freebsd-skq/sys/netpfil/ipfw/ip_dummynet.c
marius b6c5c1661d In dummynet(4), random chunks of memory are casted to struct dn_*,
potentially leading to fatal unaligned accesses on architectures with
strict alignment requirements. This change fixes dummynet(4) as far
as accesses to 64-bit members of struct dn_* are concerned, tripping
up on sparc64 with accesses to 32-bit members happening to be correctly
aligned there. In other words, this only fixes the tip of the iceberg;
larger parts of dummynet(4) still need to be rewritten in order to
properly work on all of !x86.
In principle, considering the amount of code in dummynet(4) that needs
this erroneous pattern corrected, an acceptable workaround would be to
declare all struct dn_* packed, forcing compilers to do byte-accesses
as a side-effect. However, given that the structs in question aren't
laid out well either, this would break ABI/KBI.
While at it, replace all existing bcopy(9) calls with memcpy(9) for
performance reasons, as there is no need to check for overlap in these
cases.

PR:		189219
MFC after:	5 days
2017-01-09 20:51:51 +00:00

2797 lines
69 KiB
C

/*-
* Codel/FQ_Codel and PIE/FQ-PIE Code:
* Copyright (C) 2016 Centre for Advanced Internet Architectures,
* Swinburne University of Technology, Melbourne, Australia.
* Portions of this code were made possible in part by a gift from
* The Comcast Innovation Fund.
* Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
*
* Copyright (c) 1998-2002,2010 Luigi Rizzo, Universita` di Pisa
* Portions Copyright (c) 2000 Akamba Corp.
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Configuration and internal object management for dummynet.
*/
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/time.h>
#include <sys/taskqueue.h>
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
#include <netinet/in.h>
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netpfil/ipfw/ip_fw_private.h>
#include <netpfil/ipfw/dn_heap.h>
#include <netpfil/ipfw/ip_dn_private.h>
#ifdef NEW_AQM
#include <netpfil/ipfw/dn_aqm.h>
#endif
#include <netpfil/ipfw/dn_sched.h>
/* which objects to copy */
#define DN_C_LINK 0x01
#define DN_C_SCH 0x02
#define DN_C_FLOW 0x04
#define DN_C_FS 0x08
#define DN_C_QUEUE 0x10
/* we use this argument in case of a schk_new */
struct schk_new_arg {
struct dn_alg *fp;
struct dn_sch *sch;
};
/*---- callout hooks. ----*/
static struct callout dn_timeout;
static int dn_gone;
static struct task dn_task;
static struct taskqueue *dn_tq = NULL;
static void
dummynet(void *arg)
{
(void)arg; /* UNUSED */
taskqueue_enqueue(dn_tq, &dn_task);
}
void
dn_reschedule(void)
{
if (dn_gone != 0)
return;
callout_reset_sbt(&dn_timeout, tick_sbt, 0, dummynet, NULL,
C_HARDCLOCK | C_DIRECT_EXEC);
}
/*----- end of callout hooks -----*/
#ifdef NEW_AQM
/* Return AQM descriptor for given type or name. */
static struct dn_aqm *
find_aqm_type(int type, char *name)
{
struct dn_aqm *d;
SLIST_FOREACH(d, &dn_cfg.aqmlist, next) {
if (d->type == type || (name && !strcasecmp(d->name, name)))
return d;
}
return NULL; /* not found */
}
#endif
/* Return a scheduler descriptor given the type or name. */
static struct dn_alg *
find_sched_type(int type, char *name)
{
struct dn_alg *d;
SLIST_FOREACH(d, &dn_cfg.schedlist, next) {
if (d->type == type || (name && !strcasecmp(d->name, name)))
return d;
}
return NULL; /* not found */
}
int
ipdn_bound_var(int *v, int dflt, int lo, int hi, const char *msg)
{
int oldv = *v;
const char *op = NULL;
if (dflt < lo)
dflt = lo;
if (dflt > hi)
dflt = hi;
if (oldv < lo) {
*v = dflt;
op = "Bump";
} else if (oldv > hi) {
*v = hi;
op = "Clamp";
} else
return *v;
if (op && msg)
printf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
return *v;
}
/*---- flow_id mask, hash and compare functions ---*/
/*
* The flow_id includes the 5-tuple, the queue/pipe number
* which we store in the extra area in host order,
* and for ipv6 also the flow_id6.
