1789285c11
...sigh
2779 lines
69 KiB
C
2779 lines
69 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All Rights Reserved.
|
|
* Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
|
|
* Copyright (c) 2018 Matthew Macy
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
/*
|
|
* UNIX Domain (Local) Sockets
|
|
*
|
|
* This is an implementation of UNIX (local) domain sockets. Each socket has
|
|
* an associated struct unpcb (UNIX protocol control block). Stream sockets
|
|
* may be connected to 0 or 1 other socket. Datagram sockets may be
|
|
* connected to 0, 1, or many other sockets. Sockets may be created and
|
|
* connected in pairs (socketpair(2)), or bound/connected to using the file
|
|
* system name space. For most purposes, only the receive socket buffer is
|
|
* used, as sending on one socket delivers directly to the receive socket
|
|
* buffer of a second socket.
|
|
*
|
|
* The implementation is substantially complicated by the fact that
|
|
* "ancillary data", such as file descriptors or credentials, may be passed
|
|
* across UNIX domain sockets. The potential for passing UNIX domain sockets
|
|
* over other UNIX domain sockets requires the implementation of a simple
|
|
* garbage collector to find and tear down cycles of disconnected sockets.
|
|
*
|
|
* TODO:
|
|
* RDM
|
|
* rethink name space problems
|
|
* need a proper out-of-band
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/malloc.h> /* XXX must be before <sys/file.h> */
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/un.h>
|
|
#include <sys/unpcb.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
MALLOC_DECLARE(M_FILECAPS);
|
|
|
|
/*
|
|
* Locking key:
|
|
* (l) Locked using list lock
|
|
* (g) Locked using linkage lock
|
|
*/
|
|
|
|
static uma_zone_t unp_zone;
|
|
static unp_gen_t unp_gencnt; /* (l) */
|
|
static u_int unp_count; /* (l) Count of local sockets. */
|
|
static ino_t unp_ino; /* Prototype for fake inode numbers. */
|
|
static int unp_rights; /* (g) File descriptors in flight. */
|
|
static struct unp_head unp_shead; /* (l) List of stream sockets. */
|
|
static struct unp_head unp_dhead; /* (l) List of datagram sockets. */
|
|
static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */
|
|
|
|
struct unp_defer {
|
|
SLIST_ENTRY(unp_defer) ud_link;
|
|
struct file *ud_fp;
|
|
};
|
|
static SLIST_HEAD(, unp_defer) unp_defers;
|
|
static int unp_defers_count;
|
|
|
|
static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
|
|
|
|
/*
|
|
* Garbage collection of cyclic file descriptor/socket references occurs
|
|
* asynchronously in a taskqueue context in order to avoid recursion and
|
|
* reentrance in the UNIX domain socket, file descriptor, and socket layer
|
|
* code. See unp_gc() for a full description.
|
|
*/
|
|
static struct timeout_task unp_gc_task;
|
|
|
|
/*
|
|
* The close of unix domain sockets attached as SCM_RIGHTS is
|
|
* postponed to the taskqueue, to avoid arbitrary recursion depth.
|
|
* The attached sockets might have another sockets attached.
|
|
*/
|
|
static struct task unp_defer_task;
|
|
|
|
/*
|
|
* Both send and receive buffers are allocated PIPSIZ bytes of buffering for
|
|
* stream sockets, although the total for sender and receiver is actually
|
|
* only PIPSIZ.
|
|
*
|
|
* Datagram sockets really use the sendspace as the maximum datagram size,
|
|
* and don't really want to reserve the sendspace. Their recvspace should be
|
|
* large enough for at least one max-size datagram plus address.
|
|
*/
|
|
#ifndef PIPSIZ
|
|
#define PIPSIZ 8192
|
|
#endif
|
|
static u_long unpst_sendspace = PIPSIZ;
|
|
static u_long unpst_recvspace = PIPSIZ;
|
|
static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
|
|
static u_long unpdg_recvspace = 4*1024;
|
|
static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */
|
|
static u_long unpsp_recvspace = PIPSIZ;
|
|
|
|
static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
|
|
static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
|
|
"SOCK_STREAM");
|
|
static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
|
|
static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
|
|
"SOCK_SEQPACKET");
|
|
|
|
SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
|
|
&unpst_sendspace, 0, "Default stream send space.");
|
|
SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
|
|
&unpst_recvspace, 0, "Default stream receive space.");
|
|
SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
|
|
&unpdg_sendspace, 0, "Default datagram send space.");
|
|
SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
|
|
&unpdg_recvspace, 0, "Default datagram receive space.");
|
|
SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
|
|
&unpsp_sendspace, 0, "Default seqpacket send space.");
|
|
SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
|
|
&unpsp_recvspace, 0, "Default seqpacket receive space.");
|
|
SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
|
|
"File descriptors in flight.");
|
|
SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
|
|
&unp_defers_count, 0,
|
|
"File descriptors deferred to taskqueue for close.");
|
|
|
|
/*
|
|
* Locking and synchronization:
|
|
*
|
|
* Three types of locks exist in the local domain socket implementation: a
|
|
* a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
|
|
* The linkage lock protects the socket count, global generation number,
|
|
* and stream/datagram global lists.
|
|
*
|
|
* The mtxpool lock protects the vnode from being modified while referenced.
|
|
* Lock ordering requires that it be acquired before any unpcb locks.
|
|
*
|
|
* The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
|
|
* note is that this includes the unp_conn field. So long as the unpcb lock
|
|
* is held the reference to the unpcb pointed to by unp_conn is valid. If we
|
|
* require that the unpcb pointed to by unp_conn remain live in cases where
|
|
* we need to drop the unp_mtx as when we need to acquire the lock for a
|
|
* second unpcb the caller must first acquire an additional reference on the
|
|
* second unpcb and then revalidate any state (typically check that unp_conn
|
|
* is non-NULL) upon requiring the initial unpcb lock. The lock ordering
|
|
* between unpcbs is the conventional ascending address order. Two helper
|
|
* routines exist for this:
|
|
*
|
|
* - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
|
|
* safe ordering.
|
|
*
|
|
* - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
|
|
* when called. If unp is unlocked and unp2 is subsequently freed
|
|
* freed will be set to 1.
|
|
*
|
|
* The helper routines for references are:
|
|
*
|
|
* - unp_pcb_hold(unp): Can be called any time we currently hold a valid
|
|
* reference to unp.
|
|
*
|
|
* - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
|
|
* releasing the last reference, detach must have been called thus
|
|
* unp->unp_socket be NULL.
|
|
*
|
|
* UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
|
|
* allocated in pru_attach() and freed in pru_detach(). The validity of that
|
|
* pointer is an invariant, so no lock is required to dereference the so_pcb
|
|
* pointer if a valid socket reference is held by the caller. In practice,
|
|
* this is always true during operations performed on a socket. Each unpcb
|
|
* has a back-pointer to its socket, unp_socket, which will be stable under
|
|
* the same circumstances.
|
|
*
|
|
* This pointer may only be safely dereferenced as long as a valid reference
|
|
* to the unpcb is held. Typically, this reference will be from the socket,
|
|
* or from another unpcb when the referring unpcb's lock is held (in order
|
|
* that the reference not be invalidated during use). For example, to follow
|
|
* unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
|
|
* that detach is not run clearing unp_socket.
|
|
*
|
|
* Blocking with UNIX domain sockets is a tricky issue: unlike most network
|
|
* protocols, bind() is a non-atomic operation, and connect() requires
|
|
* potential sleeping in the protocol, due to potentially waiting on local or
|
|
* distributed file systems. We try to separate "lookup" operations, which
|
|
* may sleep, and the IPC operations themselves, which typically can occur
|
|
* with relative atomicity as locks can be held over the entire operation.
|
|
*
|
|
* Another tricky issue is simultaneous multi-threaded or multi-process
|
|
* access to a single UNIX domain socket. These are handled by the flags
|
|
* UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
|
|
* binding, both of which involve dropping UNIX domain socket locks in order
|
|
* to perform namei() and other file system operations.
|
|
*/
|
|
static struct rwlock unp_link_rwlock;
|
|
static struct mtx unp_defers_lock;
|
|
|
|
#define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \
|
|
"unp_link_rwlock")
|
|
|
|
#define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \
|
|
RA_LOCKED)
|
|
#define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
|
|
RA_UNLOCKED)
|
|
|
|
#define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock)
|
|
#define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock)
|
|
#define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock)
|
|
#define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock)
|
|
#define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
|
|
RA_WLOCKED)
|
|
#define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock)
|
|
|
|
#define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \
|
|
"unp_defer", NULL, MTX_DEF)
|
|
#define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock)
|
|
#define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock)
|
|
|
|
#define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK();
|
|
#define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK();
|
|
|
|
#define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \
|
|
"unp", "unp", \
|
|
MTX_DUPOK|MTX_DEF)
|
|
#define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx)
|
|
#define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx)
|
|
#define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx)
|
|
#define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx)
|
|
#define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx)
|
|
#define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED)
|
|
#define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
|
|
|
|
static int uipc_connect2(struct socket *, struct socket *);
|
|
static int uipc_ctloutput(struct socket *, struct sockopt *);
|
|
static int unp_connect(struct socket *, struct sockaddr *,
|
|
struct thread *);
|
|
static int unp_connectat(int, struct socket *, struct sockaddr *,
|
|
struct thread *);
|
|
static int unp_connect2(struct socket *so, struct socket *so2, int);
|
|
static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
|
|
static void unp_dispose(struct socket *so);
|
|
static void unp_dispose_mbuf(struct mbuf *);
|
|
static void unp_shutdown(struct unpcb *);
|
|
static void unp_drop(struct unpcb *);
|
|
static void unp_gc(__unused void *, int);
|
|
static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
|
|
static void unp_discard(struct file *);
|
|
static void unp_freerights(struct filedescent **, int);
|
|
static void unp_init(void);
|
|
static int unp_internalize(struct mbuf **, struct thread *);
|
|
static void unp_internalize_fp(struct file *);
|
|
static int unp_externalize(struct mbuf *, struct mbuf **, int);
|
|
static int unp_externalize_fp(struct file *);
|
|
static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *);
|
|
static void unp_process_defers(void * __unused, int);
|
|
|
|
|
|
static void
|
|
unp_pcb_hold(struct unpcb *unp)
|
|
{
|
|
MPASS(unp->unp_refcount);
|
|
refcount_acquire(&unp->unp_refcount);
|
|
}
|
|
|
|
static int
|
|
unp_pcb_rele(struct unpcb *unp)
|
|
{
|
|
int freed;
|
|
|
|
UNP_PCB_LOCK_ASSERT(unp);
|
|
MPASS(unp->unp_refcount);
|
|
if ((freed = refcount_release(&unp->unp_refcount))) {
|
|
/* we got here with having detached? */
|
|
MPASS(unp->unp_socket == NULL);
|
|
UNP_PCB_UNLOCK(unp);
|
|
UNP_PCB_LOCK_DESTROY(unp);
|
|
uma_zfree(unp_zone, unp);
|
|
}
|
|
return (freed);
|
|
}
|
|
|
|
static void
|
|
unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
|
|
{
|
|
UNP_PCB_UNLOCK_ASSERT(unp);
|
|
UNP_PCB_UNLOCK_ASSERT(unp2);
|
|
if ((uintptr_t)unp2 > (uintptr_t)unp) {
|
|
UNP_PCB_LOCK(unp);
|
|
UNP_PCB_LOCK(unp2);
|
|
} else {
|
|
UNP_PCB_LOCK(unp2);
|
|
UNP_PCB_LOCK(unp);
|
|
}
|
|
}
|
|
|
|
static __noinline void
|
|
unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed)
|
|
|
|
{
|
|
struct unpcb *unp2;
|
|
|
|
unp2 = *unp2p;
|
|
unp_pcb_hold((unp2));
|
|
UNP_PCB_UNLOCK((unp));
|
|
UNP_PCB_LOCK((unp2));
|
|
UNP_PCB_LOCK((unp));
|
|
*freed = unp_pcb_rele((unp2));
|
|
if (*freed)
|
|
*unp2p = NULL;
|
|
}
|
|
|
|
#define unp_pcb_owned_lock2(unp, unp2, freed) do { \
|
|
freed = 0; \
|
|
UNP_PCB_LOCK_ASSERT((unp)); \
|
|
UNP_PCB_UNLOCK_ASSERT((unp2)); \
|
|
if (__predict_true(UNP_PCB_TRYLOCK((unp2)))) \
|
|
break; \
|
|
else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \
|
|
UNP_PCB_LOCK((unp2)); \
|
|
else { \
|
|
unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Definitions of protocols supported in the LOCAL domain.
