freebsd-skq/sys/net80211/ieee80211_crypto.c
Adrian Chadd fe75b45213 [net80211] handle hardware encryption offload in the receive path
* teach the crypto modules about receive offload - although I have
  to do some further reviewing in places where we /can't/ have an RX key
* teach the RX data path about receive offload encryption - check the flag,
  handle NULL key, do decap and checking as appropriate.

Tested:

* iwn(4), STA mode
* ath(4), STA and AP mode
* ath10k port, STA mode (hardware encryption)

Reviewed by:	avos
Differential Revision:	https://reviews.freebsd.org/D8533
2016-11-19 02:00:24 +00:00

770 lines
21 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 generic crypto support.
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/ethernet.h> /* XXX ETHER_HDR_LEN */
#include <net80211/ieee80211_var.h>
MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state");
static int _ieee80211_crypto_delkey(struct ieee80211vap *,
struct ieee80211_key *);
/*
* Table of registered cipher modules.
*/
static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
/*
* Default "null" key management routines.
*/
static int
null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
if (!(&vap->iv_nw_keys[0] <= k &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
/*
* Not in the global key table, the driver should handle this
* by allocating a slot in the h/w key table/cache. In
* lieu of that return key slot 0 for any unicast key
* request. We disallow the request if this is a group key.
* This default policy does the right thing for legacy hardware
* with a 4 key table. It also handles devices that pass
* packets through untouched when marked with the WEP bit
* and key index 0.
*/
if (k->wk_flags & IEEE80211_KEY_GROUP)
return 0;
*keyix = 0; /* NB: use key index 0 for ucast key */
} else {
*keyix = k - vap->iv_nw_keys;
}
*rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */
return 1;
}
static int
null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
return 1;
}
static int
null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
return 1;
}
static void null_key_update(struct ieee80211vap *vap) {}
/*
* Write-arounds for common operations.
*/
static __inline void
cipher_detach(struct ieee80211_key *key)
{
key->wk_cipher->ic_detach(key);
}
static __inline void *
cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key)
{
return key->wk_cipher->ic_attach(vap, key);
}
/*
* Wrappers for driver key management methods.
*/
static __inline int
dev_key_alloc(struct ieee80211vap *vap,
struct ieee80211_key *key,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
return vap->iv_key_alloc(vap, key, keyix, rxkeyix);
}
static __inline int
dev_key_delete(struct ieee80211vap *vap,
const struct ieee80211_key *key)
{
return vap->iv_key_delete(vap, key);
}
static __inline int
dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key)
{
return vap->iv_key_set(vap, key);
}
/*
* Setup crypto support for a device/shared instance.
*/
void
ieee80211_crypto_attach(struct ieee80211com *ic)
{
/* NB: we assume everything is pre-zero'd */
ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
}
/*
* Teardown crypto support.
*/
void
ieee80211_crypto_detach(struct ieee80211com *ic)
{
}
/*
* Setup crypto support for a vap.
*/
void
ieee80211_crypto_vattach(struct ieee80211vap *vap)
{
int i;
/* NB: we assume everything is pre-zero'd */
vap->iv_max_keyix = IEEE80211_WEP_NKID;
vap->iv_def_txkey = IEEE80211_KEYIX_NONE;
for (i = 0; i < IEEE80211_WEP_NKID; i++)
ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i],
IEEE80211_KEYIX_NONE);
/*
* Initialize the driver key support routines to noop entries.
* This is useful especially for the cipher test modules.
*/
vap->iv_key_alloc = null_key_alloc;
vap->iv_key_set = null_key_set;
vap->iv_key_delete = null_key_delete;
vap->iv_key_update_begin = null_key_update;
vap->iv_key_update_end = null_key_update;
}
/*
* Teardown crypto support for a vap.
*/
void
ieee80211_crypto_vdetach(struct ieee80211vap *vap)
{
ieee80211_crypto_delglobalkeys(vap);
}
/*
* Register a crypto cipher module.
*/
void
ieee80211_crypto_register(const struct ieee80211_cipher *cip)
{
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
printf("%s: cipher %s has an invalid cipher index %u\n",
__func__, cip->ic_name, cip->ic_cipher);
return;
}
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
printf("%s: cipher %s registered with a different template\n",
__func__, cip->ic_name);
return;
}
ciphers[cip->ic_cipher] = cip;
}
/*
* Unregister a crypto cipher module.