* XXX see if we want the tos byte (can store in 'flags')
*/
static struct ipfw_flow_id *
flow_id_mask(struct ipfw_flow_id *mask, struct ipfw_flow_id *id)
{
int is_v6 = IS_IP6_FLOW_ID(id);
id->dst_port &= mask->dst_port;
id->src_port &= mask->src_port;
id->proto &= mask->proto;
id->extra &= mask->extra;
if (is_v6) {
APPLY_MASK(&id->dst_ip6, &mask->dst_ip6);
APPLY_MASK(&id->src_ip6, &mask->src_ip6);
id->flow_id6 &= mask->flow_id6;
} else {
id->dst_ip &= mask->dst_ip;
id->src_ip &= mask->src_ip;
}
return id;
}
/* computes an OR of two masks, result in dst and also returned */
static struct ipfw_flow_id *
flow_id_or(struct ipfw_flow_id *src, struct ipfw_flow_id *dst)
{
int is_v6 = IS_IP6_FLOW_ID(dst);
dst->dst_port |= src->dst_port;
dst->src_port |= src->src_port;
dst->proto |= src->proto;
dst->extra |= src->extra;
if (is_v6) {
#define OR_MASK(_d, _s) \
(_d)->__u6_addr.__u6_addr32[0] |= (_s)->__u6_addr.__u6_addr32[0]; \
(_d)->__u6_addr.__u6_addr32[1] |= (_s)->__u6_addr.__u6_addr32[1]; \
(_d)->__u6_addr.__u6_addr32[2] |= (_s)->__u6_addr.__u6_addr32[2]; \
(_d)->__u6_addr.__u6_addr32[3] |= (_s)->__u6_addr.__u6_addr32[3];
OR_MASK(&dst->dst_ip6, &src->dst_ip6);
OR_MASK(&dst->src_ip6, &src->src_ip6);
#undef OR_MASK
dst->flow_id6 |= src->flow_id6;
} else {
dst->dst_ip |= src->dst_ip;
dst->src_ip |= src->src_ip;
}
return dst;
}
static int
nonzero_mask(struct ipfw_flow_id *m)
{
if (m->dst_port || m->src_port || m->proto || m->extra)
return 1;
if (IS_IP6_FLOW_ID(m)) {
return
m->dst_ip6.__u6_addr.__u6_addr32[0] ||
m->dst_ip6.__u6_addr.__u6_addr32[1] ||
m->dst_ip6.__u6_addr.__u6_addr32[2] ||
m->dst_ip6.__u6_addr.__u6_addr32[3] ||
m->src_ip6.__u6_addr.__u6_addr32[0] ||
m->src_ip6.__u6_addr.__u6_addr32[1] ||
m->src_ip6.__u6_addr.__u6_addr32[2] ||
m->src_ip6.__u6_addr.__u6_addr32[3] ||
m->flow_id6;
} else {
return m->dst_ip || m->src_ip;
}
}
/* XXX we may want a better hash function */
static uint32_t
flow_id_hash(struct ipfw_flow_id *id)
{
uint32_t i;
if (IS_IP6_FLOW_ID(id)) {
uint32_t *d = (uint32_t *)&id->dst_ip6;
uint32_t *s = (uint32_t *)&id->src_ip6;
i = (d[0] ) ^ (d[1]) ^
(d[2] ) ^ (d[3]) ^
(d[0] >> 15) ^ (d[1] >> 15) ^
(d[2] >> 15) ^ (d[3] >> 15) ^
(s[0] << 1) ^ (s[1] << 1) ^
(s[2] << 1) ^ (s[3] << 1) ^
(s[0] << 16) ^ (s[1] << 16) ^
(s[2] << 16) ^ (s[3] << 16) ^
(id->dst_port << 1) ^ (id->src_port) ^
(id->extra) ^
(id->proto ) ^ (id->flow_id6);
} else {
i = (id->dst_ip) ^ (id->dst_ip >> 15) ^
(id->src_ip << 1) ^ (id->src_ip >> 16) ^
(id->extra) ^
(id->dst_port << 1) ^ (id->src_port) ^ (id->proto);
}
return i;
}
/* Like bcmp, returns 0 if ids match, 1 otherwise. */
static int
flow_id_cmp(struct ipfw_flow_id *id1, struct ipfw_flow_id *id2)
{
int is_v6 = IS_IP6_FLOW_ID(id1);
if (!is_v6) {
if (IS_IP6_FLOW_ID(id2))
return 1; /* different address families */
return (id1->dst_ip == id2->dst_ip &&
id1->src_ip == id2->src_ip &&
id1->dst_port == id2->dst_port &&
id1->src_port == id2->src_port &&
id1->proto == id2->proto &&
id1->extra == id2->extra) ? 0 : 1;
}
/* the ipv6 case */
return (
!bcmp(&id1->dst_ip6,&id2->dst_ip6, sizeof(id1->dst_ip6)) &&
!bcmp(&id1->src_ip6,&id2->src_ip6, sizeof(id1->src_ip6)) &&
id1->dst_port == id2->dst_port &&
id1->src_port == id2->src_port &&