|
|
*/
|
|
static struct domain localdomain;
|
|
static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
|
|
static struct pr_usrreqs uipc_usrreqs_seqpacket;
|
|
static struct protosw localsw[] = {
|
|
{
|
|
.pr_type = SOCK_STREAM,
|
|
.pr_domain = &localdomain,
|
|
.pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
|
|
.pr_ctloutput = &uipc_ctloutput,
|
|
.pr_usrreqs = &uipc_usrreqs_stream
|
|
},
|
|
{
|
|
.pr_type = SOCK_DGRAM,
|
|
.pr_domain = &localdomain,
|
|
.pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS,
|
|
.pr_ctloutput = &uipc_ctloutput,
|
|
.pr_usrreqs = &uipc_usrreqs_dgram
|
|
},
|
|
{
|
|
.pr_type = SOCK_SEQPACKET,
|
|
.pr_domain = &localdomain,
|
|
|
|
/*
|
|
* XXXRW: For now, PR_ADDR because soreceive will bump into them
|
|
* due to our use of sbappendaddr. A new sbappend variants is needed
|
|
* that supports both atomic record writes and control data.
|
|
*/
|
|
.pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
|
|
PR_RIGHTS,
|
|
.pr_ctloutput = &uipc_ctloutput,
|
|
.pr_usrreqs = &uipc_usrreqs_seqpacket,
|
|
},
|
|
};
|
|
|
|
static struct domain localdomain = {
|
|
.dom_family = AF_LOCAL,
|
|
.dom_name = "local",
|
|
.dom_init = unp_init,
|
|
.dom_externalize = unp_externalize,
|
|
.dom_dispose = unp_dispose,
|
|
.dom_protosw = localsw,
|
|
.dom_protoswNPROTOSW = &localsw[nitems(localsw)]
|
|
};
|
|
DOMAIN_SET(local);
|
|
|
|
static void
|
|
uipc_abort(struct socket *so)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
|
|
UNP_PCB_UNLOCK_ASSERT(unp);
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
unp2 = unp->unp_conn;
|
|
if (unp2 != NULL) {
|
|
unp_pcb_hold(unp2);
|
|
UNP_PCB_UNLOCK(unp);
|
|
unp_drop(unp2);
|
|
} else
|
|
UNP_PCB_UNLOCK(unp);
|
|
}
|
|
|
|
static int
|
|
uipc_accept(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
const struct sockaddr *sa;
|
|
|
|
/*
|
|
* Pass back name of connected socket, if it was bound and we are
|
|
* still connected (our peer may have closed already!).
|
|
*/
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
|
|
|
|
*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
|
|
UNP_LINK_RLOCK();
|
|
unp2 = unp->unp_conn;
|
|
if (unp2 != NULL && unp2->unp_addr != NULL) {
|
|
UNP_PCB_LOCK(unp2);
|
|
sa = (struct sockaddr *) unp2->unp_addr;
|
|
bcopy(sa, *nam, sa->sa_len);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
} else {
|
|
sa = &sun_noname;
|
|
bcopy(sa, *nam, sa->sa_len);
|
|
}
|
|
UNP_LINK_RUNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_attach(struct socket *so, int proto, struct thread *td)
|
|
{
|
|
u_long sendspace, recvspace;
|
|
struct unpcb *unp;
|
|
int error;
|
|
bool locked;
|
|
|
|
KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
|
|
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
|
|
switch (so->so_type) {
|
|
case SOCK_STREAM:
|
|
sendspace = unpst_sendspace;
|
|
recvspace = unpst_recvspace;
|
|
break;
|
|
|
|
case SOCK_DGRAM:
|
|
sendspace = unpdg_sendspace;
|
|
recvspace = unpdg_recvspace;
|
|
break;
|
|
|
|
case SOCK_SEQPACKET:
|
|
sendspace = unpsp_sendspace;
|
|
recvspace = unpsp_recvspace;
|
|
break;
|
|
|
|
default:
|
|
panic("uipc_attach");
|
|
}
|
|
error = soreserve(so, sendspace, recvspace);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
|
|
if (unp == NULL)
|
|
return (ENOBUFS);
|
|
LIST_INIT(&unp->unp_refs);
|
|
UNP_PCB_LOCK_INIT(unp);
|
|
unp->unp_socket = so;
|
|
so->so_pcb = unp;
|
|
unp->unp_refcount = 1;
|
|
if (so->so_listen != NULL)
|
|
unp->unp_flags |= UNP_NASCENT;
|
|
|
|
if ((locked = UNP_LINK_WOWNED()) == false)
|
|
UNP_LINK_WLOCK();
|
|
|
|
unp->unp_gencnt = ++unp_gencnt;
|
|
unp_count++;
|
|
switch (so->so_type) {
|
|
case SOCK_STREAM:
|
|
LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
|
|
break;
|
|
|
|
case SOCK_DGRAM:
|
|
LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
|
|
break;
|
|
|
|
case SOCK_SEQPACKET:
|
|
LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
|
|
break;
|
|
|
|
default:
|
|
panic("uipc_attach");
|
|
}
|
|
|
|
if (locked == false)
|
|
UNP_LINK_WUNLOCK();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
struct sockaddr_un *soun = (struct sockaddr_un *)nam;
|
|
struct vattr vattr;
|
|
int error, namelen;
|
|
struct nameidata nd;
|
|
struct unpcb *unp;
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
cap_rights_t rights;
|
|
char *buf;
|
|
|
|
if (nam->sa_family != AF_UNIX)
|
|
return (EAFNOSUPPORT);
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
|
|
|
|
if (soun->sun_len > sizeof(struct sockaddr_un))
|
|
return (EINVAL);
|
|
namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
|
|
if (namelen <= 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* We don't allow simultaneous bind() calls on a single UNIX domain
|
|
* socket, so flag in-progress operations, and return an error if an
|
|
* operation is already in progress.
|
|
*
|
|
* Historically, we have not allowed a socket to be rebound, so this
|
|
* also returns an error. Not allowing re-binding simplifies the
|
|
* implementation and avoids a great many possible failure modes.