*/
void
ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
{
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
printf("%s: cipher %s has an invalid cipher index %u\n",
__func__, cip->ic_name, cip->ic_cipher);
return;
}
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
printf("%s: cipher %s registered with a different template\n",
__func__, cip->ic_name);
return;
}
/* NB: don't complain about not being registered */
/* XXX disallow if references */
ciphers[cip->ic_cipher] = NULL;
}
int
ieee80211_crypto_available(u_int cipher)
{
return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
}
/* XXX well-known names! */
static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = {
[IEEE80211_CIPHER_WEP] = "wlan_wep",
[IEEE80211_CIPHER_TKIP] = "wlan_tkip",
[IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb",
[IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp",
[IEEE80211_CIPHER_TKIPMIC] = "#4", /* NB: reserved */
[IEEE80211_CIPHER_CKIP] = "wlan_ckip",
[IEEE80211_CIPHER_NONE] = "wlan_none",
};
/* NB: there must be no overlap between user-supplied and device-owned flags */
CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0);
/*
* Establish a relationship between the specified key and cipher
* and, if necessary, allocate a hardware index from the driver.
* Note that when a fixed key index is required it must be specified.
*
* This must be the first call applied to a key; all the other key
* routines assume wk_cipher is setup.
*
* Locking must be handled by the caller using:
* ieee80211_key_update_begin(vap);
* ieee80211_key_update_end(vap);
*/
int
ieee80211_crypto_newkey(struct ieee80211vap *vap,
int cipher, int flags, struct ieee80211_key *key)
{
struct ieee80211com *ic = vap->iv_ic;
const struct ieee80211_cipher *cip;
ieee80211_keyix keyix, rxkeyix;
void *keyctx;
int oflags;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: cipher %u flags 0x%x keyix %u\n",
__func__, cipher, flags, key->wk_keyix);
/*
* Validate cipher and set reference to cipher routines.
*/
if (cipher >= IEEE80211_CIPHER_MAX) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: invalid cipher %u\n", __func__, cipher);
vap->iv_stats.is_crypto_badcipher++;
return 0;
}
cip = ciphers[cipher];
if (cip == NULL) {
/*
* Auto-load cipher module if we have a well-known name
* for it. It might be better to use string names rather
* than numbers and craft a module name based on the cipher
* name; e.g. wlan_cipher_<cipher-name>.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: unregistered cipher %u, load module %s\n",
__func__, cipher, cipher_modnames[cipher]);
ieee80211_load_module(cipher_modnames[cipher]);
/*
* If cipher module loaded it should immediately
* call ieee80211_crypto_register which will fill
* in the entry in the ciphers array.
*/
cip = ciphers[cipher];
if (cip == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: unable to load cipher %u, module %s\n",
__func__, cipher, cipher_modnames[cipher]);
vap->iv_stats.is_crypto_nocipher++;
return 0;
}
}
oflags = key->wk_flags;
flags &= IEEE80211_KEY_COMMON;
/* NB: preserve device attributes */
flags |= (oflags & IEEE80211_KEY_DEVICE);
/*
* If the hardware does not support the cipher then
* fallback to a host-based implementation.
*/
if ((ic->ic_cryptocaps & (1<<cipher)) == 0) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: no h/w support for cipher %s, falling back to s/w\n",
__func__, cip->ic_name);
flags |= IEEE80211_KEY_SWCRYPT;
}
/*
* Hardware TKIP with software MIC is an important
* combination; we handle it by flagging each key,
* the cipher modules honor it.
*/
if (cipher == IEEE80211_CIPHER_TKIP &&
(ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: no h/w support for TKIP MIC, falling back to s/w\n",
__func__);
flags |= IEEE80211_KEY_SWMIC;
}
/*
* Bind cipher to key instance. Note we do this
* after checking the device capabilities so the
* cipher module can optimize space usage based on
* whether or not it needs to do the cipher work.
*/
if (key->wk_cipher != cip || key->wk_flags != flags) {
/*
* Fillin the flags so cipher modules can see s/w
* crypto requirements and potentially allocate
* different state and/or attach different method
* pointers.
*/
key->wk_flags = flags;
keyctx = cip->ic_attach(vap, key);
if (keyctx == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: unable to attach cipher %s\n",
__func__, cip->ic_name);
key->wk_flags = oflags; /* restore old flags */
vap->iv_stats.is_crypto_attachfail++;
return 0;
}
cipher_detach(key);
key->wk_cipher = cip; /* XXX refcnt? */
key->wk_private = keyctx;
}
/*
* Ask the driver for a key index if we don't have one.
