freebsd-skq/sys/dev/if_ndis/if_ndisvar.h
wpaul ef07dbe57f This commit makes a big round of updates and fixes many, many things.
First and most importantly, I threw out the thread priority-twiddling
implementation of KeRaiseIrql()/KeLowerIrq()/KeGetCurrentIrql() in
favor of a new scheme that uses sleep mutexes. The old scheme was
really very naughty and sought to provide the same behavior as
Windows spinlocks (i.e. blocking pre-emption) but in a way that
wouldn't raise the ire of WITNESS. The new scheme represents
'DISPATCH_LEVEL' as the acquisition of a per-cpu sleep mutex. If
a thread on cpu0 acquires the 'dispatcher mutex,' it will block
any other thread on the same processor that tries to acquire it,
in effect only allowing one thread on the processor to be at
'DISPATCH_LEVEL' at any given time. It can then do the 'atomic sit
and spin' routine on the spinlock variable itself. If a thread on
cpu1 wants to acquire the same spinlock, it acquires the 'dispatcher
mutex' for cpu1 and then it too does an atomic sit and spin to try
acquiring the spinlock.

Unlike real spinlocks, this does not disable pre-emption of all
threads on the CPU, but it does put any threads involved with
the NDISulator to sleep, which is just as good for our purposes.

This means I can now play nice with WITNESS, and I can safely do
things like call malloc() when I'm at 'DISPATCH_LEVEL,' which
you're allowed to do in Windows.

Next, I completely re-wrote most of the event/timer/mutex handling
and wait code. KeWaitForSingleObject() and KeWaitForMultipleObjects()
have been re-written to use condition variables instead of msleep().
This allows us to use the Windows convention whereby thread A can
tell thread B "wake up with a boosted priority." (With msleep(), you
instead have thread B saying "when I get woken up, I'll use this
priority here," and thread A can't tell it to do otherwise.) The
new KeWaitForMultipleObjects() has been better tested and better
duplicates the semantics of its Windows counterpart.

I also overhauled the IoQueueWorkItem() API and underlying code.
Like KeInsertQueueDpc(), IoQueueWorkItem() must insure that the
same work item isn't put on the queue twice. ExQueueWorkItem(),
which in my implementation is built on top of IoQueueWorkItem(),
was also modified to perform a similar test.

I renamed the doubly-linked list macros to give them the same names
as their Windows counterparts and fixed RemoveListTail() and
RemoveListHead() so they properly return the removed item.

I also corrected the list handling code in ntoskrnl_dpc_thread()
and ntoskrnl_workitem_thread(). I realized that the original logic
did not correctly handle the case where a DPC callout tries to
queue up another DPC. It works correctly now.

I implemented IoConnectInterrupt() and IoDisconnectInterrupt() and
modified NdisMRegisterInterrupt() and NdisMDisconnectInterrupt() to
use them. I also tried to duplicate the interrupt handling scheme
used in Windows. The interrupt handling is now internal to ndis.ko,
and the ndis_intr() function has been removed from if_ndis.c. (In
the USB case, interrupt handling isn't needed in if_ndis.c anyway.)

NdisMSleep() has been rewritten to use a KeWaitForSingleObject()
and a KeTimer, which is how it works in Windows. (This is mainly
to insure that the NDISulator uses the KeTimer API so I can spot
any problems with it that may arise.)

KeCancelTimer() has been changed so that it only cancels timers, and
does not attempt to cancel a DPC if the timer managed to fire and
queue one up before KeCancelTimer() was called. The Windows DDK
documentation seems to imply that KeCantelTimer() will also call
KeRemoveQueueDpc() if necessary, but it really doesn't.

The KeTimer implementation has been rewritten to use the callout API
directly instead of timeout()/untimeout(). I still cheat a little in
that I have to manage my own small callout timer wheel, but the timer
code works more smoothly now. I discovered a race condition using
timeout()/untimeout() with periodic timers where untimeout() fails
to actually cancel a timer. I don't quite understand where the race
is, using callout_init()/callout_reset()/callout_stop() directly
seems to fix it.