|
|
*/
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_vnode != NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (EINVAL);
|
|
}
|
|
if (unp->unp_flags & UNP_BINDING) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (EALREADY);
|
|
}
|
|
unp->unp_flags |= UNP_BINDING;
|
|
UNP_PCB_UNLOCK(unp);
|
|
|
|
buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
|
|
bcopy(soun->sun_path, buf, namelen);
|
|
buf[namelen] = 0;
|
|
|
|
restart:
|
|
NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
|
|
UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
|
|
/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
|
|
error = namei(&nd);
|
|
if (error)
|
|
goto error;
|
|
vp = nd.ni_vp;
|
|
if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
|
|
NDFREE(&nd, NDF_ONLY_PNBUF);
|
|
if (nd.ni_dvp == vp)
|
|
vrele(nd.ni_dvp);
|
|
else
|
|
vput(nd.ni_dvp);
|
|
if (vp != NULL) {
|
|
vrele(vp);
|
|
error = EADDRINUSE;
|
|
goto error;
|
|
}
|
|
error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
|
|
if (error)
|
|
goto error;
|
|
goto restart;
|
|
}
|
|
VATTR_NULL(&vattr);
|
|
vattr.va_type = VSOCK;
|
|
vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
|
|
#ifdef MAC
|
|
error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
|
|
&vattr);
|
|
#endif
|
|
if (error == 0)
|
|
error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
|
|
NDFREE(&nd, NDF_ONLY_PNBUF);
|
|
vput(nd.ni_dvp);
|
|
if (error) {
|
|
vn_finished_write(mp);
|
|
goto error;
|
|
}
|
|
vp = nd.ni_vp;
|
|
ASSERT_VOP_ELOCKED(vp, "uipc_bind");
|
|
soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
VOP_UNP_BIND(vp, unp);
|
|
unp->unp_vnode = vp;
|
|
unp->unp_addr = soun;
|
|
unp->unp_flags &= ~UNP_BINDING;
|
|
UNP_PCB_UNLOCK(unp);
|
|
VOP_UNLOCK(vp, 0);
|
|
vn_finished_write(mp);
|
|
free(buf, M_TEMP);
|
|
return (0);
|
|
|
|
error:
|
|
UNP_PCB_LOCK(unp);
|
|
unp->unp_flags &= ~UNP_BINDING;
|
|
UNP_PCB_UNLOCK(unp);
|
|
free(buf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
|
|
return (uipc_bindat(AT_FDCWD, so, nam, td));
|
|
}
|
|
|
|
static int
|
|
uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(td == curthread, ("uipc_connect: td != curthread"));
|
|
error = unp_connect(so, nam, td);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
|
|
struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
|
|
error = unp_connectat(fd, so, nam, td);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
uipc_close(struct socket *so)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
struct vnode *vp = NULL;
|
|
struct mtx *vplock;
|
|
int freed;
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
|
|
|
|
|
|
vplock = NULL;
|
|
if ((vp = unp->unp_vnode) != NULL) {
|
|
vplock = mtx_pool_find(mtxpool_sleep, vp);
|
|
mtx_lock(vplock);
|
|
}
|
|
UNP_PCB_LOCK(unp);
|
|
if (vp && unp->unp_vnode == NULL) {
|
|
mtx_unlock(vplock);
|
|
vp = NULL;
|
|
}
|
|
if (vp != NULL) {
|
|
VOP_UNP_DETACH(vp);
|
|
unp->unp_vnode = NULL;
|
|
}
|
|
unp2 = unp->unp_conn;
|
|
unp_pcb_hold(unp);
|
|
if (unp2 != NULL) {
|
|
unp_pcb_hold(unp2);
|
|
unp_pcb_owned_lock2(unp, unp2, freed);
|
|
unp_disconnect(unp, unp2);
|
|
if (unp_pcb_rele(unp2) == 0)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
}
|
|
if (unp_pcb_rele(unp) == 0)
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (vp) {
|
|
mtx_unlock(vplock);
|
|
vrele(vp);
|
|
}
|
|
}
|
|
|
|
static int
|
|
uipc_connect2(struct socket *so1, struct socket *so2)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
int error;
|
|
|
|
unp = so1->so_pcb;
|
|
KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
|
|
unp2 = so2->so_pcb;
|
|
KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
|
|
unp_pcb_lock2(unp, unp2);
|
|
error = unp_connect2(so1, so2, PRU_CONNECT2);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
uipc_detach(struct socket *so)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
struct mtx *vplock;
|
|
struct sockaddr_un *saved_unp_addr;
|
|
struct vnode *vp;
|
|
int freeunp, local_unp_rights;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
|
|
|
|
vp = NULL;
|
|
vplock = NULL;
|
|
local_unp_rights = 0;
|
|
|
|
UNP_LINK_WLOCK();
|
|
LIST_REMOVE(unp, unp_link);
|
|
unp->unp_gencnt = ++unp_gencnt;
|
|
--unp_count;
|
|
UNP_LINK_WUNLOCK();
|
|
|
|
UNP_PCB_UNLOCK_ASSERT(unp);
|
|
restart:
|
|
if ((vp = unp->unp_vnode) != NULL) {
|
|
vplock = mtx_pool_find(mtxpool_sleep, vp);
|
|
mtx_lock(vplock);
|
|
}
|
|
UNP_PCB_LOCK(unp);
|
|
if ((unp2 = unp->unp_conn) != NULL) {
|
|
unp_pcb_owned_lock2(unp, unp2, freeunp);
|
|
if (freeunp)
|
|
unp2 = NULL;
|
|
}
|
|
if (unp->unp_vnode != vp &&
|
|
unp->unp_vnode != NULL) {
|
|
if (vplock)
|
|
mtx_unlock(vplock);
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (unp2)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
goto restart;
|
|
}
|
|
if ((unp->unp_flags & UNP_NASCENT) != 0) {
|
|
if (unp2)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
goto teardown;
|
|
}
|
|
if ((vp = unp->unp_vnode) != NULL) {
|
|
VOP_UNP_DETACH(vp);
|
|
unp->unp_vnode = NULL;
|
|
}
|
|
unp_pcb_hold(unp);
|
|
if (unp2 != NULL) {
|
|
unp_pcb_hold(unp2);
|
|
unp_disconnect(unp, unp2);
|
|
if (unp_pcb_rele(unp2) == 0)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
}
|
|
UNP_PCB_UNLOCK(unp);
|
|
UNP_REF_LIST_LOCK();
|
|
while (!LIST_EMPTY(&unp->unp_refs)) {
|
|
struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
|
|
|
|
unp_pcb_hold(ref);
|
|
UNP_REF_LIST_UNLOCK();
|
|
|
|
MPASS(ref != unp);
|
|
UNP_PCB_UNLOCK_ASSERT(ref);
|
|
unp_drop(ref);
|
|
UNP_REF_LIST_LOCK();
|
|
}
|
|
|
|
UNP_REF_LIST_UNLOCK();
|
|
UNP_PCB_LOCK(unp);
|
|
freeunp = unp_pcb_rele(unp);
|
|
MPASS(freeunp == 0);
|
|
local_unp_rights = unp_rights;
|
|
teardown:
|
|
unp->unp_socket->so_pcb = NULL;
|
|
saved_unp_addr = unp->unp_addr;
|
|
unp->unp_addr = NULL;
|
|
unp->unp_socket = NULL;
|
|
freeunp = unp_pcb_rele(unp);
|
|
if (saved_unp_addr != NULL)
|
|
free(saved_unp_addr, M_SONAME);
|
|
if (!freeunp)
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (vp) {
|
|
mtx_unlock(vplock);
|
|
vrele(vp);
|
|
}
|
|
if (local_unp_rights)
|
|
taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
|
|
}
|
|
|
|
static int
|
|
uipc_disconnect(struct socket *so)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
int freed;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
if ((unp2 = unp->unp_conn) == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
unp_pcb_owned_lock2(unp, unp2, freed);
|
|
if (__predict_false(freed)) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
unp_pcb_hold(unp2);
|
|
unp_pcb_hold(unp);
|
|
unp_disconnect(unp, unp2);
|
|
if (unp_pcb_rele(unp) == 0)
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (unp_pcb_rele(unp2) == 0)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_listen(struct socket *so, int backlog, struct thread *td)
|
|
{
|
|
struct unpcb *unp;
|
|
int error;
|
|
|
|
if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
|
|
return (EOPNOTSUPP);
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_vnode == NULL) {
|
|
/* Already connected or not bound to an address. */
|
|
error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (error);
|
|
}
|
|
|
|
SOCK_LOCK(so);
|
|
error = solisten_proto_check(so);
|
|
if (error == 0) {
|
|
cru2x(td->td_ucred, &unp->unp_peercred);
|
|
solisten_proto(so, backlog);
|
|
}
|
|
SOCK_UNLOCK(so);
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
uipc_peeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
const struct sockaddr *sa;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
|
|
|
|
*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
|
|
UNP_LINK_RLOCK();
|
|
/*
|
|
* XXX: It seems that this test always fails even when connection is
|
|
* established. So, this else clause is added as workaround to
|
|
* return PF_LOCAL sockaddr.
|
|
*/
|
|
unp2 = unp->unp_conn;
|
|
if (unp2 != NULL) {
|
|
UNP_PCB_LOCK(unp2);
|
|
if (unp2->unp_addr != NULL)
|
|
sa = (struct sockaddr *) unp2->unp_addr;
|
|
else
|
|
sa = &sun_noname;
|
|
bcopy(sa, *nam, sa->sa_len);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
} else {
|
|
sa = &sun_noname;
|
|
bcopy(sa, *nam, sa->sa_len);
|
|
}
|
|
UNP_LINK_RUNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_rcvd(struct socket *so, int flags)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
struct socket *so2;
|
|
u_int mbcnt, sbcc;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
|
|
KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
|
|
("%s: socktype %d", __func__, so->so_type));
|
|
|
|
/*
|
|
* Adjust backpressure on sender and wakeup any waiting to write.
|
|
*
|
|
* The unp lock is acquired to maintain the validity of the unp_conn
|
|
* pointer; no lock on unp2 is required as unp2->unp_socket will be
|
|
* static as long as we don't permit unp2 to disconnect from unp,
|
|
* which is prevented by the lock on unp. We cache values from
|
|
* so_rcv to avoid holding the so_rcv lock over the entire
|
|
* transaction on the remote so_snd.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
mbcnt = so->so_rcv.sb_mbcnt;
|
|
sbcc = sbavail(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
/*
|
|
* There is a benign race condition at this point. If we're planning to
|
|
* clear SB_STOP, but uipc_send is called on the connected socket at
|
|
* this instant, it might add data to the sockbuf and set SB_STOP. Then
|
|
* we would erroneously clear SB_STOP below, even though the sockbuf is
|
|
* full. The race is benign because the only ill effect is to allow the
|
|
* sockbuf to exceed its size limit, and the size limits are not
|
|
* strictly guaranteed anyway.
|
|
*/
|
|
UNP_PCB_LOCK(unp);
|
|
unp2 = unp->unp_conn;
|
|
if (unp2 == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
so2 = unp2->unp_socket;
|
|
SOCKBUF_LOCK(&so2->so_snd);
|
|
if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
|
|
so2->so_snd.sb_flags &= ~SB_STOP;
|
|
sowwakeup_locked(so2);
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
int error;
|
|
struct unpcb *unp;
|
|
|
|
unp = so->so_pcb;
|
|
if (unp->unp_conn != NULL)
|
|
return (EISCONN);
|
|
error = unp_connect(so, nam, td);
|
|
if (error)
|
|
return (error);
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_conn == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (error == 0)
|
|
error = ENOTCONN;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
|
|
static int
|
|
uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
|
|
struct mbuf *control, struct thread *td)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
struct socket *so2;
|
|
u_int mbcnt, sbcc;
|
|
int freed, error;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
|
|
KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
|
|
so->so_type == SOCK_SEQPACKET,
|
|
("%s: socktype %d", __func__, so->so_type));
|
|
|
|
freed = error = 0;
|
|
if (flags & PRUS_OOB) {
|
|
error = EOPNOTSUPP;
|
|
goto release;
|
|
}
|
|
if (control != NULL && (error = unp_internalize(&control, td)))
|
|
goto release;
|
|
|
|
unp2 = NULL;
|
|
switch (so->so_type) {
|
|
case SOCK_DGRAM:
|
|
{
|
|
const struct sockaddr *from;
|
|
|
|
if (nam != NULL) {
|
|
/*
|
|
* We return with UNP_PCB_LOCK_HELD so we know that
|
|
* the reference is live if the pointer is valid.
|
|
*/
|
|
if ((error = connect_internal(so, nam, td)))
|
|
break;
|
|
MPASS(unp->unp_conn != NULL);
|
|
unp2 = unp->unp_conn;
|
|
} else {
|
|
UNP_PCB_LOCK(unp);
|
|
|
|
/*
|
|
* Because connect() and send() are non-atomic in a sendto()
|
|
* with a target address, it's possible that the socket will
|
|
* have disconnected before the send() can run. In that case
|
|
* return the slightly counter-intuitive but otherwise
|
|
* correct error that the socket is not connected.
|
|
*/
|
|
if ((unp2 = unp->unp_conn) == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
}
|
|
unp_pcb_owned_lock2(unp, unp2, freed);
|
|
if (__predict_false(freed)) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
/*
|
|
* The socket referencing unp2 may have been closed
|
|
* or unp may have been disconnected if the unp lock
|
|
* was dropped to acquire unp2.
