freebsd-skq/sys/kern/kern_sx.c
mjg 2eae2c18c9 sx: port over writer starvation prevention measures from rwlock
A constant stream of readers could completely starve writers and this is not
a hypothetical scenario.

The 'poll2_threads' test from the will-it-scale suite reliably starves writers
even with concurrency < 10 threads.

The problem was run into and diagnosed by dillon@backplane.com

There was next to no change in lock contention profile during -j 128 pkg build,
despite an sx lock being at the top.

Tested by:	pho
2018-05-22 07:20:22 +00:00

1567 lines
40 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2007 Attilio Rao <attilio@freebsd.org>
* Copyright (c) 2001 Jason Evans <jasone@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer as
* the first lines of this file unmodified other than the possible
* addition of one or more copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* Shared/exclusive locks. This implementation attempts to ensure
* deterministic lock granting behavior, so that slocks and xlocks are
* interleaved.
*
* Priority propagation will not generally raise the priority of lock holders,
* so should not be relied upon in combination with sx locks.
*/
#include "opt_ddb.h"
#include "opt_hwpmc_hooks.h"
#include "opt_no_adaptive_sx.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/sleepqueue.h>
#include <sys/sx.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
#include <machine/cpu.h>
#endif
#ifdef DDB
#include <ddb/ddb.h>
#endif
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
#define ADAPTIVE_SX
#endif
CTASSERT((SX_NOADAPTIVE & LO_CLASSFLAGS) == SX_NOADAPTIVE);
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
PMC_SOFT_DECLARE( , , lock, failed);
#endif
/* Handy macros for sleep queues. */
#define SQ_EXCLUSIVE_QUEUE 0
#define SQ_SHARED_QUEUE 1
/*
* Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We
* drop Giant anytime we have to sleep or if we adaptively spin.
*/
#define GIANT_DECLARE \
int _giantcnt = 0; \
WITNESS_SAVE_DECL(Giant) \
#define GIANT_SAVE(work) do { \
if (__predict_false(mtx_owned(&Giant))) { \
work++; \
WITNESS_SAVE(&Giant.lock_object, Giant); \
while (mtx_owned(&Giant)) { \
_giantcnt++; \
mtx_unlock(&Giant); \
} \
} \
} while (0)
#define GIANT_RESTORE() do { \
if (_giantcnt > 0) { \
mtx_assert(&Giant, MA_NOTOWNED); \
while (_giantcnt--) \
mtx_lock(&Giant); \
WITNESS_RESTORE(&Giant.lock_object, Giant); \
} \
} while (0)
/*
* Returns true if an exclusive lock is recursed. It assumes
* curthread currently has an exclusive lock.
*/
#define sx_recursed(sx) ((sx)->sx_recurse != 0)
static void assert_sx(const struct lock_object *lock, int what);
#ifdef DDB
static void db_show_sx(const struct lock_object *lock);
#endif
static void lock_sx(struct lock_object *lock, uintptr_t how);
#ifdef KDTRACE_HOOKS
static int owner_sx(const struct lock_object *lock, struct thread **owner);
#endif
static uintptr_t unlock_sx(struct lock_object *lock);
struct lock_class lock_class_sx = {
.lc_name = "sx",
.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE,
.lc_assert = assert_sx,
#ifdef DDB
.lc_ddb_show = db_show_sx,
#endif
.lc_lock = lock_sx,
.lc_unlock = unlock_sx,
#ifdef KDTRACE_HOOKS
.lc_owner = owner_sx,
#endif
};
#ifndef INVARIANTS
#define _sx_assert(sx, what, file, line)
#endif
#ifdef ADAPTIVE_SX
static __read_frequently u_int asx_retries;
static __read_frequently u_int asx_loops;
static SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD, NULL, "sxlock debugging");
SYSCTL_UINT(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, "");
SYSCTL_UINT(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, "");
static struct lock_delay_config __read_frequently sx_delay;
SYSCTL_INT(_debug_sx, OID_AUTO, delay_base, CTLFLAG_RW, &sx_delay.base,
0, "");
SYSCTL_INT(_debug_sx, OID_AUTO, delay_max, CTLFLAG_RW, &sx_delay.max,
0, "");
static void
sx_lock_delay_init(void *arg __unused)
{
lock_delay_default_init(&sx_delay);
asx_retries = 10;
asx_loops = max(10000, sx_delay.max);
}
LOCK_DELAY_SYSINIT(sx_lock_delay_init);
#endif
void
assert_sx(const struct lock_object *lock, int what)
{
sx_assert((const struct sx *)lock, what);
}
void
lock_sx(struct lock_object *lock, uintptr_t how)
{
struct sx *sx;
sx = (struct sx *)lock;
if (how)
sx_slock(sx);
else
sx_xlock(sx);
}
uintptr_t
unlock_sx(struct lock_object *lock)
{
struct sx *sx;
sx = (struct sx *)lock;
sx_assert(sx, SA_LOCKED | SA_NOTRECURSED);
if (sx_xlocked(sx)) {
sx_xunlock(sx);
return (0);
} else {
sx_sunlock(sx);
return (1);
}
}
#ifdef KDTRACE_HOOKS
int
owner_sx(const struct lock_object *lock, struct thread **owner)
{
const struct sx *sx;
uintptr_t x;
sx = (const struct sx *)lock;
x = sx->sx_lock;
*owner = NULL;
return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) :