I also discovered and fixed a bug in winx32_wrap.S related to
translating _stdcall calls. There are a couple of routines
(i.e. the 64-bit arithmetic intrinsics in subr_ntoskrnl) that
return 64-bit quantities. On the x86 arch, 64-bit values are
returned in the %eax and %edx registers. However, it happens
that the ctxsw_utow() routine uses %edx as a scratch register,
and x86_stdcall_wrap() and x86_stdcall_call() were only preserving
%eax before branching to ctxsw_utow(). This means %edx was getting
clobbered in some cases. Curiously, the most noticeable effect of this
bug is that the driver for the TI AXC110 chipset would constantly drop
and reacquire its link for no apparent reason. Both %eax and %edx
are preserved on the stack now. The _fastcall and _regparm
wrappers already handled everything correctly.

I changed if_ndis to use IoAllocateWorkItem() and IoQueueWorkItem()
instead of the NdisScheduleWorkItem() API. This is to avoid possible
deadlocks with any drivers that use NdisScheduleWorkItem() themselves.

The unicode/ansi conversion handling code has been cleaned up. The
internal routines have been moved to subr_ntoskrnl and the
RtlXXX routines have been exported so that subr_ndis can call them.
This removes the incestuous relationship between the two modules
regarding this code and fixes the implementation so that it honors
the 'maxlen' fields correctly. (Previously it was possible for
NdisUnicodeStringToAnsiString() to possibly clobber memory it didn't
own, which was causing many mysterious crashes in the Marvell 8335
driver.)

The registry handling code (NdisOpen/Close/ReadConfiguration()) has
been fixed to allocate memory for all the parameters it hands out to
callers and delete whem when NdisCloseConfiguration() is called.
(Previously, it would secretly use a single static buffer.)

I also substantially updated if_ndis so that the source can now be
built on FreeBSD 7, 6 and 5 without any changes. On FreeBSD 5, only
WEP support is enabled. On FreeBSD 6 and 7, WPA-PSK support is enabled.

The original WPA code has been updated to fit in more cleanly with
the net80211 API, and to eleminate the use of magic numbers. The
ndis_80211_setstate() routine now sets a default authmode of OPEN
and initializes the RTS threshold and fragmentation threshold.
The WPA routines were changed so that the authentication mode is
always set first, followed by the cipher. Some drivers depend on
the operations being performed in this order.

I also added passthrough ioctls that allow application code to
directly call the MiniportSetInformation()/MiniportQueryInformation()
methods via ndis_set_info() and ndis_get_info(). The ndis_linksts()
routine also caches the last 4 events signalled by the driver via
NdisMIndicateStatus(), and they can be queried by an application via
a separate ioctl. This is done to allow wpa_supplicant to directly
program the various crypto and key management options in the driver,
allowing things like WPA2 support to work.