|
|
*/
|
|
if (__predict_false(unp->unp_conn == NULL) ||
|
|
unp2->unp_socket == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (unp_pcb_rele(unp2) == 0)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
if (unp2->unp_flags & UNP_WANTCRED)
|
|
control = unp_addsockcred(td, control);
|
|
if (unp->unp_addr != NULL)
|
|
from = (struct sockaddr *)unp->unp_addr;
|
|
else
|
|
from = &sun_noname;
|
|
so2 = unp2->unp_socket;
|
|
SOCKBUF_LOCK(&so2->so_rcv);
|
|
if (sbappendaddr_locked(&so2->so_rcv, from, m,
|
|
control)) {
|
|
sorwakeup_locked(so2);
|
|
m = NULL;
|
|
control = NULL;
|
|
} else {
|
|
SOCKBUF_UNLOCK(&so2->so_rcv);
|
|
error = ENOBUFS;
|
|
}
|
|
if (nam != NULL)
|
|
unp_disconnect(unp, unp2);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
UNP_PCB_UNLOCK(unp);
|
|
break;
|
|
}
|
|
|
|
case SOCK_SEQPACKET:
|
|
case SOCK_STREAM:
|
|
if ((so->so_state & SS_ISCONNECTED) == 0) {
|
|
if (nam != NULL) {
|
|
if ((error = connect_internal(so, nam, td)))
|
|
break;
|
|
} else {
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
} else if ((unp2 = unp->unp_conn) == NULL) {
|
|
error = ENOTCONN;
|
|
break;
|
|
} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
|
|
error = EPIPE;
|
|
break;
|
|
} else {
|
|
UNP_PCB_LOCK(unp);
|
|
if ((unp2 = unp->unp_conn) == NULL) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
}
|
|
unp_pcb_owned_lock2(unp, unp2, freed);
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (__predict_false(freed)) {
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
if ((so2 = unp2->unp_socket) == NULL) {
|
|
UNP_PCB_UNLOCK(unp2);
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
SOCKBUF_LOCK(&so2->so_rcv);
|
|
if (unp2->unp_flags & UNP_WANTCRED) {
|
|
/*
|
|
* Credentials are passed only once on SOCK_STREAM
|
|
* and SOCK_SEQPACKET.
|
|
*/
|
|
unp2->unp_flags &= ~UNP_WANTCRED;
|
|
control = unp_addsockcred(td, control);
|
|
}
|
|
/*
|
|
* Send to paired receive port, and then reduce send buffer
|
|
* hiwater marks to maintain backpressure. Wake up readers.
|
|
*/
|
|
switch (so->so_type) {
|
|
case SOCK_STREAM:
|
|
if (control != NULL) {
|
|
if (sbappendcontrol_locked(&so2->so_rcv, m,
|
|
control))
|
|
control = NULL;
|
|
} else
|
|
sbappend_locked(&so2->so_rcv, m, flags);
|
|
break;
|
|
|
|
case SOCK_SEQPACKET: {
|
|
const struct sockaddr *from;
|
|
|
|
from = &sun_noname;
|
|
/*
|
|
* Don't check for space available in so2->so_rcv.
|
|
* Unix domain sockets only check for space in the
|
|
* sending sockbuf, and that check is performed one
|
|
* level up the stack.
|
|
*/
|
|
if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
|
|
from, m, control))
|
|
control = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mbcnt = so2->so_rcv.sb_mbcnt;
|
|
sbcc = sbavail(&so2->so_rcv);
|
|
if (sbcc)
|
|
sorwakeup_locked(so2);
|
|
else
|
|
SOCKBUF_UNLOCK(&so2->so_rcv);
|
|
|
|
/*
|
|
* The PCB lock on unp2 protects the SB_STOP flag. Without it,
|
|
* it would be possible for uipc_rcvd to be called at this
|
|
* point, drain the receiving sockbuf, clear SB_STOP, and then
|
|
* we would set SB_STOP below. That could lead to an empty
|
|
* sockbuf having SB_STOP set
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
|
|
so->so_snd.sb_flags |= SB_STOP;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
m = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
|
|
*/
|
|
if (flags & PRUS_EOF) {
|
|
UNP_PCB_LOCK(unp);
|
|
socantsendmore(so);
|
|
unp_shutdown(unp);
|
|
UNP_PCB_UNLOCK(unp);
|
|
}
|
|
if (control != NULL && error != 0)
|
|
unp_dispose_mbuf(control);
|
|
|
|
release:
|
|
if (control != NULL)
|
|
m_freem(control);
|
|
/*
|
|
* In case of PRUS_NOTREADY, uipc_ready() is responsible
|
|
* for freeing memory.
|
|
*/
|
|
if (m != NULL && (flags & PRUS_NOTREADY) == 0)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
uipc_ready(struct socket *so, struct mbuf *m, int count)
|
|
{
|
|
struct unpcb *unp, *unp2;
|
|
struct socket *so2;
|
|
int error;
|
|
|
|
unp = sotounpcb(so);
|
|
|
|
UNP_LINK_RLOCK();
|
|
if ((unp2 = unp->unp_conn) == NULL) {
|
|
UNP_LINK_RUNLOCK();
|
|
for (int i = 0; i < count; i++)
|
|
m = m_free(m);
|
|
return (ECONNRESET);
|
|
}
|
|
UNP_PCB_LOCK(unp2);
|
|
so2 = unp2->unp_socket;
|
|
|
|
SOCKBUF_LOCK(&so2->so_rcv);
|
|
if ((error = sbready(&so2->so_rcv, m, count)) == 0)
|
|
sorwakeup_locked(so2);
|
|
else
|
|
SOCKBUF_UNLOCK(&so2->so_rcv);
|
|
|
|
UNP_PCB_UNLOCK(unp2);
|
|
UNP_LINK_RUNLOCK();
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
uipc_sense(struct socket *so, struct stat *sb)
|
|
{
|
|
struct unpcb *unp;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
|
|
|
|
sb->st_blksize = so->so_snd.sb_hiwat;
|
|
UNP_PCB_LOCK(unp);
|
|
sb->st_dev = NODEV;
|
|
if (unp->unp_ino == 0)
|
|
unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
|
|
sb->st_ino = unp->unp_ino;
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_shutdown(struct socket *so)
|
|
{
|
|
struct unpcb *unp;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
socantsendmore(so);
|
|
unp_shutdown(unp);
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uipc_sockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct unpcb *unp;
|
|
const struct sockaddr *sa;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
|
|
|
|
*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_addr != NULL)
|
|
sa = (struct sockaddr *) unp->unp_addr;
|
|
else
|
|
sa = &sun_noname;
|
|
bcopy(sa, *nam, sa->sa_len);
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (0);
|
|
}
|
|
|
|
static struct pr_usrreqs uipc_usrreqs_dgram = {
|
|
.pru_abort = uipc_abort,
|
|
.pru_accept = uipc_accept,
|
|
.pru_attach = uipc_attach,
|
|
.pru_bind = uipc_bind,
|
|
.pru_bindat = uipc_bindat,
|
|
.pru_connect = uipc_connect,
|
|
.pru_connectat = uipc_connectat,
|
|
.pru_connect2 = uipc_connect2,
|
|
.pru_detach = uipc_detach,
|
|
.pru_disconnect = uipc_disconnect,
|
|
.pru_listen = uipc_listen,
|
|
.pru_peeraddr = uipc_peeraddr,
|
|
.pru_rcvd = uipc_rcvd,
|
|
.pru_send = uipc_send,
|
|
.pru_sense = uipc_sense,
|
|
.pru_shutdown = uipc_shutdown,
|
|
.pru_sockaddr = uipc_sockaddr,
|
|
.pru_soreceive = soreceive_dgram,
|
|
.pru_close = uipc_close,
|
|
};
|
|
|
|
static struct pr_usrreqs uipc_usrreqs_seqpacket = {
|
|
.pru_abort = uipc_abort,
|
|
.pru_accept = uipc_accept,
|
|
.pru_attach = uipc_attach,
|
|
.pru_bind = uipc_bind,
|
|
.pru_bindat = uipc_bindat,
|
|
.pru_connect = uipc_connect,
|
|
.pru_connectat = uipc_connectat,
|
|
.pru_connect2 = uipc_connect2,
|
|
.pru_detach = uipc_detach,
|
|
.pru_disconnect = uipc_disconnect,
|
|
.pru_listen = uipc_listen,
|
|
.pru_peeraddr = uipc_peeraddr,
|
|
.pru_rcvd = uipc_rcvd,
|
|
.pru_send = uipc_send,
|
|
.pru_sense = uipc_sense,
|
|
.pru_shutdown = uipc_shutdown,
|
|
.pru_sockaddr = uipc_sockaddr,
|
|
.pru_soreceive = soreceive_generic, /* XXX: or...? */
|
|
.pru_close = uipc_close,
|
|
};
|
|
|
|
static struct pr_usrreqs uipc_usrreqs_stream = {
|
|
.pru_abort = uipc_abort,
|
|
.pru_accept = uipc_accept,
|
|
.pru_attach = uipc_attach,
|
|
.pru_bind = uipc_bind,
|
|
.pru_bindat = uipc_bindat,
|
|
.pru_connect = uipc_connect,
|
|
.pru_connectat = uipc_connectat,
|
|
.pru_connect2 = uipc_connect2,
|
|
.pru_detach = uipc_detach,
|
|
.pru_disconnect = uipc_disconnect,
|
|
.pru_listen = uipc_listen,
|
|
.pru_peeraddr = uipc_peeraddr,
|
|
.pru_rcvd = uipc_rcvd,
|
|
.pru_send = uipc_send,
|
|
.pru_ready = uipc_ready,
|
|
.pru_sense = uipc_sense,
|
|
.pru_shutdown = uipc_shutdown,
|
|
.pru_sockaddr = uipc_sockaddr,
|
|
.pru_soreceive = soreceive_generic,
|
|
.pru_close = uipc_close,
|
|
};
|
|
|
|
static int
|
|
uipc_ctloutput(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct unpcb *unp;
|
|
struct xucred xu;
|
|
int error, optval;
|
|
|
|
if (sopt->sopt_level != 0)
|
|
return (EINVAL);
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
|
|
error = 0;
|
|
switch (sopt->sopt_dir) {
|
|
case SOPT_GET:
|
|
switch (sopt->sopt_name) {
|
|
case LOCAL_PEERCRED:
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_flags & UNP_HAVEPC)
|
|
xu = unp->unp_peercred;
|
|
else {
|
|
if (so->so_type == SOCK_STREAM)
|
|
error = ENOTCONN;
|
|
else
|
|
error = EINVAL;
|
|
}
|
|
UNP_PCB_UNLOCK(unp);
|
|
if (error == 0)
|
|
error = sooptcopyout(sopt, &xu, sizeof(xu));
|
|
break;
|
|
|
|
case LOCAL_CREDS:
|
|
/* Unlocked read. */
|
|
optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
|
|
error = sooptcopyout(sopt, &optval, sizeof(optval));
|
|
break;
|
|
|
|
case LOCAL_CONNWAIT:
|
|
/* Unlocked read. */
|
|
optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
|
|
error = sooptcopyout(sopt, &optval, sizeof(optval));
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOPT_SET:
|
|
switch (sopt->sopt_name) {
|
|
case LOCAL_CREDS:
|
|
case LOCAL_CONNWAIT:
|
|
error = sooptcopyin(sopt, &optval, sizeof(optval),
|
|
sizeof(optval));
|
|
if (error)
|
|
break;
|
|
|
|
#define OPTSET(bit) do { \
|
|
UNP_PCB_LOCK(unp); \
|
|
if (optval) \
|
|
unp->unp_flags |= bit; \
|
|
else \
|
|
unp->unp_flags &= ~bit; \
|
|
UNP_PCB_UNLOCK(unp); \
|
|
} while (0)
|
|
|
|
switch (sopt->sopt_name) {
|
|
case LOCAL_CREDS:
|
|
OPTSET(UNP_WANTCRED);
|
|
break;
|
|
|
|
case LOCAL_CONNWAIT:
|
|
OPTSET(UNP_CONNWAIT);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
#undef OPTSET
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
|
|
return (unp_connectat(AT_FDCWD, so, nam, td));
|
|
}
|
|
|
|
static int
|
|
unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
|
|
struct thread *td)
|
|
{
|
|
struct sockaddr_un *soun = (struct sockaddr_un *)nam;
|
|
struct vnode *vp;
|
|
struct socket *so2;
|
|
struct unpcb *unp, *unp2, *unp3;
|
|
struct nameidata nd;
|
|
char buf[SOCK_MAXADDRLEN];
|
|
struct sockaddr *sa;
|
|
cap_rights_t rights;
|
|
int error, len, freed;
|
|
struct mtx *vplock;
|
|
|
|
if (nam->sa_family != AF_UNIX)
|
|
return (EAFNOSUPPORT);
|
|
if (nam->sa_len > sizeof(struct sockaddr_un))
|
|
return (EINVAL);
|
|
len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
|
|
if (len <= 0)
|
|
return (EINVAL);
|
|
bcopy(soun->sun_path, buf, len);
|
|
buf[len] = 0;
|
|
|
|
unp = sotounpcb(so);
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_flags & UNP_CONNECTING) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (EALREADY);
|
|
}
|
|
unp->unp_flags |= UNP_CONNECTING;
|
|
UNP_PCB_UNLOCK(unp);
|
|
|
|
sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
|
|
NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
|
|
UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
|
|
error = namei(&nd);
|
|
if (error)
|
|
vp = NULL;
|
|
else
|
|
vp = nd.ni_vp;
|
|
ASSERT_VOP_LOCKED(vp, "unp_connect");
|
|
NDFREE(&nd, NDF_ONLY_PNBUF);
|
|
if (error)
|
|
goto bad;
|
|
|
|
if (vp->v_type != VSOCK) {
|
|
error = ENOTSOCK;
|
|
goto bad;
|
|
}
|
|
#ifdef MAC
|
|
error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
|
|
if (error)
|
|
goto bad;
|
|
#endif
|
|
error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
|
|
if (error)
|
|
goto bad;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
|
|
|
|
vplock = mtx_pool_find(mtxpool_sleep, vp);
|
|
mtx_lock(vplock);
|
|
VOP_UNP_CONNECT(vp, &unp2);
|
|
if (unp2 == NULL) {
|
|
error = ECONNREFUSED;
|
|
goto bad2;
|
|
}
|
|
so2 = unp2->unp_socket;
|
|
if (so->so_type != so2->so_type) {
|
|
error = EPROTOTYPE;
|
|
goto bad2;
|
|
}
|
|
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
|
|
if (so2->so_options & SO_ACCEPTCONN) {
|
|
CURVNET_SET(so2->so_vnet);
|
|
so2 = sonewconn(so2, 0);
|
|
CURVNET_RESTORE();
|
|
} else
|
|
so2 = NULL;
|
|
if (so2 == NULL) {
|
|
error = ECONNREFUSED;
|
|
goto bad2;
|
|
}
|
|
unp3 = sotounpcb(so2);
|
|
unp_pcb_lock2(unp2, unp3);
|
|
if (unp2->unp_addr != NULL) {
|
|
bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
|
|
unp3->unp_addr = (struct sockaddr_un *) sa;
|
|
sa = NULL;
|
|
}
|
|
|
|
/*
|
|
* The connector's (client's) credentials are copied from its
|
|
* process structure at the time of connect() (which is now).
|
|
*/
|
|
cru2x(td->td_ucred, &unp3->unp_peercred);
|
|
unp3->unp_flags |= UNP_HAVEPC;
|
|
|
|
/*
|
|
* The receiver's (server's) credentials are copied from the
|
|
* unp_peercred member of socket on which the former called
|
|
* listen(); uipc_listen() cached that process's credentials
|
|
* at that time so we can use them now.
|
|
*/
|
|
memcpy(&unp->unp_peercred, &unp2->unp_peercred,
|
|
sizeof(unp->unp_peercred));
|
|
unp->unp_flags |= UNP_HAVEPC;
|
|
if (unp2->unp_flags & UNP_WANTCRED)
|
|
unp3->unp_flags |= UNP_WANTCRED;
|
|
UNP_PCB_UNLOCK(unp2);
|
|
unp2 = unp3;
|
|
unp_pcb_owned_lock2(unp2, unp, freed);
|
|
if (__predict_false(freed)) {
|
|
UNP_PCB_UNLOCK(unp2);
|
|
error = ECONNREFUSED;
|
|
goto bad2;
|
|
}
|
|
#ifdef MAC
|
|
mac_socketpeer_set_from_socket(so, so2);
|
|
mac_socketpeer_set_from_socket(so2, so);
|
|
#endif
|
|
} else
|
|
unp_pcb_lock2(unp, unp2);
|
|
|
|
KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
|
|
sotounpcb(so2) == unp2,
|
|
("%s: unp2 %p so2 %p", __func__, unp2, so2));
|
|
error = unp_connect2(so, so2, PRU_CONNECT);
|
|
UNP_PCB_UNLOCK(unp2);
|
|
UNP_PCB_UNLOCK(unp);
|
|
bad2:
|
|
mtx_unlock(vplock);
|
|
bad:
|
|
if (vp != NULL) {
|
|
vput(vp);
|
|
}
|
|
free(sa, M_SONAME);
|
|
UNP_PCB_LOCK(unp);
|
|
unp->unp_flags &= ~UNP_CONNECTING;
|
|
UNP_PCB_UNLOCK(unp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
unp_connect2(struct socket *so, struct socket *so2, int req)
|
|
{
|
|
struct unpcb *unp;
|
|
struct unpcb *unp2;
|
|
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
|
|
unp2 = sotounpcb(so2);
|
|
KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
|
|
|
|
UNP_PCB_LOCK_ASSERT(unp);
|
|
UNP_PCB_LOCK_ASSERT(unp2);
|
|
|
|
if (so2->so_type != so->so_type)
|
|
return (EPROTOTYPE);
|
|
unp2->unp_flags &= ~UNP_NASCENT;
|
|
unp->unp_conn = unp2;
|
|
unp_pcb_hold(unp2);
|
|
unp_pcb_hold(unp);
|
|
switch (so->so_type) {
|
|
case SOCK_DGRAM:
|
|
UNP_REF_LIST_LOCK();
|
|
LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
|
|
UNP_REF_LIST_UNLOCK();
|
|
soisconnected(so);
|
|
break;
|
|
|
|
case SOCK_STREAM:
|
|
case SOCK_SEQPACKET:
|
|
unp2->unp_conn = unp;
|
|
if (req == PRU_CONNECT &&
|
|
((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
|
|
soisconnecting(so);
|
|
else
|
|
soisconnected(so);
|
|
soisconnected(so2);
|
|
break;
|
|
|
|
default:
|
|
panic("unp_connect2");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
|
|
{
|
|
struct socket *so, *so2;
|
|
int freed __unused;
|
|
|
|
KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
|
|
|
|
UNP_PCB_LOCK_ASSERT(unp);
|
|
UNP_PCB_LOCK_ASSERT(unp2);
|
|
|
|
if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
|
|
return;
|
|
|
|
MPASS(unp->unp_conn == unp2);
|
|
unp->unp_conn = NULL;
|
|
so = unp->unp_socket;
|
|
so2 = unp2->unp_socket;
|
|
switch (unp->unp_socket->so_type) {
|
|
case SOCK_DGRAM:
|
|
UNP_REF_LIST_LOCK();
|
|
LIST_REMOVE(unp, unp_reflink);
|
|
UNP_REF_LIST_UNLOCK();
|
|
if (so) {
|
|
SOCK_LOCK(so);
|
|
so->so_state &= ~SS_ISCONNECTED;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
break;
|
|
|
|
case SOCK_STREAM:
|
|
case SOCK_SEQPACKET:
|
|
if (so)
|
|
soisdisconnected(so);
|
|
MPASS(unp2->unp_conn == unp);
|
|
unp2->unp_conn = NULL;
|
|
if (so2)
|
|
soisdisconnected(so2);
|
|
break;
|
|
}
|
|
freed = unp_pcb_rele(unp);
|
|
MPASS(freed == 0);
|
|
freed = unp_pcb_rele(unp2);
|
|
MPASS(freed == 0);
|
|
}
|
|
|
|
/*
|
|
* unp_pcblist() walks the global list of struct unpcb's to generate a
|
|
* pointer list, bumping the refcount on each unpcb. It then copies them out
|
|
* sequentially, validating the generation number on each to see if it has
|
|
* been detached. All of this is necessary because copyout() may sleep on
|
|
* disk I/O.
|
|
*/
|
|
static int
|
|
unp_pcblist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct unpcb *unp, **unp_list;
|
|
unp_gen_t gencnt;
|
|
struct xunpgen *xug;
|
|
struct unp_head *head;
|
|
struct xunpcb *xu;
|
|
u_int i;
|
|
int error, freeunp, n;
|
|
|
|
switch ((intptr_t)arg1) {
|
|
case SOCK_STREAM:
|
|
head = &unp_shead;
|
|
break;
|
|
|
|
case SOCK_DGRAM:
|
|
head = &unp_dhead;
|
|
break;
|
|
|
|
case SOCK_SEQPACKET:
|
|
head = &unp_sphead;
|
|
break;
|
|
|
|
default:
|
|
panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
|
|
}
|
|
|
|
/*
|
|
* The process of preparing the PCB list is too time-consuming and
|
|
* resource-intensive to repeat twice on every request.
|
|
*/
|
|
if (req->oldptr == NULL) {
|
|
n = unp_count;
|
|
req->oldidx = 2 * (sizeof *xug)
|
|
+ (n + n/8) * sizeof(struct xunpcb);
|
|
return (0);
|
|
}
|
|
|
|
if (req->newptr != NULL)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* OK, now we're committed to doing something.