((*owner = (struct thread *)SX_OWNER(x)) != NULL));
}
#endif
void
sx_sysinit(void *arg)
{
struct sx_args *sargs = arg;
sx_init_flags(sargs->sa_sx, sargs->sa_desc, sargs->sa_flags);
}
void
sx_init_flags(struct sx *sx, const char *description, int opts)
{
int flags;
MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK |
SX_NOPROFILE | SX_NOADAPTIVE | SX_NEW)) == 0);
ASSERT_ATOMIC_LOAD_PTR(sx->sx_lock,
("%s: sx_lock not aligned for %s: %p", __func__, description,
&sx->sx_lock));
flags = LO_SLEEPABLE | LO_UPGRADABLE;
if (opts & SX_DUPOK)
flags |= LO_DUPOK;
if (opts & SX_NOPROFILE)
flags |= LO_NOPROFILE;
if (!(opts & SX_NOWITNESS))
flags |= LO_WITNESS;
if (opts & SX_RECURSE)
flags |= LO_RECURSABLE;
if (opts & SX_QUIET)
flags |= LO_QUIET;
if (opts & SX_NEW)
flags |= LO_NEW;
flags |= opts & SX_NOADAPTIVE;
lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags);
sx->sx_lock = SX_LOCK_UNLOCKED;
sx->sx_recurse = 0;
}
void
sx_destroy(struct sx *sx)
{
KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held"));
KASSERT(sx->sx_recurse == 0, ("sx lock still recursed"));
sx->sx_lock = SX_LOCK_DESTROYED;
lock_destroy(&sx->lock_object);
}
int
sx_try_slock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
{
uintptr_t x;
if (SCHEDULER_STOPPED())
return (1);
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
("sx_try_slock() by idle thread %p on sx %s @ %s:%d",
curthread, sx->lock_object.lo_name, file, line));
x = sx->sx_lock;
for (;;) {
KASSERT(x != SX_LOCK_DESTROYED,
("sx_try_slock() of destroyed sx @ %s:%d", file, line));
if (!(x & SX_LOCK_SHARED))
break;
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, x + SX_ONE_SHARER)) {
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line);
WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line);
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire,
sx, 0, 0, file, line, LOCKSTAT_READER);
TD_LOCKS_INC(curthread);
curthread->td_sx_slocks++;
return (1);
}
}
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line);
return (0);
}
int
sx_try_slock_(struct sx *sx, const char *file, int line)
{
return (sx_try_slock_int(sx LOCK_FILE_LINE_ARG));
}
int
_sx_xlock(struct sx *sx, int opts, const char *file, int line)
{
uintptr_t tid, x;
int error = 0;
KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
!TD_IS_IDLETHREAD(curthread),
("sx_xlock() by idle thread %p on sx %s @ %s:%d",
curthread, sx->lock_object.lo_name, file, line));
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_xlock() of destroyed sx @ %s:%d", file, line));
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
line, NULL);
tid = (uintptr_t)curthread;
x = SX_LOCK_UNLOCKED;
if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
error = _sx_xlock_hard(sx, x, opts LOCK_FILE_LINE_ARG);
else
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
0, 0, file, line, LOCKSTAT_WRITER);
if (!error) {
LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse,
file, line);
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
TD_LOCKS_INC(curthread);
}
return (error);
}
int
sx_try_xlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
{
struct thread *td;
uintptr_t tid, x;
int rval;
bool recursed;
td = curthread;
tid = (uintptr_t)td;
if (SCHEDULER_STOPPED_TD(td))
return (1);
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
("sx_try_xlock() by idle thread %p on sx %s @ %s:%d",
curthread, sx->lock_object.lo_name, file, line));
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_try_xlock() of destroyed sx @ %s:%d", file, line));
rval = 1;
recursed = false;
x = SX_LOCK_UNLOCKED;
for (;;) {
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
break;
if (x == SX_LOCK_UNLOCKED)
continue;
if (x == tid && (sx->lock_object.lo_flags & LO_RECURSABLE)) {
sx->sx_recurse++;
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
break;
}
rval = 0;
break;
}
LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line);
if (rval) {
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
if (!recursed)
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire,
sx, 0, 0, file, line, LOCKSTAT_WRITER);
TD_LOCKS_INC(curthread);
}
return (rval);
}
int
sx_try_xlock_(struct sx *sx, const char *file, int line)
{
return (sx_try_xlock_int(sx LOCK_FILE_LINE_ARG));
}
void
_sx_xunlock(struct sx *sx, const char *file, int line)
{
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_xunlock() of destroyed sx @ %s:%d", file, line));
_sx_assert(sx, SA_XLOCKED, file, line);
WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file,
line);
#if LOCK_DEBUG > 0
_sx_xunlock_hard(sx, (uintptr_t)curthread, file, line);
#else
__sx_xunlock(sx, curthread, file, line);
#endif
TD_LOCKS_DEC(curthread);
}
/*
* Try to do a non-blocking upgrade from a shared lock to an exclusive lock.
