bde
2e834acd9c
Fixed rint(x) in the following cases:
(1) In round-to-nearest mode, on all machines, fdlibm rint() never worked for |x| = n+0.75 where n is an even integer between 262144 and 524286 inclusive (2*131072 cases). To avoid double rounding on some machines, we begin by adjusting x to a value with the 0.25 bit not set, essentially by moving the 0.25 bit to a lower bit where it works well enough as a guard, but we botched the adjustment when log2(|x|) == 18 (2*2**52 cases) and ended up just clearing the 0.25 bit then. Most subcases still worked accidentally since another lower bit serves as a guard. The case of odd n worked accidentally because the rounding goes the right way then. However, for even n, after mangling n+0.75 to 0.5, rounding gives n but the correct result is n+1. (2) In round-towards-minus-infinity mode, on all machines, fdlibm rint() never for x = n+0.25 where n is any integer between -524287 and -262144 inclusive (262144 cases). In these cases, after mangling n+0.25 to n, rounding gives n but the correct result is n-1. (3) In round-towards-plus-infinity mode, on all machines, fdlibm rint() never for x = n+0.25 where n is any integer between 262144 and 524287 inclusive (262144 cases). In these cases, after mangling n+0.25 to n, rounding gives n but the correct result is n+1. A variant of this bug was fixed for the float case in rev.1.9 of s_rintf.c, but the analysis there is incomplete (it only mentions (1)) and the fix is buggy. Example of the problem with double rounding: rint(1.375) on a machine which evaluates double expressions with just 1 bit of extra precision and is in round-to-nearest mode. We evaluate the result using (double)(2**52 + 1.375) - 2**52. Evaluating 2**52 + 1.375 in (53+1) bit prcision gives 2**52 + 1.5 (first rounding). (Second) rounding of this to double gives 2**52 + 2.0. Subtracting 2**52 from this gives 2.0 but we want 1.0. Evaluating 2**52 + 1.375 in double precision would have given the desired intermediate result of 2**52 + 1.0. The double rounding problem is relatively rare, so the botched adjustment can be fixed for most machines by removing the entire adjustment. This would be a wrong fix (using it is 1 of the bugs in rev.1.9 of s_rintf.c) since fdlibm is supposed to be generic, but it works in the following cases: - on all machines that evaluate double expressions in double precision, provided either long double has the same precision as double (alpha, and i386's with precision forced to double) or my earlier fix to use a long double 2**52 is modified to avoid using long double precision. - on all machines that evaluate double expressions in many more than 11 bits of extra precision. The 1 bit of extra precision in the example is the worst case. With N bits of extra precision, it sufices to adjust the bit N bits below the 0.5 bit. For N >= about 52 there is no such bit so the adjustment is both impossible and unnecessary. The fix in rev.1.9 of s_rintf.c apparently depends on corresponding magic in float precision: on all supported machines N is either 0 or >= 24, so double rounding doesn't occur in practice. - on all machines that don't use fdlibm rint*() (i386's). So under FreeBSD, the double rounding problem only affects amd64 now, but should only affect i386 in future (when double expressions are evaluated in long double precision).
…
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
Languages
C
63.3%
C++
23.3%
Roff
5.1%
Shell
2.9%
Makefile
1.5%
Other
3.4%