|
|
*/
|
|
xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
|
|
UNP_LINK_RLOCK();
|
|
gencnt = unp_gencnt;
|
|
n = unp_count;
|
|
UNP_LINK_RUNLOCK();
|
|
|
|
xug->xug_len = sizeof *xug;
|
|
xug->xug_count = n;
|
|
xug->xug_gen = gencnt;
|
|
xug->xug_sogen = so_gencnt;
|
|
error = SYSCTL_OUT(req, xug, sizeof *xug);
|
|
if (error) {
|
|
free(xug, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
|
|
|
|
UNP_LINK_RLOCK();
|
|
for (unp = LIST_FIRST(head), i = 0; unp && i < n;
|
|
unp = LIST_NEXT(unp, unp_link)) {
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_gencnt <= gencnt) {
|
|
if (cr_cansee(req->td->td_ucred,
|
|
unp->unp_socket->so_cred)) {
|
|
UNP_PCB_UNLOCK(unp);
|
|
continue;
|
|
}
|
|
unp_list[i++] = unp;
|
|
unp_pcb_hold(unp);
|
|
}
|
|
UNP_PCB_UNLOCK(unp);
|
|
}
|
|
UNP_LINK_RUNLOCK();
|
|
n = i; /* In case we lost some during malloc. */
|
|
|
|
error = 0;
|
|
xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < n; i++) {
|
|
unp = unp_list[i];
|
|
UNP_PCB_LOCK(unp);
|
|
freeunp = unp_pcb_rele(unp);
|
|
|
|
if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
|
|
xu->xu_len = sizeof *xu;
|
|
xu->xu_unpp = unp;
|
|
/*
|
|
* XXX - need more locking here to protect against
|
|
* connect/disconnect races for SMP.
|
|
*/
|
|
if (unp->unp_addr != NULL)
|
|
bcopy(unp->unp_addr, &xu->xu_addr,
|
|
unp->unp_addr->sun_len);
|
|
else
|
|
bzero(&xu->xu_addr, sizeof(xu->xu_addr));
|
|
if (unp->unp_conn != NULL &&
|
|
unp->unp_conn->unp_addr != NULL)
|
|
bcopy(unp->unp_conn->unp_addr,
|
|
&xu->xu_caddr,
|
|
unp->unp_conn->unp_addr->sun_len);
|
|
else
|
|
bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
|
|
xu->unp_vnode = unp->unp_vnode;
|
|
xu->unp_conn = unp->unp_conn;
|
|
xu->xu_firstref = LIST_FIRST(&unp->unp_refs);
|
|
xu->xu_nextref = LIST_NEXT(unp, unp_reflink);
|
|
xu->unp_gencnt = unp->unp_gencnt;
|
|
sotoxsocket(unp->unp_socket, &xu->xu_socket);
|
|
UNP_PCB_UNLOCK(unp);
|
|
error = SYSCTL_OUT(req, xu, sizeof *xu);
|
|
} else if (freeunp == 0)
|
|
UNP_PCB_UNLOCK(unp);
|
|
}
|
|
free(xu, M_TEMP);
|
|
if (!error) {
|
|
/*
|
|
* Give the user an updated idea of our state. If the
|
|
* generation differs from what we told her before, she knows
|
|
* that something happened while we were processing this
|
|
* request, and it might be necessary to retry.
|
|
*/
|
|
xug->xug_gen = unp_gencnt;
|
|
xug->xug_sogen = so_gencnt;
|
|
xug->xug_count = unp_count;
|
|
error = SYSCTL_OUT(req, xug, sizeof *xug);
|
|
}
|
|
free(unp_list, M_TEMP);
|
|
free(xug, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
|
|
(void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
|
|
"List of active local datagram sockets");
|
|
SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
|
|
(void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
|
|
"List of active local stream sockets");
|
|
SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RD,
|
|
(void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
|
|
"List of active local seqpacket sockets");
|
|
|
|
static void
|
|
unp_shutdown(struct unpcb *unp)
|
|
{
|
|
struct unpcb *unp2;
|
|
struct socket *so;
|
|
|
|
UNP_PCB_LOCK_ASSERT(unp);
|
|
|
|
unp2 = unp->unp_conn;
|
|
if ((unp->unp_socket->so_type == SOCK_STREAM ||
|
|
(unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
|
|
so = unp2->unp_socket;
|
|
if (so != NULL)
|
|
socantrcvmore(so);
|
|
}
|
|
}
|
|
|
|
static void
|
|
unp_drop(struct unpcb *unp)
|
|
{
|
|
struct socket *so = unp->unp_socket;
|
|
struct unpcb *unp2;
|
|
int freed;
|
|
|
|
/*
|
|
* Regardless of whether the socket's peer dropped the connection
|
|
* with this socket by aborting or disconnecting, POSIX requires
|
|
* that ECONNRESET is returned.
|
|
*/
|
|
/* acquire a reference so that unp isn't freed from underneath us */
|
|
|
|
UNP_PCB_LOCK(unp);
|
|
if (so)
|
|
so->so_error = ECONNRESET;
|
|
unp2 = unp->unp_conn;
|
|
if (unp2 != NULL) {
|
|
unp_pcb_hold(unp2);
|
|
unp_pcb_owned_lock2(unp, unp2, freed);
|
|
unp_disconnect(unp, unp2);
|
|
if (unp_pcb_rele(unp2) == 0)
|
|
UNP_PCB_UNLOCK(unp2);
|
|
}
|
|
if (unp_pcb_rele(unp) == 0)
|
|
UNP_PCB_UNLOCK(unp);
|
|
}
|
|
|
|
static void
|
|
unp_freerights(struct filedescent **fdep, int fdcount)
|
|
{
|
|
struct file *fp;
|
|
int i;
|
|
|
|
KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
|
|
|
|
for (i = 0; i < fdcount; i++) {
|
|
fp = fdep[i]->fde_file;
|
|
filecaps_free(&fdep[i]->fde_caps);
|
|
unp_discard(fp);
|
|
}
|
|
free(fdep[0], M_FILECAPS);
|
|
}
|
|
|
|
static int
|
|
unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
|
|
{
|
|
struct thread *td = curthread; /* XXX */
|
|
struct cmsghdr *cm = mtod(control, struct cmsghdr *);
|
|
int i;
|
|
int *fdp;
|
|
struct filedesc *fdesc = td->td_proc->p_fd;
|
|
struct filedescent **fdep;
|
|
void *data;
|
|
socklen_t clen = control->m_len, datalen;
|
|
int error, newfds;
|
|
u_int newlen;
|
|
|
|
UNP_LINK_UNLOCK_ASSERT();
|
|
|
|
error = 0;
|
|
if (controlp != NULL) /* controlp == NULL => free control messages */
|
|
*controlp = NULL;
|
|
while (cm != NULL) {
|
|
if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
data = CMSG_DATA(cm);
|
|
datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
|
|
if (cm->cmsg_level == SOL_SOCKET
|
|
&& cm->cmsg_type == SCM_RIGHTS) {
|
|
newfds = datalen / sizeof(*fdep);
|
|
if (newfds == 0)
|
|
goto next;
|
|
fdep = data;
|
|
|
|
/* If we're not outputting the descriptors free them. */
|
|
if (error || controlp == NULL) {
|
|
unp_freerights(fdep, newfds);
|
|
goto next;
|
|
}
|
|
FILEDESC_XLOCK(fdesc);
|
|
|
|
/*
|
|
* Now change each pointer to an fd in the global
|
|
* table to an integer that is the index to the local
|
|
* fd table entry that we set up to point to the
|
|
* global one we are transferring.
|
|
*/
|
|
newlen = newfds * sizeof(int);
|
|
*controlp = sbcreatecontrol(NULL, newlen,
|
|
SCM_RIGHTS, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
FILEDESC_XUNLOCK(fdesc);
|
|
error = E2BIG;
|
|
unp_freerights(fdep, newfds);
|
|
goto next;
|
|
}
|
|
|
|
fdp = (int *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
if (fdallocn(td, 0, fdp, newfds) != 0) {
|
|
FILEDESC_XUNLOCK(fdesc);
|
|
error = EMSGSIZE;
|
|
unp_freerights(fdep, newfds);
|
|
m_freem(*controlp);
|
|
*controlp = NULL;
|
|
goto next;
|
|
}
|
|
for (i = 0; i < newfds; i++, fdp++) {
|
|
_finstall(fdesc, fdep[i]->fde_file, *fdp,
|
|
(flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
|
|
&fdep[i]->fde_caps);
|
|
unp_externalize_fp(fdep[i]->fde_file);
|
|
}
|
|
FILEDESC_XUNLOCK(fdesc);
|
|
free(fdep[0], M_FILECAPS);
|
|
} else {
|
|
/* We can just copy anything else across. */
|
|
if (error || controlp == NULL)
|
|
goto next;
|
|
*controlp = sbcreatecontrol(NULL, datalen,
|
|
cm->cmsg_type, cm->cmsg_level);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto next;
|
|
}
|
|
bcopy(data,
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
|
|
datalen);
|
|
}
|
|
controlp = &(*controlp)->m_next;
|
|
|
|
next:
|
|
if (CMSG_SPACE(datalen) < clen) {
|
|
clen -= CMSG_SPACE(datalen);
|
|
cm = (struct cmsghdr *)
|
|
((caddr_t)cm + CMSG_SPACE(datalen));
|
|
} else {
|
|
clen = 0;
|
|
cm = NULL;
|
|
}
|
|
}
|
|
|
|
m_freem(control);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
unp_zone_change(void *tag)
|
|
{
|
|
|
|
uma_zone_set_max(unp_zone, maxsockets);
|
|
}
|
|
|
|
static void
|
|
unp_init(void)
|
|
{
|
|
|
|
#ifdef VIMAGE
|
|
if (!IS_DEFAULT_VNET(curvnet))
|
|
return;
|
|
#endif
|
|
unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
|
|
NULL, NULL, UMA_ALIGN_CACHE, 0);
|
|
if (unp_zone == NULL)
|
|
panic("unp_init");
|
|
uma_zone_set_max(unp_zone, maxsockets);
|
|
uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
|
|
EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
LIST_INIT(&unp_dhead);
|
|
LIST_INIT(&unp_shead);
|
|
LIST_INIT(&unp_sphead);
|
|
SLIST_INIT(&unp_defers);
|
|
TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
|
|
TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
|
|
UNP_LINK_LOCK_INIT();
|
|
UNP_DEFERRED_LOCK_INIT();
|
|
}
|
|
|
|
static int
|
|
unp_internalize(struct mbuf **controlp, struct thread *td)
|
|
{
|
|
struct mbuf *control = *controlp;
|
|
struct proc *p = td->td_proc;
|
|
struct filedesc *fdesc = p->p_fd;
|
|
struct bintime *bt;
|
|
struct cmsghdr *cm = mtod(control, struct cmsghdr *);
|
|
struct cmsgcred *cmcred;
|
|
struct filedescent *fde, **fdep, *fdev;
|
|
struct file *fp;
|
|
struct timeval *tv;
|
|
struct timespec *ts;
|
|
int i, *fdp;
|
|
void *data;
|
|
socklen_t clen = control->m_len, datalen;
|
|
int error, oldfds;
|
|
u_int newlen;
|
|
|
|
UNP_LINK_UNLOCK_ASSERT();
|
|
|
|
error = 0;
|
|
*controlp = NULL;
|
|
while (cm != NULL) {
|
|
if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
|
|
|| cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
data = CMSG_DATA(cm);
|
|
datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
|
|
|
|
switch (cm->cmsg_type) {
|
|
/*
|
|
* Fill in credential information.