* This will only succeed if this thread holds a single shared lock.
* Return 1 if if the upgrade succeed, 0 otherwise.
*/
int
sx_try_upgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
{
uintptr_t x;
uintptr_t waiters;
int success;
if (SCHEDULER_STOPPED())
return (1);
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_try_upgrade() of destroyed sx @ %s:%d", file, line));
_sx_assert(sx, SA_SLOCKED, file, line);
/*
* Try to switch from one shared lock to an exclusive lock. We need
* to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that
* we will wake up the exclusive waiters when we drop the lock.
*/
success = 0;
x = SX_READ_VALUE(sx);
for (;;) {
if (SX_SHARERS(x) > 1)
break;
waiters = (x & SX_LOCK_WAITERS);
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x,
(uintptr_t)curthread | waiters)) {
success = 1;
break;
}
}
LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line);
if (success) {
curthread->td_sx_slocks--;
WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
LOCKSTAT_RECORD0(sx__upgrade, sx);
}
return (success);
}
int
sx_try_upgrade_(struct sx *sx, const char *file, int line)
{
return (sx_try_upgrade_int(sx LOCK_FILE_LINE_ARG));
}
/*
* Downgrade an unrecursed exclusive lock into a single shared lock.
*/
void
sx_downgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
{
uintptr_t x;
int wakeup_swapper;
if (SCHEDULER_STOPPED())
return;
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_downgrade() of destroyed sx @ %s:%d", file, line));
_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
#ifndef INVARIANTS
if (sx_recursed(sx))
panic("downgrade of a recursed lock");
#endif
WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);
/*
* Try to switch from an exclusive lock with no shared waiters
* to one sharer with no shared waiters. If there are
* exclusive waiters, we don't need to lock the sleep queue so
* long as we preserve the flag. We do one quick try and if
* that fails we grab the sleepq lock to keep the flags from
* changing and do it the slow way.
*
* We have to lock the sleep queue if there are shared waiters
* so we can wake them up.
*/
x = sx->sx_lock;
if (!(x & SX_LOCK_SHARED_WAITERS) &&
atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
(x & SX_LOCK_EXCLUSIVE_WAITERS)))
goto out;
/*
* Lock the sleep queue so we can read the waiters bits
* without any races and wakeup any shared waiters.
*/
sleepq_lock(&sx->lock_object);
/*
* Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
* shared lock. If there are any shared waiters, wake them up.
*/
wakeup_swapper = 0;
x = sx->sx_lock;
atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
(x & SX_LOCK_EXCLUSIVE_WAITERS));
if (x & SX_LOCK_SHARED_WAITERS)
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
0, SQ_SHARED_QUEUE);
sleepq_release(&sx->lock_object);
if (wakeup_swapper)
kick_proc0();
out:
curthread->td_sx_slocks++;
LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
LOCKSTAT_RECORD0(sx__downgrade, sx);
}
void
sx_downgrade_(struct sx *sx, const char *file, int line)
{
sx_downgrade_int(sx LOCK_FILE_LINE_ARG);
}
#ifdef ADAPTIVE_SX
static inline void
sx_drop_critical(uintptr_t x, bool *in_critical, int *extra_work)
{
if (x & SX_LOCK_WRITE_SPINNER)
return;
if (*in_critical) {
critical_exit();
*in_critical = false;
(*extra_work)--;
}
}
#else
#define sx_drop_critical(x, in_critical, extra_work) do { } while(0)
#endif
/*
* This function represents the so-called 'hard case' for sx_xlock
* operation. All 'easy case' failures are redirected to this. Note
* that ideally this would be a static function, but it needs to be
* accessible from at least sx.h.
*/
int
_sx_xlock_hard(struct sx *sx, uintptr_t x, int opts LOCK_FILE_LINE_ARG_DEF)
{
GIANT_DECLARE;
uintptr_t tid, setx;
#ifdef ADAPTIVE_SX
volatile struct thread *owner;
u_int i, n, spintries = 0;
enum { READERS, WRITER } sleep_reason = READERS;
bool adaptive;
bool in_critical = false;
#endif
#ifdef LOCK_PROFILING
uint64_t waittime = 0;
int contested = 0;
#endif
int error = 0;
#if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS)
struct lock_delay_arg lda;
#endif
#ifdef KDTRACE_HOOKS
u_int sleep_cnt = 0;
int64_t sleep_time = 0;
int64_t all_time = 0;
#endif
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
uintptr_t state = 0;
int doing_lockprof = 0;
#endif
int extra_work = 0;
tid = (uintptr_t)curthread;
#ifdef KDTRACE_HOOKS
if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) {
while (x == SX_LOCK_UNLOCKED) {
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
goto out_lockstat;
}
extra_work = 1;
doing_lockprof = 1;
all_time -= lockstat_nsecs(&sx->lock_object);
state = x;
}
#endif
#ifdef LOCK_PROFILING
extra_work = 1;
doing_lockprof = 1;
state = x;
#endif
if (SCHEDULER_STOPPED())
return (0);
#if defined(ADAPTIVE_SX)
lock_delay_arg_init(&lda, &sx_delay);
#elif defined(KDTRACE_HOOKS)
lock_delay_arg_init(&lda, NULL);
#endif
if (__predict_false(x == SX_LOCK_UNLOCKED))
x = SX_READ_VALUE(sx);
/* If we already hold an exclusive lock, then recurse. */
if (__predict_false(lv_sx_owner(x) == (struct thread *)tid)) {
KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0,
("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
sx->lock_object.lo_name, file, line));
sx->sx_recurse++;
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
return (0);
}
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);
#ifdef ADAPTIVE_SX
adaptive = ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0);
#endif
#ifdef HWPMC_HOOKS
PMC_SOFT_CALL( , , lock, failed);
#endif
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
&waittime);
#ifndef INVARIANTS
GIANT_SAVE(extra_work);
#endif
for (;;) {
if (x == SX_LOCK_UNLOCKED) {
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
break;
continue;
}
#ifdef INVARIANTS
GIANT_SAVE(extra_work);
#endif
#ifdef KDTRACE_HOOKS
lda.spin_cnt++;
#endif
#ifdef ADAPTIVE_SX
if (__predict_false(!adaptive))
goto sleepq;
/*
* If the lock is write locked and the owner is
* running on another CPU, spin until the owner stops
* running or the state of the lock changes.