* Note that entries in the global key table always have
* an index; this means it's safe to call this routine
* for these entries just to setup the reference to the
* cipher template. Note also that when using software
* crypto we also call the driver to give us a key index.
*/
if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) {
/*
* Unable to setup driver state.
*/
vap->iv_stats.is_crypto_keyfail++;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: unable to setup cipher %s\n",
__func__, cip->ic_name);
return 0;
}
if (key->wk_flags != flags) {
/*
* Driver overrode flags we setup; typically because
* resources were unavailable to handle _this_ key.
* Re-attach the cipher context to allow cipher
* modules to handle differing requirements.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: driver override for cipher %s, flags "
"0x%x -> 0x%x\n", __func__, cip->ic_name,
oflags, key->wk_flags);
keyctx = cip->ic_attach(vap, key);
if (keyctx == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: unable to attach cipher %s with "
"flags 0x%x\n", __func__, cip->ic_name,
key->wk_flags);
key->wk_flags = oflags; /* restore old flags */
vap->iv_stats.is_crypto_attachfail++;
return 0;
}
cipher_detach(key);
key->wk_cipher = cip; /* XXX refcnt? */
key->wk_private = keyctx;
}
key->wk_keyix = keyix;
key->wk_rxkeyix = rxkeyix;
key->wk_flags |= IEEE80211_KEY_DEVKEY;
}
return 1;
}
/*
* Remove the key (no locking, for internal use).
*/
static int
_ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
{
KASSERT(key->wk_cipher != NULL, ("No cipher!"));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
__func__, key->wk_cipher->ic_name,
key->wk_keyix, key->wk_flags,
key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
key->wk_keylen);
if (key->wk_flags & IEEE80211_KEY_DEVKEY) {
/*
* Remove hardware entry.
*/
/* XXX key cache */
if (!dev_key_delete(vap, key)) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: driver did not delete key index %u\n",
__func__, key->wk_keyix);
vap->iv_stats.is_crypto_delkey++;
/* XXX recovery? */
}
}
cipher_detach(key);
memset(key, 0, sizeof(*key));
ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE);
return 1;
}
/*
* Remove the specified key.
*/
int
ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
{
int status;
ieee80211_key_update_begin(vap);
status = _ieee80211_crypto_delkey(vap, key);
ieee80211_key_update_end(vap);
return status;
}
/*
* Clear the global key table.
*/
void
ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap)
{
int i;
ieee80211_key_update_begin(vap);
for (i = 0; i < IEEE80211_WEP_NKID; i++)
(void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]);
ieee80211_key_update_end(vap);
}
/*
* Set the contents of the specified key.
*
* Locking must be handled by the caller using:
* ieee80211_key_update_begin(vap);
* ieee80211_key_update_end(vap);
*/
int
ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key)
{
const struct ieee80211_cipher *cip = key->wk_cipher;
KASSERT(cip != NULL, ("No cipher!"));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
__func__, cip->ic_name, key->wk_keyix,
key->wk_flags, ether_sprintf(key->wk_macaddr),
key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
key->wk_keylen);
if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
/* XXX nothing allocated, should not happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: no device key setup done; should not happen!\n",
__func__);
vap->iv_stats.is_crypto_setkey_nokey++;
return 0;
}
/*
* Give cipher a chance to validate key contents.
* XXX should happen before modifying state.
*/
if (!cip->ic_setkey(key)) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
"%s: cipher %s rejected key index %u len %u flags 0x%x\n",
__func__, cip->ic_name, key->wk_keyix,
key->wk_keylen, key->wk_flags);
vap->iv_stats.is_crypto_setkey_cipher++;
return 0;
}
return dev_key_set(vap, key);
}
uint8_t
ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k)
{
if (k >= &vap->iv_nw_keys[0] &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])
return (k - vap->iv_nw_keys);
else
return (0);
}
struct ieee80211_key *
ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
/*
* Multicast traffic always uses the multicast key.
* Otherwise if a unicast key is set we use that and
* it is always key index 0. When no unicast key is
* set we fall back to the default transmit key.
*/
wh = mtod(m, struct ieee80211_frame *);
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
wh->i_addr1,
"no default transmit key (%s) deftxkey %u",
__func__, vap->iv_def_txkey);
vap->iv_stats.is_tx_nodefkey++;
return NULL;
}
return &vap->iv_nw_keys[vap->iv_def_txkey];
}
return &ni->ni_ucastkey;
}
/*
* Add privacy headers appropriate for the specified key.