Whew.
2005-10-10 16:46:39 +00:00

209 lines
5.5 KiB
C

/*-
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#define NDIS_DEFAULT_NODENAME "FreeBSD NDIS node"
#define NDIS_NODENAME_LEN 32
/* For setting/getting OIDs from userspace. */
struct ndis_oid_data {
uint32_t oid;
uint32_t len;
#ifdef notdef
uint8_t data[1];
#endif
};
struct ndis_pci_type {
uint16_t ndis_vid;
uint16_t ndis_did;
uint32_t ndis_subsys;
char *ndis_name;
};
struct ndis_pccard_type {
const char *ndis_vid;
const char *ndis_did;
char *ndis_name;
};
struct ndis_shmem {
list_entry ndis_list;
bus_dma_tag_t ndis_stag;
bus_dmamap_t ndis_smap;
void *ndis_saddr;
ndis_physaddr ndis_paddr;
};
struct ndis_cfglist {
ndis_cfg ndis_cfg;
struct sysctl_oid *ndis_oid;
TAILQ_ENTRY(ndis_cfglist) link;
};
/*
* Helper struct to make parsing information
* elements easier.
*/
struct ndis_ie {
uint8_t ni_oui[3];
uint8_t ni_val;
};
TAILQ_HEAD(nch, ndis_cfglist);
#define NDIS_INITIALIZED(sc) (sc->ndis_block->nmb_devicectx != NULL)
#define NDIS_INC(x) \
(x)->ndis_txidx = ((x)->ndis_txidx + 1) % (x)->ndis_maxpkts
#if __FreeBSD_version < 600000
#define arpcom ic.ic_ac
#endif
#define NDIS_EVENTS 4
#define NDIS_EVTINC(x) (x) = ((x) + 1) % NDIS_EVENTS
struct ndis_evt {
uint32_t ne_sts;
uint32_t ne_len;
char *ne_buf;
};
struct ndis_softc {
struct ieee80211com ic; /* interface info */
struct ifnet *ifp;
struct ifmedia ifmedia; /* media info */
u_long ndis_hwassist;
uint32_t ndis_v4tx;
uint32_t ndis_v4rx;
bus_space_handle_t ndis_bhandle;
bus_space_tag_t ndis_btag;
void *ndis_intrhand;
struct resource *ndis_irq;
struct resource *ndis_res;
struct resource *ndis_res_io;
int ndis_io_rid;
struct resource *ndis_res_mem;
int ndis_mem_rid;
struct resource *ndis_res_altmem;
int ndis_altmem_rid;
struct resource *ndis_res_am; /* attribute mem (pccard) */
int ndis_am_rid;
struct resource *ndis_res_cm; /* common mem (pccard) */
struct resource_list ndis_rl;
int ndis_rescnt;
kspin_lock ndis_spinlock;
uint8_t ndis_irql;
device_t ndis_dev;
int ndis_unit;
ndis_miniport_block *ndis_block;
ndis_miniport_characteristics *ndis_chars;
interface_type ndis_type;
struct callout_handle ndis_stat_ch;
int ndis_maxpkts;
ndis_oid *ndis_oids;
int ndis_oidcnt;
int ndis_txidx;
int ndis_txpending;
ndis_packet **ndis_txarray;
ndis_handle ndis_txpool;
int ndis_sc;
ndis_cfg *ndis_regvals;
struct nch ndis_cfglist_head;
int ndis_80211;
int ndis_link;
uint32_t ndis_sts;
uint32_t ndis_filter;
int ndis_if_flags;
int ndis_skip;
#if __FreeBSD_version < 502113
struct sysctl_ctx_list ndis_ctx;
struct sysctl_oid *ndis_tree;
#endif
int ndis_devidx;
interface_type ndis_iftype;
driver_object *ndis_dobj;
io_workitem *ndis_tickitem;
io_workitem *ndis_startitem;
io_workitem *ndis_resetitem;
kdpc ndis_rxdpc;
bus_dma_tag_t ndis_parent_tag;
/*
struct ndis_shmem *ndis_shlist;
*/
list_entry ndis_shlist;
bus_dma_tag_t ndis_mtag;
bus_dma_tag_t ndis_ttag;
bus_dmamap_t *ndis_mmaps;
bus_dmamap_t *ndis_tmaps;
int ndis_mmapcnt;
struct ndis_evt ndis_evt[NDIS_EVENTS];
int ndis_evtpidx;
int ndis_evtcidx;
};
#define NDIS_LOCK(_sc) KeAcquireSpinLock(&(_sc)->ndis_spinlock, \
&(_sc)->ndis_irql);
#define NDIS_UNLOCK(_sc) KeReleaseSpinLock(&(_sc)->ndis_spinlock, \
(_sc)->ndis_irql);
/*
* Backwards compatibility defines.
*/
#ifndef IF_ADDR_LOCK
#define IF_ADDR_LOCK(x)
#define IF_ADDR_UNLOCK(x)
#endif
#ifndef IFF_DRV_OACTIVE
#define IFF_DRV_OACTIVE IFF_OACTIVE
#define IFF_DRV_RUNNING IFF_RUNNING
#define if_drv_flags if_flags
#endif
#ifndef ic_def_txkey
#define ic_def_txkey ic_wep_txkey
#define wk_keylen wk_len
#endif
#ifndef SIOCGDRVSPEC
#define SIOCSDRVSPEC _IOW('i', 123, struct ifreq) /* set driver-specific
parameters */
#define SIOCGDRVSPEC _IOWR('i', 123, struct ifreq) /* get driver-specific
parameters */
#endif