*/
if ((x & SX_LOCK_SHARED) == 0) {
sx_drop_critical(x, &in_critical, &extra_work);
sleep_reason = WRITER;
owner = lv_sx_owner(x);
if (!TD_IS_RUNNING(owner))
goto sleepq;
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR3(KTR_LOCK, "%s: spinning on %p held by %p",
__func__, sx, owner);
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread),
"spinning", "lockname:\"%s\"",
sx->lock_object.lo_name);
do {
lock_delay(&lda);
x = SX_READ_VALUE(sx);
owner = lv_sx_owner(x);
} while (owner != NULL && TD_IS_RUNNING(owner));
KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread),
"running");
continue;
} else if (SX_SHARERS(x) > 0) {
sleep_reason = READERS;
if (spintries == asx_retries)
goto sleepq;
if (!(x & SX_LOCK_WRITE_SPINNER)) {
if (!in_critical) {
critical_enter();
in_critical = true;
extra_work++;
}
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
x | SX_LOCK_WRITE_SPINNER)) {
critical_exit();
in_critical = false;
extra_work--;
continue;
}
}
spintries++;
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread),
"spinning", "lockname:\"%s\"",
sx->lock_object.lo_name);
n = SX_SHARERS(x);
for (i = 0; i < asx_loops; i += n) {
lock_delay_spin(n);
x = SX_READ_VALUE(sx);
if (!(x & SX_LOCK_WRITE_SPINNER))
break;
if (!(x & SX_LOCK_SHARED))
break;
n = SX_SHARERS(x);
if (n == 0)
break;
}
#ifdef KDTRACE_HOOKS
lda.spin_cnt += i;
#endif
KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread),
"running");
if (i < asx_loops)
continue;
}
sleepq:
#endif
sleepq_lock(&sx->lock_object);
x = SX_READ_VALUE(sx);
retry_sleepq:
/*
* If the lock was released while spinning on the
* sleep queue chain lock, try again.
*/
if (x == SX_LOCK_UNLOCKED) {
sleepq_release(&sx->lock_object);
sx_drop_critical(x, &in_critical, &extra_work);
continue;
}
#ifdef ADAPTIVE_SX
/*
* The current lock owner might have started executing
* on another CPU (or the lock could have changed
* owners) while we were waiting on the sleep queue
* chain lock. If so, drop the sleep queue lock and try
* again.
*/
if (adaptive) {
if (!(x & SX_LOCK_SHARED)) {
owner = (struct thread *)SX_OWNER(x);
if (TD_IS_RUNNING(owner)) {
sleepq_release(&sx->lock_object);
sx_drop_critical(x, &in_critical,
&extra_work);
continue;
}
} else if (SX_SHARERS(x) > 0 && sleep_reason == WRITER) {
sleepq_release(&sx->lock_object);
sx_drop_critical(x, &in_critical, &extra_work);
continue;
}
}
#endif
/*
* If an exclusive lock was released with both shared
* and exclusive waiters and a shared waiter hasn't
* woken up and acquired the lock yet, sx_lock will be
* set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
* If we see that value, try to acquire it once. Note
* that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
* as there are other exclusive waiters still. If we
* fail, restart the loop.
*/
setx = x & (SX_LOCK_WAITERS | SX_LOCK_WRITE_SPINNER);
if ((x & ~setx) == SX_LOCK_SHARED) {
setx &= ~SX_LOCK_WRITE_SPINNER;
if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid | setx))
goto retry_sleepq;
sleepq_release(&sx->lock_object);
CTR2(KTR_LOCK, "%s: %p claimed by new writer",
__func__, sx);
break;
}
#ifdef ADAPTIVE_SX
/*
* It is possible we set the SX_LOCK_WRITE_SPINNER bit.
* It is an invariant that when the bit is set, there is
* a writer ready to grab the lock. Thus clear the bit since
* we are going to sleep.