*/
struct ieee80211_key *
ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211_key *k;
const struct ieee80211_cipher *cip;
if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) {
cip = k->wk_cipher;
return (cip->ic_encap(k, m) ? k : NULL);
}
return NULL;
}
/*
* Validate and strip privacy headers (and trailer) for a
* received frame that has the WEP/Privacy bit set.
*/
int
ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen,
struct ieee80211_key **key)
{
#define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
#define IEEE80211_WEP_MINLEN \
(sizeof(struct ieee80211_frame) + \
IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_key *k;
struct ieee80211_frame *wh;
const struct ieee80211_rx_stats *rxs;
const struct ieee80211_cipher *cip;
uint8_t keyid;
/*
* Check for hardware decryption and IV stripping.
* If the IV is stripped then we definitely can't find a key.
* Set the key to NULL but return true; upper layers
* will need to handle a NULL key for a successful
* decrypt.
*/
rxs = ieee80211_get_rx_params_ptr(m);
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) {
/*
* Hardware decrypted, IV stripped.
* We can't find a key with a stripped IV.
* Return successful.
*/
*key = NULL;
return (1);
}
}
/* NB: this minimum size data frame could be bigger */
if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"%s: WEP data frame too short, len %u\n",
__func__, m->m_pkthdr.len);
vap->iv_stats.is_rx_tooshort++; /* XXX need unique stat? */
*key = NULL;
return (0);
}
/*
* Locate the key. If unicast and there is no unicast
* key then we fall back to the key id in the header.
* This assumes unicast keys are only configured when
* the key id in the header is meaningless (typically 0).
*/
wh = mtod(m, struct ieee80211_frame *);
m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid);
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
k = &vap->iv_nw_keys[keyid >> 6];
else
k = &ni->ni_ucastkey;
/*
* Insure crypto header is contiguous for all decap work.
*/
cip = k->wk_cipher;
if (m->m_len < hdrlen + cip->ic_header &&
(m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"unable to pullup %s header", cip->ic_name);
vap->iv_stats.is_rx_wepfail++; /* XXX */
*key = NULL;
return (0);
}
/*
* Attempt decryption.
*
* If we fail then don't return the key - return NULL
* and an error.
*/
if (cip->ic_decap(k, m, hdrlen)) {
/* success */
*key = k;
return (1);
}
/* Failure */
*key = NULL;
return (0);
#undef IEEE80211_WEP_MINLEN
#undef IEEE80211_WEP_HDRLEN
}
/*
* Check and remove any MIC.
*/
int
ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k,
struct mbuf *m, int force)
{
const struct ieee80211_cipher *cip;
const struct ieee80211_rx_stats *rxs;
struct ieee80211_frame *wh;
rxs = ieee80211_get_rx_params_ptr(m);
wh = mtod(m, struct ieee80211_frame *);
/*
* Handle demic / mic errors from hardware-decrypted offload devices.
*/
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
if (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC) {
/*
* Hardware has said MIC failed. We don't care about
* whether it was stripped or not.
*
* Eventually - teach the demic methods in crypto
* modules to handle a NULL key and not to dereference
* it.
*/
ieee80211_notify_michael_failure(vap, wh, -1);
return (0);
}
if (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP) {
/*
* Hardware has decrypted and not indicated a
* MIC failure and has stripped the MIC.
* We may not have a key, so for now just
* return OK.
*/
return (1);
}
}
/*
* If we don't have a key at this point then we don't
* have to demic anything.
*/
if (k == NULL)
return (1);
cip = k->wk_cipher;
return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
}
static void
load_ucastkey(void *arg, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_key *k;
if (vap->iv_state != IEEE80211_S_RUN)
return;
k = &ni->ni_ucastkey;
if (k->wk_flags & IEEE80211_KEY_DEVKEY)
dev_key_set(vap, k);
}
/*
* Re-load all keys known to the 802.11 layer that may
* have hardware state backing them. This is used by
* drivers on resume to push keys down into the device.
*/
void
ieee80211_crypto_reload_keys(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
int i;
/*
* Keys in the global key table of each vap.
*/
/* NB: used only during resume so don't lock for now */
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap->iv_state != IEEE80211_S_RUN)
continue;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
const struct ieee80211_key *k = &vap->iv_nw_keys[i];
if (k->wk_flags & IEEE80211_KEY_DEVKEY)
dev_key_set(vap, k);
}
}
/*
* Unicast keys.
*/
ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL);
}