id1->proto == id2->proto &&
id1->extra == id2->extra &&
id1->flow_id6 == id2->flow_id6) ? 0 : 1;
}
/*--------- end of flow-id mask, hash and compare ---------*/
/*--- support functions for the qht hashtable ----
* Entries are hashed by flow-id
*/
static uint32_t
q_hash(uintptr_t key, int flags, void *arg)
{
/* compute the hash slot from the flow id */
struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_queue *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_hash(id);
}
static int
q_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_queue *o = (struct dn_queue *)obj;
struct ipfw_flow_id *id2;
if (flags & DNHT_KEY_IS_OBJ) {
/* compare pointers */
id2 = &((struct dn_queue *)key)->ni.fid;
} else {
id2 = (struct ipfw_flow_id *)key;
}
return (0 == flow_id_cmp(&o->ni.fid, id2));
}
/*
* create a new queue instance for the given 'key'.
*/
static void *
q_new(uintptr_t key, int flags, void *arg)
{
struct dn_queue *q, *template = arg;
struct dn_fsk *fs = template->fs;
int size = sizeof(*q) + fs->sched->fp->q_datalen;
q = malloc(size, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (q == NULL) {
D("no memory for new queue");
return NULL;
}
set_oid(&q->ni.oid, DN_QUEUE, size);
if (fs->fs.flags & DN_QHT_HASH)
q->ni.fid = *(struct ipfw_flow_id *)key;
q->fs = fs;
q->_si = template->_si;
q->_si->q_count++;
if (fs->sched->fp->new_queue)
fs->sched->fp->new_queue(q);
#ifdef NEW_AQM
/* call AQM init function after creating a queue*/
if (fs->aqmfp && fs->aqmfp->init)
if(fs->aqmfp->init(q))
D("unable to init AQM for fs %d", fs->fs.fs_nr);
#endif
dn_cfg.queue_count++;
return q;
}
/*
* Notify schedulers that a queue is going away.
* If (flags & DN_DESTROY), also free the packets.
* The version for callbacks is called q_delete_cb().
*/
static void
dn_delete_queue(struct dn_queue *q, int flags)
{
struct dn_fsk *fs = q->fs;
#ifdef NEW_AQM
/* clean up AQM status for queue 'q'
* cleanup here is called just with MULTIQUEUE
*/
if (fs && fs->aqmfp && fs->aqmfp->cleanup)
fs->aqmfp->cleanup(q);
#endif
// D("fs %p si %p\n", fs, q->_si);
/* notify the parent scheduler that the queue is going away */
if (fs && fs->sched->fp->free_queue)
fs->sched->fp->free_queue(q);
q->_si->q_count--;
q->_si = NULL;
if (flags & DN_DESTROY) {
if (q->mq.head)
dn_free_pkts(q->mq.head);
bzero(q, sizeof(*q)); // safety
free(q, M_DUMMYNET);
dn_cfg.queue_count--;
}
}
static int
q_delete_cb(void *q, void *arg)
{
int flags = (int)(uintptr_t)arg;
dn_delete_queue(q, flags);
return (flags & DN_DESTROY) ? DNHT_SCAN_DEL : 0;
}
/*
* calls dn_delete_queue/q_delete_cb on all queues,
* which notifies the parent scheduler and possibly drains packets.
* flags & DN_DESTROY: drains queues and destroy qht;
*/
static void
qht_delete(struct dn_fsk *fs, int flags)
{
ND("fs %d start flags %d qht %p",
fs->fs.fs_nr, flags, fs->qht);
if (!fs->qht)
return;
if (fs->fs.flags & DN_QHT_HASH) {
dn_ht_scan(fs->qht, q_delete_cb, (void *)(uintptr_t)flags);
if (flags & DN_DESTROY) {
dn_ht_free(fs->qht, 0);
fs->qht = NULL;
}
} else {
dn_delete_queue((struct dn_queue *)(fs->qht), flags);
if (flags & DN_DESTROY)
fs->qht = NULL;
}
}
/*
* Find and possibly create the queue for a MULTIQUEUE scheduler.