*/
if (in_critical) {
if ((x & SX_LOCK_WRITE_SPINNER) ||
!((x & SX_LOCK_EXCLUSIVE_WAITERS))) {
setx = x & ~SX_LOCK_WRITE_SPINNER;
setx |= SX_LOCK_EXCLUSIVE_WAITERS;
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
setx)) {
goto retry_sleepq;
}
}
critical_exit();
in_critical = false;
} else {
#endif
/*
* Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail,
* than loop back and retry.
*/
if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
x | SX_LOCK_EXCLUSIVE_WAITERS)) {
goto retry_sleepq;
}
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
__func__, sx);
}
#ifdef ADAPTIVE_SX
}
#endif
/*
* Since we have been unable to acquire the exclusive
* lock and the exclusive waiters flag is set, we have
* to sleep.
*/
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
__func__, sx);
#ifdef KDTRACE_HOOKS
sleep_time -= lockstat_nsecs(&sx->lock_object);
#endif
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
if (!(opts & SX_INTERRUPTIBLE))
sleepq_wait(&sx->lock_object, 0);
else
error = sleepq_wait_sig(&sx->lock_object, 0);
#ifdef KDTRACE_HOOKS
sleep_time += lockstat_nsecs(&sx->lock_object);
sleep_cnt++;
#endif
if (error) {
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK,
"%s: interruptible sleep by %p suspended by signal",
__func__, sx);
break;
}
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
__func__, sx);
x = SX_READ_VALUE(sx);
}
if (__predict_true(!extra_work))
return (error);
#ifdef ADAPTIVE_SX
if (in_critical)
critical_exit();
#endif
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
if (__predict_true(!doing_lockprof))
return (error);
#endif
#ifdef KDTRACE_HOOKS
all_time += lockstat_nsecs(&sx->lock_object);
if (sleep_time)
LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
if (lda.spin_cnt > sleep_cnt)
LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
out_lockstat:
#endif
if (!error)
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
contested, waittime, file, line, LOCKSTAT_WRITER);
GIANT_RESTORE();
return (error);
}
/*
* This function represents the so-called 'hard case' for sx_xunlock
* operation. All 'easy case' failures are redirected to this. Note
* that ideally this would be a static function, but it needs to be
* accessible from at least sx.h.
*/
void
_sx_xunlock_hard(struct sx *sx, uintptr_t x LOCK_FILE_LINE_ARG_DEF)
{
uintptr_t tid, setx;
int queue, wakeup_swapper;
if (SCHEDULER_STOPPED())
return;
tid = (uintptr_t)curthread;
if (__predict_false(x == tid))
x = SX_READ_VALUE(sx);
MPASS(!(x & SX_LOCK_SHARED));
if (__predict_false(x & SX_LOCK_RECURSED)) {
/* The lock is recursed, unrecurse one level. */
if ((--sx->sx_recurse) == 0)
atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
return;
}
LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_WRITER);
if (x == tid &&
atomic_cmpset_rel_ptr(&sx->sx_lock, tid, SX_LOCK_UNLOCKED))
return;
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);
sleepq_lock(&sx->lock_object);
x = SX_READ_VALUE(sx);
MPASS(x & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS));
/*
* The wake up algorithm here is quite simple and probably not
* ideal. It gives precedence to shared waiters if they are
* present. For this condition, we have to preserve the
* state of the exclusive waiters flag.
* If interruptible sleeps left the shared queue empty avoid a
* starvation for the threads sleeping on the exclusive queue by giving
* them precedence and cleaning up the shared waiters bit anyway.
*/
setx = SX_LOCK_UNLOCKED;
queue = SQ_SHARED_QUEUE;
if ((x & SX_LOCK_EXCLUSIVE_WAITERS) != 0 &&
sleepq_sleepcnt(&sx->lock_object, SQ_EXCLUSIVE_QUEUE) != 0) {
queue = SQ_EXCLUSIVE_QUEUE;
setx |= (x & SX_LOCK_SHARED_WAITERS);
}
atomic_store_rel_ptr(&sx->sx_lock, setx);
/* Wake up all the waiters for the specific queue. */
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
__func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
"exclusive");
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
queue);
sleepq_release(&sx->lock_object);
if (wakeup_swapper)
kick_proc0();
}
static bool __always_inline
__sx_can_read(struct thread *td, uintptr_t x, bool fp)
{
if ((x & (SX_LOCK_SHARED | SX_LOCK_EXCLUSIVE_WAITERS | SX_LOCK_WRITE_SPINNER))
== SX_LOCK_SHARED)
return (true);
if (!fp && td->td_sx_slocks && (x & SX_LOCK_SHARED))
return (true);
return (false);
}
static bool __always_inline
__sx_slock_try(struct sx *sx, struct thread *td, uintptr_t *xp, bool fp
LOCK_FILE_LINE_ARG_DEF)
{
/*
* If no other thread has an exclusive lock then try to bump up
* the count of sharers. Since we have to preserve the state
* of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
* shared lock loop back and retry.