|
|
*/
|
|
case SCM_CREDS:
|
|
*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
|
|
SCM_CREDS, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
cmcred = (struct cmsgcred *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
cmcred->cmcred_pid = p->p_pid;
|
|
cmcred->cmcred_uid = td->td_ucred->cr_ruid;
|
|
cmcred->cmcred_gid = td->td_ucred->cr_rgid;
|
|
cmcred->cmcred_euid = td->td_ucred->cr_uid;
|
|
cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
|
|
CMGROUP_MAX);
|
|
for (i = 0; i < cmcred->cmcred_ngroups; i++)
|
|
cmcred->cmcred_groups[i] =
|
|
td->td_ucred->cr_groups[i];
|
|
break;
|
|
|
|
case SCM_RIGHTS:
|
|
oldfds = datalen / sizeof (int);
|
|
if (oldfds == 0)
|
|
break;
|
|
/*
|
|
* Check that all the FDs passed in refer to legal
|
|
* files. If not, reject the entire operation.
|
|
*/
|
|
fdp = data;
|
|
FILEDESC_SLOCK(fdesc);
|
|
for (i = 0; i < oldfds; i++, fdp++) {
|
|
fp = fget_locked(fdesc, *fdp);
|
|
if (fp == NULL) {
|
|
FILEDESC_SUNLOCK(fdesc);
|
|
error = EBADF;
|
|
goto out;
|
|
}
|
|
if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
|
|
FILEDESC_SUNLOCK(fdesc);
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Now replace the integer FDs with pointers to the
|
|
* file structure and capability rights.
|
|
*/
|
|
newlen = oldfds * sizeof(fdep[0]);
|
|
*controlp = sbcreatecontrol(NULL, newlen,
|
|
SCM_RIGHTS, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
FILEDESC_SUNLOCK(fdesc);
|
|
error = E2BIG;
|
|
goto out;
|
|
}
|
|
fdp = data;
|
|
fdep = (struct filedescent **)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
|
|
M_WAITOK);
|
|
for (i = 0; i < oldfds; i++, fdev++, fdp++) {
|
|
fde = &fdesc->fd_ofiles[*fdp];
|
|
fdep[i] = fdev;
|
|
fdep[i]->fde_file = fde->fde_file;
|
|
filecaps_copy(&fde->fde_caps,
|
|
&fdep[i]->fde_caps, true);
|
|
unp_internalize_fp(fdep[i]->fde_file);
|
|
}
|
|
FILEDESC_SUNLOCK(fdesc);
|
|
break;
|
|
|
|
case SCM_TIMESTAMP:
|
|
*controlp = sbcreatecontrol(NULL, sizeof(*tv),
|
|
SCM_TIMESTAMP, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
tv = (struct timeval *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
microtime(tv);
|
|
break;
|
|
|
|
case SCM_BINTIME:
|
|
*controlp = sbcreatecontrol(NULL, sizeof(*bt),
|
|
SCM_BINTIME, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
bt = (struct bintime *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
bintime(bt);
|
|
break;
|
|
|
|
case SCM_REALTIME:
|
|
*controlp = sbcreatecontrol(NULL, sizeof(*ts),
|
|
SCM_REALTIME, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
ts = (struct timespec *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
nanotime(ts);
|
|
break;
|
|
|
|
case SCM_MONOTONIC:
|
|
*controlp = sbcreatecontrol(NULL, sizeof(*ts),
|
|
SCM_MONOTONIC, SOL_SOCKET);
|
|
if (*controlp == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
ts = (struct timespec *)
|
|
CMSG_DATA(mtod(*controlp, struct cmsghdr *));
|
|
nanouptime(ts);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
controlp = &(*controlp)->m_next;
|
|
if (CMSG_SPACE(datalen) < clen) {
|
|
clen -= CMSG_SPACE(datalen);
|
|
cm = (struct cmsghdr *)
|
|
((caddr_t)cm + CMSG_SPACE(datalen));
|
|
} else {
|
|
clen = 0;
|
|
cm = NULL;
|
|
}
|
|
}
|
|
|
|
out:
|
|
m_freem(control);
|
|
return (error);
|
|
}
|
|
|
|
static struct mbuf *
|
|
unp_addsockcred(struct thread *td, struct mbuf *control)
|
|
{
|
|
struct mbuf *m, *n, *n_prev;
|
|
struct sockcred *sc;
|
|
const struct cmsghdr *cm;
|
|
int ngroups;
|
|
int i;
|
|
|
|
ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
|
|
m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
|
|
if (m == NULL)
|
|
return (control);
|
|
|
|
sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
|
|
sc->sc_uid = td->td_ucred->cr_ruid;
|
|
sc->sc_euid = td->td_ucred->cr_uid;
|
|
sc->sc_gid = td->td_ucred->cr_rgid;
|
|
sc->sc_egid = td->td_ucred->cr_gid;
|
|
sc->sc_ngroups = ngroups;
|
|
for (i = 0; i < sc->sc_ngroups; i++)
|
|
sc->sc_groups[i] = td->td_ucred->cr_groups[i];
|
|
|
|
/*
|
|
* Unlink SCM_CREDS control messages (struct cmsgcred), since just
|
|
* created SCM_CREDS control message (struct sockcred) has another
|
|
* format.
|
|
*/
|
|
if (control != NULL)
|
|
for (n = control, n_prev = NULL; n != NULL;) {
|
|
cm = mtod(n, struct cmsghdr *);
|
|
if (cm->cmsg_level == SOL_SOCKET &&
|
|
cm->cmsg_type == SCM_CREDS) {
|
|
if (n_prev == NULL)
|
|
control = n->m_next;
|
|
else
|
|
n_prev->m_next = n->m_next;
|
|
n = m_free(n);
|
|
} else {
|
|
n_prev = n;
|
|
n = n->m_next;
|
|
}
|
|
}
|
|
|
|
/* Prepend it to the head. */
|
|
m->m_next = control;
|
|
return (m);
|
|
}
|
|
|
|
static struct unpcb *
|
|
fptounp(struct file *fp)
|
|
{
|
|
struct socket *so;
|
|
|
|
if (fp->f_type != DTYPE_SOCKET)
|
|
return (NULL);
|
|
if ((so = fp->f_data) == NULL)
|
|
return (NULL);
|
|
if (so->so_proto->pr_domain != &localdomain)
|
|
return (NULL);
|
|
return sotounpcb(so);
|
|
}
|
|
|
|
static void
|
|
unp_discard(struct file *fp)
|
|
{
|
|
struct unp_defer *dr;
|
|
|
|
if (unp_externalize_fp(fp)) {
|
|
dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
|
|
dr->ud_fp = fp;
|
|
UNP_DEFERRED_LOCK();
|
|
SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
|
|
UNP_DEFERRED_UNLOCK();
|
|
atomic_add_int(&unp_defers_count, 1);
|
|
taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
|
|
} else
|
|
(void) closef(fp, (struct thread *)NULL);
|
|
}
|
|
|
|
static void
|
|
unp_process_defers(void *arg __unused, int pending)
|
|
{
|
|
struct unp_defer *dr;
|
|
SLIST_HEAD(, unp_defer) drl;
|
|
int count;
|
|
|
|
SLIST_INIT(&drl);
|
|
for (;;) {
|
|
UNP_DEFERRED_LOCK();
|
|
if (SLIST_FIRST(&unp_defers) == NULL) {
|
|
UNP_DEFERRED_UNLOCK();
|
|
break;
|
|
}
|
|
SLIST_SWAP(&unp_defers, &drl, unp_defer);
|
|
UNP_DEFERRED_UNLOCK();
|
|
count = 0;
|
|
while ((dr = SLIST_FIRST(&drl)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&drl, ud_link);
|
|
closef(dr->ud_fp, NULL);
|
|
free(dr, M_TEMP);
|
|
count++;
|
|
}
|
|
atomic_add_int(&unp_defers_count, -count);
|
|
}
|
|
}
|
|
|
|
static void
|
|
unp_internalize_fp(struct file *fp)
|
|
{
|
|
struct unpcb *unp;
|
|
|
|
UNP_LINK_WLOCK();
|
|
if ((unp = fptounp(fp)) != NULL) {
|
|
unp->unp_file = fp;
|
|
unp->unp_msgcount++;
|
|
}
|
|
fhold(fp);
|
|
unp_rights++;
|
|
UNP_LINK_WUNLOCK();
|
|
}
|
|
|
|
static int
|
|
unp_externalize_fp(struct file *fp)
|
|
{
|
|
struct unpcb *unp;
|
|
int ret;
|
|
|
|
UNP_LINK_WLOCK();
|
|
if ((unp = fptounp(fp)) != NULL) {
|
|
unp->unp_msgcount--;
|
|
ret = 1;
|
|
} else
|
|
ret = 0;
|
|
unp_rights--;
|
|
UNP_LINK_WUNLOCK();
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* unp_defer indicates whether additional work has been defered for a future
|
|
* pass through unp_gc(). It is thread local and does not require explicit
|
|
* synchronization.
|
|
*/
|
|
static int unp_marked;
|
|
static int unp_unreachable;
|
|
|
|
static void
|
|
unp_accessable(struct filedescent **fdep, int fdcount)
|
|
{
|
|
struct unpcb *unp;
|
|
struct file *fp;
|
|
int i;
|
|
|
|
for (i = 0; i < fdcount; i++) {
|
|
fp = fdep[i]->fde_file;
|
|
if ((unp = fptounp(fp)) == NULL)
|
|
continue;
|
|
if (unp->unp_gcflag & UNPGC_REF)
|
|
continue;
|
|
unp->unp_gcflag &= ~UNPGC_DEAD;
|
|
unp->unp_gcflag |= UNPGC_REF;
|
|
unp_marked++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
unp_gc_process(struct unpcb *unp)
|
|
{
|
|
struct socket *so, *soa;
|
|
struct file *fp;
|
|
|
|
/* Already processed. */
|
|
if (unp->unp_gcflag & UNPGC_SCANNED)
|
|
return;
|
|
fp = unp->unp_file;
|
|
|
|
/*
|
|
* Check for a socket potentially in a cycle. It must be in a
|
|
* queue as indicated by msgcount, and this must equal the file
|
|
* reference count. Note that when msgcount is 0 the file is NULL.