* We never call it for !MULTIQUEUE (the queue is in the sch_inst).
*/
struct dn_queue *
ipdn_q_find(struct dn_fsk *fs, struct dn_sch_inst *si,
struct ipfw_flow_id *id)
{
struct dn_queue template;
template._si = si;
template.fs = fs;
if (fs->fs.flags & DN_QHT_HASH) {
struct ipfw_flow_id masked_id;
if (fs->qht == NULL) {
fs->qht = dn_ht_init(NULL, fs->fs.buckets,
offsetof(struct dn_queue, q_next),
q_hash, q_match, q_new);
if (fs->qht == NULL)
return NULL;
}
masked_id = *id;
flow_id_mask(&fs->fsk_mask, &masked_id);
return dn_ht_find(fs->qht, (uintptr_t)&masked_id,
DNHT_INSERT, &template);
} else {
if (fs->qht == NULL)
fs->qht = q_new(0, 0, &template);
return (struct dn_queue *)fs->qht;
}
}
/*--- end of queue hash table ---*/
/*--- support functions for the sch_inst hashtable ----
*
* These are hashed by flow-id
*/
static uint32_t
si_hash(uintptr_t key, int flags, void *arg)
{
/* compute the hash slot from the flow id */
struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_sch_inst *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_hash(id);
}
static int
si_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_sch_inst *o = obj;
struct ipfw_flow_id *id2;
id2 = (flags & DNHT_KEY_IS_OBJ) ?
&((struct dn_sch_inst *)key)->ni.fid :
(struct ipfw_flow_id *)key;
return flow_id_cmp(&o->ni.fid, id2) == 0;
}
/*
* create a new instance for the given 'key'
* Allocate memory for instance, delay line and scheduler private data.
*/
static void *
si_new(uintptr_t key, int flags, void *arg)
{
struct dn_schk *s = arg;
struct dn_sch_inst *si;
int l = sizeof(*si) + s->fp->si_datalen;
si = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (si == NULL)
goto error;
/* Set length only for the part passed up to userland. */
set_oid(&si->ni.oid, DN_SCH_I, sizeof(struct dn_flow));
set_oid(&(si->dline.oid), DN_DELAY_LINE,
sizeof(struct delay_line));
/* mark si and dline as outside the event queue */
si->ni.oid.id = si->dline.oid.id = -1;
si->sched = s;
si->dline.si = si;
if (s->fp->new_sched && s->fp->new_sched(si)) {
D("new_sched error");
goto error;
}
if (s->sch.flags & DN_HAVE_MASK)
si->ni.fid = *(struct ipfw_flow_id *)key;
#ifdef NEW_AQM
/* init AQM status for !DN_MULTIQUEUE sched*/
if (!(s->fp->flags & DN_MULTIQUEUE))
if (s->fs->aqmfp && s->fs->aqmfp->init)
if(s->fs->aqmfp->init((struct dn_queue *)(si + 1))) {
D("unable to init AQM for fs %d", s->fs->fs.fs_nr);
goto error;
}
#endif
dn_cfg.si_count++;
return si;
error:
if (si) {
bzero(si, sizeof(*si)); // safety
free(si, M_DUMMYNET);
}
return NULL;
}
/*
* Callback from siht to delete all scheduler instances. Remove
* si and delay line from the system heap, destroy all queues.
* We assume that all flowset have been notified and do not
* point to us anymore.
*/
static int
si_destroy(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
struct dn_schk *s = si->sched;
struct delay_line *dl = &si->dline;
if (dl->oid.subtype) /* remove delay line from event heap */
heap_extract(&dn_cfg.evheap, dl);
dn_free_pkts(dl->mq.head); /* drain delay line */
if (si->kflags & DN_ACTIVE) /* remove si from event heap */
heap_extract(&dn_cfg.evheap, si);
#ifdef NEW_AQM
/* clean up AQM status for !DN_MULTIQUEUE sched
* Note that all queues belong to fs were cleaned up in fsk_detach.
* When drain_scheduler is called s->fs and q->fs are pointing
* to a correct fs, so we can use fs in this case.