*/
while (__sx_can_read(td, *xp, fp)) {
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, xp,
*xp + SX_ONE_SHARER)) {
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR4(KTR_LOCK, "%s: %p succeed %p -> %p",
__func__, sx, (void *)*xp,
(void *)(*xp + SX_ONE_SHARER));
td->td_sx_slocks++;
return (true);
}
}
return (false);
}
static int __noinline
_sx_slock_hard(struct sx *sx, int opts, uintptr_t x LOCK_FILE_LINE_ARG_DEF)
{
GIANT_DECLARE;
struct thread *td;
#ifdef ADAPTIVE_SX
volatile struct thread *owner;
u_int i, n, spintries = 0;
bool adaptive;
#endif
#ifdef LOCK_PROFILING
uint64_t waittime = 0;
int contested = 0;
#endif
int error = 0;
#if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS)
struct lock_delay_arg lda;
#endif
#ifdef KDTRACE_HOOKS
u_int sleep_cnt = 0;
int64_t sleep_time = 0;
int64_t all_time = 0;
#endif
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
uintptr_t state = 0;
#endif
int extra_work = 0;
td = curthread;
#ifdef KDTRACE_HOOKS
if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) {
if (__sx_slock_try(sx, td, &x, false LOCK_FILE_LINE_ARG))
goto out_lockstat;
extra_work = 1;
all_time -= lockstat_nsecs(&sx->lock_object);
state = x;
}
#endif
#ifdef LOCK_PROFILING
extra_work = 1;
state = x;
#endif
if (SCHEDULER_STOPPED())
return (0);
#if defined(ADAPTIVE_SX)
lock_delay_arg_init(&lda, &sx_delay);
#elif defined(KDTRACE_HOOKS)
lock_delay_arg_init(&lda, NULL);
#endif
#ifdef ADAPTIVE_SX
adaptive = ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0);
#endif
#ifdef HWPMC_HOOKS
PMC_SOFT_CALL( , , lock, failed);
#endif
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
&waittime);
#ifndef INVARIANTS
GIANT_SAVE(extra_work);
#endif
/*
* As with rwlocks, we don't make any attempt to try to block
* shared locks once there is an exclusive waiter.
*/
for (;;) {
if (__sx_slock_try(sx, td, &x, false LOCK_FILE_LINE_ARG))
break;
#ifdef INVARIANTS
GIANT_SAVE(extra_work);
#endif
#ifdef KDTRACE_HOOKS
lda.spin_cnt++;
#endif
#ifdef ADAPTIVE_SX
if (__predict_false(!adaptive))
goto sleepq;
/*
* If the owner is running on another CPU, spin until
* the owner stops running or the state of the lock
* changes.
*/
if ((x & SX_LOCK_SHARED) == 0) {
owner = lv_sx_owner(x);
if (TD_IS_RUNNING(owner)) {
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR3(KTR_LOCK,
"%s: spinning on %p held by %p",
__func__, sx, owner);
KTR_STATE1(KTR_SCHED, "thread",
sched_tdname(curthread), "spinning",
"lockname:\"%s\"", sx->lock_object.lo_name);
do {
lock_delay(&lda);
x = SX_READ_VALUE(sx);
owner = lv_sx_owner(x);
} while (owner != NULL && TD_IS_RUNNING(owner));
KTR_STATE0(KTR_SCHED, "thread",
sched_tdname(curthread), "running");
continue;
}
} else {
if ((x & SX_LOCK_WRITE_SPINNER) && SX_SHARERS(x) == 0) {
MPASS(!__sx_can_read(td, x, false));
lock_delay_spin(2);
x = SX_READ_VALUE(sx);
continue;
}
if (spintries < asx_retries) {
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread),
"spinning", "lockname:\"%s\"",
sx->lock_object.lo_name);
n = SX_SHARERS(x);
for (i = 0; i < asx_loops; i += n) {
lock_delay_spin(n);
x = SX_READ_VALUE(sx);
if (!(x & SX_LOCK_SHARED))
break;
n = SX_SHARERS(x);
if (n == 0)
break;
if (__sx_can_read(td, x, false))
break;
}
#ifdef KDTRACE_HOOKS
lda.spin_cnt += i;
#endif
KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread),
"running");
if (i < asx_loops)
continue;
}
}
sleepq:
#endif
/*
* Some other thread already has an exclusive lock, so
* start the process of blocking.
*/
sleepq_lock(&sx->lock_object);
x = SX_READ_VALUE(sx);
retry_sleepq:
if (((x & SX_LOCK_WRITE_SPINNER) && SX_SHARERS(x) == 0) ||
__sx_can_read(td, x, false)) {
sleepq_release(&sx->lock_object);
continue;
}
#ifdef ADAPTIVE_SX
/*
* If the owner is running on another CPU, spin until
* the owner stops running or the state of the lock
* changes.
*/
if (!(x & SX_LOCK_SHARED) && adaptive) {
owner = (struct thread *)SX_OWNER(x);
if (TD_IS_RUNNING(owner)) {
sleepq_release(&sx->lock_object);
x = SX_READ_VALUE(sx);
continue;
}
}
#endif
/*
* Try to set the SX_LOCK_SHARED_WAITERS flag. If we
* fail to set it drop the sleep queue lock and loop
* back.