|
|
*/
|
|
if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
|
|
unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
|
|
unp->unp_gcflag |= UNPGC_DEAD;
|
|
unp_unreachable++;
|
|
return;
|
|
}
|
|
|
|
so = unp->unp_socket;
|
|
SOCK_LOCK(so);
|
|
if (SOLISTENING(so)) {
|
|
/*
|
|
* Mark all sockets in our accept queue.
|
|
*/
|
|
TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
|
|
if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
|
|
continue;
|
|
SOCKBUF_LOCK(&soa->so_rcv);
|
|
unp_scan(soa->so_rcv.sb_mb, unp_accessable);
|
|
SOCKBUF_UNLOCK(&soa->so_rcv);
|
|
}
|
|
} else {
|
|
/*
|
|
* Mark all sockets we reference with RIGHTS.
|
|
*/
|
|
if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
unp_scan(so->so_rcv.sb_mb, unp_accessable);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
}
|
|
}
|
|
SOCK_UNLOCK(so);
|
|
unp->unp_gcflag |= UNPGC_SCANNED;
|
|
}
|
|
|
|
static int unp_recycled;
|
|
SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
|
|
"Number of unreachable sockets claimed by the garbage collector.");
|
|
|
|
static int unp_taskcount;
|
|
SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
|
|
"Number of times the garbage collector has run.");
|
|
|
|
static void
|
|
unp_gc(__unused void *arg, int pending)
|
|
{
|
|
struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
|
|
NULL };
|
|
struct unp_head **head;
|
|
struct file *f, **unref;
|
|
struct unpcb *unp;
|
|
int i, total;
|
|
|
|
unp_taskcount++;
|
|
UNP_LINK_RLOCK();
|
|
/*
|
|
* First clear all gc flags from previous runs, apart from
|
|
* UNPGC_IGNORE_RIGHTS.
|
|
*/
|
|
for (head = heads; *head != NULL; head++)
|
|
LIST_FOREACH(unp, *head, unp_link)
|
|
unp->unp_gcflag =
|
|
(unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
|
|
|
|
/*
|
|
* Scan marking all reachable sockets with UNPGC_REF. Once a socket
|
|
* is reachable all of the sockets it references are reachable.
|
|
* Stop the scan once we do a complete loop without discovering
|
|
* a new reachable socket.
|
|
*/
|
|
do {
|
|
unp_unreachable = 0;
|
|
unp_marked = 0;
|
|
for (head = heads; *head != NULL; head++)
|
|
LIST_FOREACH(unp, *head, unp_link)
|
|
unp_gc_process(unp);
|
|
} while (unp_marked);
|
|
UNP_LINK_RUNLOCK();
|
|
if (unp_unreachable == 0)
|
|
return;
|
|
|
|
/*
|
|
* Allocate space for a local list of dead unpcbs.
|
|
*/
|
|
unref = malloc(unp_unreachable * sizeof(struct file *),
|
|
M_TEMP, M_WAITOK);
|
|
|
|
/*
|
|
* Iterate looking for sockets which have been specifically marked
|
|
* as as unreachable and store them locally.
|
|
*/
|
|
UNP_LINK_RLOCK();
|
|
for (total = 0, head = heads; *head != NULL; head++)
|
|
LIST_FOREACH(unp, *head, unp_link)
|
|
if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
|
|
f = unp->unp_file;
|
|
if (unp->unp_msgcount == 0 || f == NULL ||
|
|
f->f_count != unp->unp_msgcount)
|
|
continue;
|
|
unref[total++] = f;
|
|
fhold(f);
|
|
KASSERT(total <= unp_unreachable,
|
|
("unp_gc: incorrect unreachable count."));
|
|
}
|
|
UNP_LINK_RUNLOCK();
|
|
|
|
/*
|
|
* Now flush all sockets, free'ing rights. This will free the
|
|
* struct files associated with these sockets but leave each socket
|
|
* with one remaining ref.
|
|
*/
|
|
for (i = 0; i < total; i++) {
|
|
struct socket *so;
|
|
|
|
so = unref[i]->f_data;
|
|
CURVNET_SET(so->so_vnet);
|
|
sorflush(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* And finally release the sockets so they can be reclaimed.
|
|
*/
|
|
for (i = 0; i < total; i++)
|
|
fdrop(unref[i], NULL);
|
|
unp_recycled += total;
|
|
free(unref, M_TEMP);
|
|
}
|
|
|
|
static void
|
|
unp_dispose_mbuf(struct mbuf *m)
|
|
{
|
|
|
|
if (m)
|
|
unp_scan(m, unp_freerights);
|
|
}
|
|
|
|
/*
|
|
* Synchronize against unp_gc, which can trip over data as we are freeing it.
|
|
*/
|
|
static void
|
|
unp_dispose(struct socket *so)
|
|
{
|
|
struct unpcb *unp;
|
|
|
|
unp = sotounpcb(so);
|
|
UNP_LINK_WLOCK();
|
|
unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
|
|
UNP_LINK_WUNLOCK();
|
|
if (!SOLISTENING(so))
|
|
unp_dispose_mbuf(so->so_rcv.sb_mb);
|
|
}
|
|
|
|
static void
|
|
unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
|
|
{
|
|
struct mbuf *m;
|
|
struct cmsghdr *cm;
|
|
void *data;
|
|
socklen_t clen, datalen;
|
|
|
|
while (m0 != NULL) {
|
|
for (m = m0; m; m = m->m_next) {
|
|
if (m->m_type != MT_CONTROL)
|
|
continue;
|
|
|
|
cm = mtod(m, struct cmsghdr *);
|
|
clen = m->m_len;
|
|
|
|
while (cm != NULL) {
|
|
if (sizeof(*cm) > clen || cm->cmsg_len > clen)
|
|
break;
|
|
|
|
data = CMSG_DATA(cm);
|
|
datalen = (caddr_t)cm + cm->cmsg_len
|
|
- (caddr_t)data;
|
|
|
|
if (cm->cmsg_level == SOL_SOCKET &&
|
|
cm->cmsg_type == SCM_RIGHTS) {
|
|
(*op)(data, datalen /
|
|
sizeof(struct filedescent *));
|
|
}
|
|
|
|
if (CMSG_SPACE(datalen) < clen) {
|
|
clen -= CMSG_SPACE(datalen);
|
|
cm = (struct cmsghdr *)
|
|
((caddr_t)cm + CMSG_SPACE(datalen));
|
|
} else {
|
|
clen = 0;
|
|
cm = NULL;
|
|
}
|
|
}
|
|
}
|
|
m0 = m0->m_nextpkt;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A helper function called by VFS before socket-type vnode reclamation.
|
|
* For an active vnode it clears unp_vnode pointer and decrements unp_vnode
|
|
* use count.
|
|
*/
|
|
void
|
|
vfs_unp_reclaim(struct vnode *vp)
|
|
{
|
|
struct unpcb *unp;
|
|
int active;
|
|
struct mtx *vplock;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
|
|
KASSERT(vp->v_type == VSOCK,
|
|
("vfs_unp_reclaim: vp->v_type != VSOCK"));
|
|
|
|
active = 0;
|
|
vplock = mtx_pool_find(mtxpool_sleep, vp);
|
|
mtx_lock(vplock);
|
|
VOP_UNP_CONNECT(vp, &unp);
|
|
if (unp == NULL)
|
|
goto done;
|
|
UNP_PCB_LOCK(unp);
|
|
if (unp->unp_vnode == vp) {
|
|
VOP_UNP_DETACH(vp);
|
|
unp->unp_vnode = NULL;
|
|
active = 1;
|
|
}
|
|
UNP_PCB_UNLOCK(unp);
|
|
done:
|
|
mtx_unlock(vplock);
|
|
if (active)
|
|
vunref(vp);
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_print_indent(int indent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < indent; i++)
|
|
db_printf(" ");
|
|
}
|
|
|
|
static void
|
|
db_print_unpflags(int unp_flags)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (unp_flags & UNP_HAVEPC) {
|
|
db_printf("%sUNP_HAVEPC", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (unp_flags & UNP_WANTCRED) {
|
|
db_printf("%sUNP_WANTCRED", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (unp_flags & UNP_CONNWAIT) {
|
|
db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (unp_flags & UNP_CONNECTING) {
|
|
db_printf("%sUNP_CONNECTING", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (unp_flags & UNP_BINDING) {
|
|
db_printf("%sUNP_BINDING", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
db_print_xucred(int indent, struct xucred *xu)
|
|
{
|
|
int comma, i;
|
|
|
|
db_print_indent(indent);
|
|
db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n",
|
|
xu->cr_version, xu->cr_uid, xu->cr_ngroups);
|
|
db_print_indent(indent);
|
|
db_printf("cr_groups: ");
|
|
comma = 0;
|
|
for (i = 0; i < xu->cr_ngroups; i++) {
|
|
db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
|
|
comma = 1;
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
|
|
static void
|
|
db_print_unprefs(int indent, struct unp_head *uh)
|
|
{
|
|
struct unpcb *unp;
|
|
int counter;
|
|
|
|
counter = 0;
|
|
LIST_FOREACH(unp, uh, unp_reflink) {
|
|
if (counter % 4 == 0)
|
|
db_print_indent(indent);
|
|
db_printf("%p ", unp);
|
|
if (counter % 4 == 3)
|
|
db_printf("\n");
|
|
counter++;
|
|
}
|
|
if (counter != 0 && counter % 4 != 0)
|
|
db_printf("\n");
|
|
}
|
|
|
|
DB_SHOW_COMMAND(unpcb, db_show_unpcb)
|
|
{
|
|
struct unpcb *unp;
|
|
|
|
if (!have_addr) {
|
|
db_printf("usage: show unpcb <addr>\n");
|
|
return;
|
|
}
|
|
unp = (struct unpcb *)addr;
|
|
|
|
db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket,
|
|
unp->unp_vnode);
|
|
|
|
db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino,
|
|
unp->unp_conn);
|
|
|
|
db_printf("unp_refs:\n");
|
|
db_print_unprefs(2, &unp->unp_refs);
|
|
|
|
/* XXXRW: Would be nice to print the full address, if any. */
|
|
db_printf("unp_addr: %p\n", unp->unp_addr);
|
|
|
|
db_printf("unp_gencnt: %llu\n",
|
|
(unsigned long long)unp->unp_gencnt);
|
|
|
|
db_printf("unp_flags: %x (", unp->unp_flags);
|
|
db_print_unpflags(unp->unp_flags);
|
|
db_printf(")\n");
|
|
|
|
db_printf("unp_peercred:\n");
|
|
db_print_xucred(2, &unp->unp_peercred);
|
|
|
|
db_printf("unp_refcount: %u\n", unp->unp_refcount);
|
|
}
|
|
#endif
|