*/
if (!(s->fp->flags & DN_MULTIQUEUE)) {
struct dn_queue *q = (struct dn_queue *)(si + 1);
if (q->aqm_status && q->fs->aqmfp)
if (q->fs->aqmfp->cleanup)
q->fs->aqmfp->cleanup(q);
}
#endif
if (s->fp->free_sched)
s->fp->free_sched(si);
bzero(si, sizeof(*si)); /* safety */
free(si, M_DUMMYNET);
dn_cfg.si_count--;
return DNHT_SCAN_DEL;
}
/*
* Find the scheduler instance for this packet. If we need to apply
* a mask, do on a local copy of the flow_id to preserve the original.
* Assume siht is always initialized if we have a mask.
*/
struct dn_sch_inst *
ipdn_si_find(struct dn_schk *s, struct ipfw_flow_id *id)
{
if (s->sch.flags & DN_HAVE_MASK) {
struct ipfw_flow_id id_t = *id;
flow_id_mask(&s->sch.sched_mask, &id_t);
return dn_ht_find(s->siht, (uintptr_t)&id_t,
DNHT_INSERT, s);
}
if (!s->siht)
s->siht = si_new(0, 0, s);
return (struct dn_sch_inst *)s->siht;
}
/* callback to flush credit for the scheduler instance */
static int
si_reset_credit(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
struct dn_link *p = &si->sched->link;
si->credit = p->burst + (dn_cfg.io_fast ? p->bandwidth : 0);
return 0;
}
static void
schk_reset_credit(struct dn_schk *s)
{
if (s->sch.flags & DN_HAVE_MASK)
dn_ht_scan(s->siht, si_reset_credit, NULL);
else if (s->siht)
si_reset_credit(s->siht, NULL);
}
/*---- end of sch_inst hashtable ---------------------*/
/*-------------------------------------------------------
* flowset hash (fshash) support. Entries are hashed by fs_nr.
* New allocations are put in the fsunlinked list, from which
* they are removed when they point to a specific scheduler.
*/
static uint32_t
fsk_hash(uintptr_t key, int flags, void *arg)
{
uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_fsk *)key)->fs.fs_nr;
return ( (i>>8)^(i>>4)^i );
}
static int
fsk_match(void *obj, uintptr_t key, int flags, void *arg)
{
struct dn_fsk *fs = obj;
int i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_fsk *)key)->fs.fs_nr;
return (fs->fs.fs_nr == i);
}
static void *
fsk_new(uintptr_t key, int flags, void *arg)
{
struct dn_fsk *fs;
fs = malloc(sizeof(*fs), M_DUMMYNET, M_NOWAIT | M_ZERO);
if (fs) {
set_oid(&fs->fs.oid, DN_FS, sizeof(fs->fs));
dn_cfg.fsk_count++;
fs->drain_bucket = 0;
SLIST_INSERT_HEAD(&dn_cfg.fsu, fs, sch_chain);
}
return fs;
}
#ifdef NEW_AQM
/* callback function for cleaning up AQM queue status belongs to a flowset
* connected to scheduler instance '_si' (for !DN_MULTIQUEUE only).
*/
static int
si_cleanup_q(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
if (!(si->sched->fp->flags & DN_MULTIQUEUE)) {
if (si->sched->fs->aqmfp && si->sched->fs->aqmfp->cleanup)
si->sched->fs->aqmfp->cleanup((struct dn_queue *) (si+1));
}
return 0;
}
/* callback to clean up queue AQM status.*/
static int
q_cleanup_q(void *_q, void *arg)
{
struct dn_queue *q = _q;
q->fs->aqmfp->cleanup(q);
return 0;
}
/* Clean up all AQM queues status belongs to flowset 'fs' and then
* deconfig AQM for flowset 'fs'
*/
static void
aqm_cleanup_deconfig_fs(struct dn_fsk *fs)
{
struct dn_sch_inst *si;
/* clean up AQM status for all queues for !DN_MULTIQUEUE sched*/
if (fs->fs.fs_nr > DN_MAX_ID) {
if (fs->sched && !(fs->sched->fp->flags & DN_MULTIQUEUE)) {
if (fs->sched->sch.flags & DN_HAVE_MASK)
dn_ht_scan(fs->sched->siht, si_cleanup_q, NULL);
else {
/* single si i.e. no sched mask */
si = (struct dn_sch_inst *) fs->sched->siht;
if (si && fs->aqmfp && fs->aqmfp->cleanup)
fs->aqmfp->cleanup((struct dn_queue *) (si+1));
}
}
}
/* clean up AQM status for all queues for DN_MULTIQUEUE sched*/
if (fs->sched && fs->sched->fp->flags & DN_MULTIQUEUE && fs->qht) {
if (fs->fs.flags & DN_QHT_HASH)
dn_ht_scan(fs->qht, q_cleanup_q, NULL);
else
fs->aqmfp->cleanup((struct dn_queue *)(fs->qht));
}
/* deconfig AQM */
if(fs->aqmcfg && fs->aqmfp && fs->aqmfp->deconfig)
fs->aqmfp->deconfig(fs);
}
#endif
/*
* detach flowset from its current scheduler. Flags as follows:
* DN_DETACH removes from the fsk_list
* DN_DESTROY deletes individual queues
* DN_DELETE_FS destroys the flowset (otherwise goes in unlinked).