*/
if (!(x & SX_LOCK_SHARED_WAITERS)) {
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
x | SX_LOCK_SHARED_WAITERS))
goto retry_sleepq;
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
__func__, sx);
}
/*
* Since we have been unable to acquire the shared lock,
* we have to sleep.
*/
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
__func__, sx);
#ifdef KDTRACE_HOOKS
sleep_time -= lockstat_nsecs(&sx->lock_object);
#endif
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
if (!(opts & SX_INTERRUPTIBLE))
sleepq_wait(&sx->lock_object, 0);
else
error = sleepq_wait_sig(&sx->lock_object, 0);
#ifdef KDTRACE_HOOKS
sleep_time += lockstat_nsecs(&sx->lock_object);
sleep_cnt++;
#endif
if (error) {
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK,
"%s: interruptible sleep by %p suspended by signal",
__func__, sx);
break;
}
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
__func__, sx);
x = SX_READ_VALUE(sx);
}
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
if (__predict_true(!extra_work))
return (error);
#endif
#ifdef KDTRACE_HOOKS
all_time += lockstat_nsecs(&sx->lock_object);
if (sleep_time)
LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
if (lda.spin_cnt > sleep_cnt)
LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
out_lockstat:
#endif
if (error == 0) {
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
contested, waittime, file, line, LOCKSTAT_READER);
}
GIANT_RESTORE();
return (error);
}
int
_sx_slock_int(struct sx *sx, int opts LOCK_FILE_LINE_ARG_DEF)
{
struct thread *td;
uintptr_t x;
int error;
KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
!TD_IS_IDLETHREAD(curthread),
("sx_slock() by idle thread %p on sx %s @ %s:%d",
curthread, sx->lock_object.lo_name, file, line));
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_slock() of destroyed sx @ %s:%d", file, line));
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL);
error = 0;
td = curthread;
x = SX_READ_VALUE(sx);
if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__acquire) ||
!__sx_slock_try(sx, td, &x, true LOCK_FILE_LINE_ARG)))
error = _sx_slock_hard(sx, opts, x LOCK_FILE_LINE_ARG);
else
lock_profile_obtain_lock_success(&sx->lock_object, 0, 0,
file, line);
if (error == 0) {
LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line);
WITNESS_LOCK(&sx->lock_object, 0, file, line);
TD_LOCKS_INC(curthread);
}
return (error);
}
int
_sx_slock(struct sx *sx, int opts, const char *file, int line)
{
return (_sx_slock_int(sx, opts LOCK_FILE_LINE_ARG));
}
static bool __always_inline
_sx_sunlock_try(struct sx *sx, struct thread *td, uintptr_t *xp)
{
for (;;) {
if (SX_SHARERS(*xp) > 1 || !(*xp & SX_LOCK_WAITERS)) {
if (atomic_fcmpset_rel_ptr(&sx->sx_lock, xp,
*xp - SX_ONE_SHARER)) {
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR4(KTR_LOCK,
"%s: %p succeeded %p -> %p",
__func__, sx, (void *)*xp,
(void *)(*xp - SX_ONE_SHARER));
td->td_sx_slocks--;
return (true);
}
continue;
}
break;
}
return (false);
}
static void __noinline
_sx_sunlock_hard(struct sx *sx, struct thread *td, uintptr_t x
LOCK_FILE_LINE_ARG_DEF)
{
int wakeup_swapper = 0;
uintptr_t setx, queue;
if (SCHEDULER_STOPPED())
return;
if (_sx_sunlock_try(sx, td, &x))
goto out_lockstat;
sleepq_lock(&sx->lock_object);
x = SX_READ_VALUE(sx);
for (;;) {
if (_sx_sunlock_try(sx, td, &x))
break;
/*
* Wake up semantic here is quite simple:
* Just wake up all the exclusive waiters.
* Note that the state of the lock could have changed,
* so if it fails loop back and retry.
*/
setx = SX_LOCK_UNLOCKED;
queue = SQ_SHARED_QUEUE;
if (x & SX_LOCK_EXCLUSIVE_WAITERS) {
setx |= (x & SX_LOCK_SHARED_WAITERS);
queue = SQ_EXCLUSIVE_QUEUE;
}
setx |= (x & SX_LOCK_WRITE_SPINNER);
if (!atomic_fcmpset_rel_ptr(&sx->sx_lock, &x, setx))
continue;
if (LOCK_LOG_TEST(&sx->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p waking up all thread on"
"exclusive queue", __func__, sx);
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
0, queue);
td->td_sx_slocks--;
break;
}
sleepq_release(&sx->lock_object);
if (wakeup_swapper)
kick_proc0();
out_lockstat:
LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_READER);
}
void
_sx_sunlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
{
struct thread *td;
uintptr_t x;
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
("sx_sunlock() of destroyed sx @ %s:%d", file, line));
_sx_assert(sx, SA_SLOCKED, file, line);
WITNESS_UNLOCK(&sx->lock_object, 0, file, line);
LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line);
td = curthread;
x = SX_READ_VALUE(sx);
if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__release) ||
!_sx_sunlock_try(sx, td, &x)))
_sx_sunlock_hard(sx, td, x LOCK_FILE_LINE_ARG);
else
lock_profile_release_lock(&sx->lock_object);
TD_LOCKS_DEC(curthread);
}
void
_sx_sunlock(struct sx *sx, const char *file, int line)
{
_sx_sunlock_int(sx LOCK_FILE_LINE_ARG);
}
#ifdef INVARIANT_SUPPORT
#ifndef INVARIANTS
#undef _sx_assert
#endif
/*
* In the non-WITNESS case, sx_assert() can only detect that at least
* *some* thread owns an slock, but it cannot guarantee that *this*
* thread owns an slock.
