tinfo;
#define IPFW_TACLASS_HASH 1 /* algo is based on hash */
#define IPFW_TACLASS_ARRAY 2 /* algo is based on array */
#define IPFW_TACLASS_RADIX 3 /* algo is based on radix tree */
#define IPFW_TATFLAGS_DATA 0x0001 /* Has data filled in */
#define IPFW_TATFLAGS_AFDATA 0x0002 /* Separate data per AF */
#define IPFW_TATFLAGS_AFITEM 0x0004 /* diff. items per AF */
typedef struct _ipfw_xtable_info {
uint8_t type; /* table type (addr,iface,..) */
uint8_t tflags; /* type flags */
uint16_t mflags; /* modification flags */
uint16_t flags; /* generic table flags */
uint16_t spare[3];
uint32_t vmask; /* bitmask with value types */
uint32_t set; /* set table is in */
uint32_t kidx; /* kernel index */
uint32_t refcnt; /* number of references */
uint32_t count; /* Number of records */
uint32_t size; /* Total size of records(export)*/
uint32_t limit; /* Max number of records */
char tablename[64]; /* table name */
char algoname[64]; /* algorithm name */
ipfw_ta_tinfo ta_info; /* additional algo stats */
} ipfw_xtable_info;
/* Generic table flags */
#define IPFW_TGFLAGS_LOCKED 0x01 /* Tables is locked from changes*/
/* Table type-specific flags */
#define IPFW_TFFLAG_SRCIP 0x01
#define IPFW_TFFLAG_DSTIP 0x02
#define IPFW_TFFLAG_SRCPORT 0x04
#define IPFW_TFFLAG_DSTPORT 0x08
#define IPFW_TFFLAG_PROTO 0x10
/* Table modification flags */
#define IPFW_TMFLAGS_LIMIT 0x0002 /* Change limit value */
#define IPFW_TMFLAGS_LOCK 0x0004 /* Change table lock state */
typedef struct _ipfw_iface_info {
char ifname[64]; /* interface name */
uint32_t ifindex; /* interface index */
uint32_t flags; /* flags */
uint32_t refcnt; /* number of references */
uint32_t gencnt; /* number of changes */
uint64_t spare;
} ipfw_iface_info;
#define IPFW_IFFLAG_RESOLVED 0x01 /* Interface exists */
typedef struct _ipfw_ta_info {
char algoname[64]; /* algorithm name */
uint32_t type; /* lookup type */
uint32_t flags;
uint32_t refcnt;
uint32_t spare0;
uint64_t spare1;
} ipfw_ta_info;
typedef struct _ipfw_obj_header {
ip_fw3_opheader opheader; /* IP_FW3 opcode */
uint32_t spare;
uint16_t idx; /* object name index */
uint8_t objtype; /* object type */
uint8_t objsubtype; /* object subtype */
ipfw_obj_ntlv ntlv; /* object name tlv */
} ipfw_obj_header;
typedef struct _ipfw_obj_lheader {
ip_fw3_opheader opheader; /* IP_FW3 opcode */
uint32_t set_mask; /* disabled set mask */
uint32_t count; /* Total objects count */
uint32_t size; /* Total size (incl. header) */
uint32_t objsize; /* Size of one object */
} ipfw_obj_lheader;
#define IPFW_CFG_GET_STATIC 0x01
#define IPFW_CFG_GET_STATES 0x02
#define IPFW_CFG_GET_COUNTERS 0x04
typedef struct _ipfw_cfg_lheader {
ip_fw3_opheader opheader; /* IP_FW3 opcode */
uint32_t set_mask; /* enabled set mask */
uint32_t spare;
uint32_t flags; /* Request flags */
uint32_t size; /* neded buffer size */
uint32_t start_rule;
uint32_t end_rule;
} ipfw_cfg_lheader;
typedef struct _ipfw_range_header {
ip_fw3_opheader opheader; /* IP_FW3 opcode */
ipfw_range_tlv range;
} ipfw_range_header;
typedef struct _ipfw_sopt_info {
uint16_t opcode;
uint8_t version;
uint8_t dir;
uint8_t spare;
uint64_t refcnt;
} ipfw_sopt_info;
#endif /* _IPFW2_H */