*/
static void
fsk_detach(struct dn_fsk *fs, int flags)
{
if (flags & DN_DELETE_FS)
flags |= DN_DESTROY;
ND("fs %d from sched %d flags %s %s %s",
fs->fs.fs_nr, fs->fs.sched_nr,
(flags & DN_DELETE_FS) ? "DEL_FS":"",
(flags & DN_DESTROY) ? "DEL":"",
(flags & DN_DETACH) ? "DET":"");
if (flags & DN_DETACH) { /* detach from the list */
struct dn_fsk_head *h;
h = fs->sched ? &fs->sched->fsk_list : &dn_cfg.fsu;
SLIST_REMOVE(h, fs, dn_fsk, sch_chain);
}
/* Free the RED parameters, they will be recomputed on
* subsequent attach if needed.
*/
if (fs->w_q_lookup)
free(fs->w_q_lookup, M_DUMMYNET);
fs->w_q_lookup = NULL;
qht_delete(fs, flags);
#ifdef NEW_AQM
aqm_cleanup_deconfig_fs(fs);
#endif
if (fs->sched && fs->sched->fp->free_fsk)
fs->sched->fp->free_fsk(fs);
fs->sched = NULL;
if (flags & DN_DELETE_FS) {
bzero(fs, sizeof(*fs)); /* safety */
free(fs, M_DUMMYNET);
dn_cfg.fsk_count--;
} else {
SLIST_INSERT_HEAD(&dn_cfg.fsu, fs, sch_chain);
}
}
/*
* Detach or destroy all flowsets in a list.
* flags specifies what to do:
* DN_DESTROY: flush all queues
* DN_DELETE_FS: DN_DESTROY + destroy flowset
* DN_DELETE_FS implies DN_DESTROY
*/
static void
fsk_detach_list(struct dn_fsk_head *h, int flags)
{
struct dn_fsk *fs;
int n = 0; /* only for stats */
ND("head %p flags %x", h, flags);
while ((fs = SLIST_FIRST(h))) {
SLIST_REMOVE_HEAD(h, sch_chain);
n++;
fsk_detach(fs, flags);
}
ND("done %d flowsets", n);
}
/*
* called on 'queue X delete' -- removes the flowset from fshash,
* deletes all queues for the flowset, and removes the flowset.
*/
static int
delete_fs(int i, int locked)
{
struct dn_fsk *fs;
int err = 0;
if (!locked)
DN_BH_WLOCK();
fs = dn_ht_find(dn_cfg.fshash, i, DNHT_REMOVE, NULL);
ND("fs %d found %p", i, fs);
if (fs) {
fsk_detach(fs, DN_DETACH | DN_DELETE_FS);
err = 0;
} else
err = EINVAL;
if (!locked)
DN_BH_WUNLOCK();
return err;
}
/*----- end of flowset hashtable support -------------*/
/*------------------------------------------------------------
* Scheduler hash. When searching by index we pass sched_nr,
* otherwise we pass struct dn_sch * which is the first field in
* struct dn_schk so we can cast between the two. We use this trick
* because in the create phase (but it should be fixed).
*/
static uint32_t
schk_hash(uintptr_t key, int flags, void *_arg)
{
uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_schk *)key)->sch.sched_nr;
return ( (i>>8)^(i>>4)^i );
}
static int
schk_match(void *obj, uintptr_t key, int flags, void *_arg)
{
struct dn_schk *s = (struct dn_schk *)obj;
int i = !(flags & DNHT_KEY_IS_OBJ) ? key :
((struct dn_schk *)key)->sch.sched_nr;
return (s->sch.sched_nr == i);
}
/*
* Create the entry and intialize with the sched hash if needed.