*/
void
_sx_assert(const struct sx *sx, int what, const char *file, int line)
{
#ifndef WITNESS
int slocked = 0;
#endif
if (panicstr != NULL)
return;
switch (what) {
case SA_SLOCKED:
case SA_SLOCKED | SA_NOTRECURSED:
case SA_SLOCKED | SA_RECURSED:
#ifndef WITNESS
slocked = 1;
/* FALLTHROUGH */
#endif
case SA_LOCKED:
case SA_LOCKED | SA_NOTRECURSED:
case SA_LOCKED | SA_RECURSED:
#ifdef WITNESS
witness_assert(&sx->lock_object, what, file, line);
#else
/*
* If some other thread has an exclusive lock or we
* have one and are asserting a shared lock, fail.
* Also, if no one has a lock at all, fail.
*/
if (sx->sx_lock == SX_LOCK_UNLOCKED ||
(!(sx->sx_lock & SX_LOCK_SHARED) && (slocked ||
sx_xholder(sx) != curthread)))
panic("Lock %s not %slocked @ %s:%d\n",
sx->lock_object.lo_name, slocked ? "share " : "",
file, line);
if (!(sx->sx_lock & SX_LOCK_SHARED)) {
if (sx_recursed(sx)) {
if (what & SA_NOTRECURSED)
panic("Lock %s recursed @ %s:%d\n",
sx->lock_object.lo_name, file,
line);
} else if (what & SA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
sx->lock_object.lo_name, file, line);
}
#endif
break;
case SA_XLOCKED:
case SA_XLOCKED | SA_NOTRECURSED:
case SA_XLOCKED | SA_RECURSED:
if (sx_xholder(sx) != curthread)
panic("Lock %s not exclusively locked @ %s:%d\n",
sx->lock_object.lo_name, file, line);
if (sx_recursed(sx)) {
if (what & SA_NOTRECURSED)
panic("Lock %s recursed @ %s:%d\n",
sx->lock_object.lo_name, file, line);
} else if (what & SA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
sx->lock_object.lo_name, file, line);
break;
case SA_UNLOCKED:
#ifdef WITNESS
witness_assert(&sx->lock_object, what, file, line);
#else
/*
* If we hold an exclusve lock fail. We can't
* reliably check to see if we hold a shared lock or
* not.
*/
if (sx_xholder(sx) == curthread)
panic("Lock %s exclusively locked @ %s:%d\n",
sx->lock_object.lo_name, file, line);
#endif
break;
default:
panic("Unknown sx lock assertion: %d @ %s:%d", what, file,
line);
}
}
#endif /* INVARIANT_SUPPORT */
#ifdef DDB
static void
db_show_sx(const struct lock_object *lock)
{
struct thread *td;
const struct sx *sx;
sx = (const struct sx *)lock;
db_printf(" state: ");
if (sx->sx_lock == SX_LOCK_UNLOCKED)
db_printf("UNLOCKED\n");
else if (sx->sx_lock == SX_LOCK_DESTROYED) {
db_printf("DESTROYED\n");
return;
} else if (sx->sx_lock & SX_LOCK_SHARED)
db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock));
else {
td = sx_xholder(sx);
db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid, td->td_name);
if (sx_recursed(sx))
db_printf(" recursed: %d\n", sx->sx_recurse);
}
db_printf(" waiters: ");
switch(sx->sx_lock &
(SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) {
case SX_LOCK_SHARED_WAITERS:
db_printf("shared\n");
break;
case SX_LOCK_EXCLUSIVE_WAITERS:
db_printf("exclusive\n");
break;
case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS:
db_printf("exclusive and shared\n");
break;
default:
db_printf("none\n");
}
}
/*
* Check to see if a thread that is blocked on a sleep queue is actually
* blocked on an sx lock. If so, output some details and return true.
* If the lock has an exclusive owner, return that in *ownerp.
*/
int
sx_chain(struct thread *td, struct thread **ownerp)
{
struct sx *sx;
/*
* Check to see if this thread is blocked on an sx lock.
* First, we check the lock class. If that is ok, then we
* compare the lock name against the wait message.
*/
sx = td->td_wchan;
if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx ||
sx->lock_object.lo_name != td->td_wmesg)
return (0);
/* We think we have an sx lock, so output some details. */
db_printf("blocked on sx \"%s\" ", td->td_wmesg);
*ownerp = sx_xholder(sx);
if (sx->sx_lock & SX_LOCK_SHARED)
db_printf("SLOCK (count %ju)\n",
(uintmax_t)SX_SHARERS(sx->sx_lock));
else
db_printf("XLOCK\n");
return (1);
}
#endif