* Leave s->fp unset so we can tell whether a dn_ht_find() returns
* a new object or a previously existing one.
*/
static void *
schk_new(uintptr_t key, int flags, void *arg)
{
struct schk_new_arg *a = arg;
struct dn_schk *s;
int l = sizeof(*s) +a->fp->schk_datalen;
s = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s == NULL)
return NULL;
set_oid(&s->link.oid, DN_LINK, sizeof(s->link));
s->sch = *a->sch; // copy initial values
s->link.link_nr = s->sch.sched_nr;
SLIST_INIT(&s->fsk_list);
/* initialize the hash table or create the single instance */
s->fp = a->fp; /* si_new needs this */
s->drain_bucket = 0;
if (s->sch.flags & DN_HAVE_MASK) {
s->siht = dn_ht_init(NULL, s->sch.buckets,
offsetof(struct dn_sch_inst, si_next),
si_hash, si_match, si_new);
if (s->siht == NULL) {
free(s, M_DUMMYNET);
return NULL;
}
}
s->fp = NULL; /* mark as a new scheduler */
dn_cfg.schk_count++;
return s;
}
/*
* Callback for sched delete. Notify all attached flowsets to
* detach from the scheduler, destroy the internal flowset, and
* all instances. The scheduler goes away too.
* arg is 0 (only detach flowsets and destroy instances)
* DN_DESTROY (detach & delete queues, delete schk)
* or DN_DELETE_FS (delete queues and flowsets, delete schk)
*/
static int
schk_delete_cb(void *obj, void *arg)
{
struct dn_schk *s = obj;
#if 0
int a = (int)arg;
ND("sched %d arg %s%s",
s->sch.sched_nr,
a&DN_DESTROY ? "DEL ":"",
a&DN_DELETE_FS ? "DEL_FS":"");
#endif
fsk_detach_list(&s->fsk_list, arg ? DN_DESTROY : 0);
/* no more flowset pointing to us now */
if (s->sch.flags & DN_HAVE_MASK) {
dn_ht_scan(s->siht, si_destroy, NULL);
dn_ht_free(s->siht, 0);
} else if (s->siht)
si_destroy(s->siht, NULL);
if (s->profile) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
s->siht = NULL;
if (s->fp->destroy)
s->fp->destroy(s);
bzero(s, sizeof(*s)); // safety
free(obj, M_DUMMYNET);
dn_cfg.schk_count--;
return DNHT_SCAN_DEL;
}
/*
* called on a 'sched X delete' command. Deletes a single scheduler.
* This is done by removing from the schedhash, unlinking all
* flowsets and deleting their traffic.
*/
static int
delete_schk(int i)
{
struct dn_schk *s;
s = dn_ht_find(dn_cfg.schedhash, i, DNHT_REMOVE, NULL);
ND("%d %p", i, s);
if (!s)
return EINVAL;
delete_fs(i + DN_MAX_ID, 1); /* first delete internal fs */
/* then detach flowsets, delete traffic */
schk_delete_cb(s, (void*)(uintptr_t)DN_DESTROY);
return 0;
}
/*--- end of schk hashtable support ---*/
static int
copy_obj(char **start, char *end, void *_o, const char *msg, int i)
{
struct dn_id o;
union {
struct dn_link l;
struct dn_schk s;
} dn;
int have = end - *start;
memcpy(&o, _o, sizeof(o));
if (have < o.len || o.len == 0 || o.type == 0) {
D("(WARN) type %d %s %d have %d need %d",
o.type, msg, i, have, o.len);
return 1;
}
ND("type %d %s %d len %d", o.type, msg, i, o.len);
if (o.type == DN_LINK) {
memcpy(&dn.l, _o, sizeof(dn.l));
/* Adjust burst parameter for link */
dn.l.burst = div64(dn.l.burst, 8 * hz);
dn.l.delay = dn.l.delay * 1000 / hz;
memcpy(*start, &dn.l, sizeof(dn.l));
} else if (o.type == DN_SCH) {
/* Set dn.s.sch.oid.id to the number of instances */
memcpy(&dn.s, _o, sizeof(dn.s));
dn.s.sch.oid.id = (dn.s.sch.flags & DN_HAVE_MASK) ?
dn_ht_entries(dn.s.siht) : (dn.s.siht ? 1 : 0);
memcpy(*start, &dn.s, sizeof(dn.s));
} else
memcpy(*start, _o, o.len);
*start += o.len;
return 0;
}
/* Specific function to copy a queue.
* Copies only the user-visible part of a queue (which is in
* a struct dn_flow), and sets len accordingly.
*/
static int
copy_obj_q(char **start, char *end, void *_o, const char *msg, int i)
{
struct dn_id *o = _o;
int have = end - *start;
int len = sizeof(struct dn_flow); /* see above comment */
if (have < len || o->len == 0 || o->type != DN_QUEUE) {
D("ERROR type %d %s %d have %d need %d",
o->type, msg, i, have, len);
return 1;
}
ND("type %d %s %d len %d", o->type, msg, i, len);
memcpy(*start, _o, len);
((struct dn_id*)(*start))->len = len;
*start += len;
return 0;
}
static int
copy_q_cb(void *obj, void *arg)
{
struct dn_queue *q = obj;
struct copy_args *a = arg;
struct dn_flow *ni = (struct dn_flow *)(*a->start);
if (copy_obj_q(a->start, a->end, &q->ni, "queue", -1))
return DNHT_SCAN_END;
ni->oid.type = DN_FLOW; /* override the DN_QUEUE */
ni->oid.id = si_hash((uintptr_t)&ni->fid, 0, NULL);
return 0;
}
static int
copy_q(struct copy_args *a, struct dn_fsk *fs, int flags)
{
if (!fs->qht)
return 0;
if (fs->fs.flags & DN_QHT_HASH)
dn_ht_scan(fs->qht, copy_q_cb, a);
else
copy_q_cb(fs->qht, a);
return 0;
}
/*
* This routine only copies the initial part of a profile ? XXX
*/
static int
copy_profile(struct copy_args *a, struct dn_profile *p)
{
int have = a->end - *a->start;
/* XXX here we check for max length */
int profile_len = sizeof(struct dn_profile) -
ED_MAX_SAMPLES_NO*sizeof(int);
if (p == NULL)
return 0;
if (have < profile_len) {
D("error have %d need %d", have, profile_len);
return 1;
}
memcpy(*a->start, p, profile_len);
((struct dn_id *)(*a->start))->len = profile_len;
*a->start += profile_len;
return 0;
}
static int
copy_flowset(struct copy_args *a, struct dn_fsk *fs, int flags)
{
struct dn_fs *ufs = (struct dn_fs *)(*a->start);
if (!fs)
return 0;
ND("flowset %d", fs->fs.fs_nr);
if (copy_obj(a->start, a->end, &fs->fs, "flowset", fs->fs.fs_nr))
return DNHT_SCAN_END;
ufs->oid.id = (fs->fs.flags & DN_QHT_HASH) ?
dn_ht_entries(fs->qht) : (fs->qht ? 1 : 0);
if (flags) { /* copy queues */
copy_q(a, fs, 0);
}
return 0;
}
static int
copy_si_cb(void *obj, void *arg)
{
struct dn_sch_inst *si = obj;
struct copy_args *a = arg;
struct dn_flow *ni = (struct dn_flow *)(*a->start);
if (copy_obj(a->start, a->end, &si->ni, "inst",
si->sched->sch.sched_nr))
return DNHT_SCAN_END;
ni->oid.type = DN_FLOW; /* override the DN_SCH_I */
ni->oid.id = si_hash((uintptr_t)si, DNHT_KEY_IS_OBJ, NULL);
return 0;
}
static int
copy_si(struct copy_args *a, struct dn_schk *s, int flags)
{
if (s->sch.flags & DN_HAVE_MASK)
dn_ht_scan(s->siht, copy_si_cb, a);
else if (s->siht)
copy_si_cb(s->siht, a);
return 0;
}
/*
* compute a list of children of a scheduler and copy up
*/
static int
copy_fsk_list(struct copy_args *a, struct dn_schk *s, int flags)
{
struct dn_fsk *fs;
struct dn_id *o;
uint32_t *p;
int n = 0, space = sizeof(*o);
SLIST_FOREACH(fs, &s->fsk_list, sch_chain) {
if (fs->fs.fs_nr < DN_MAX_ID)
n++;
}
space += n * sizeof(uint32_t);
DX(3, "sched %d has %d flowsets", s->sch.sched_nr, n);
if (a->end - *(a->start) < space)
return DNHT_SCAN_END;
o = (struct dn_id *)(*(a->start));
o->len = space;
*a->start += o->len;
o->type = DN_TEXT;
p = (uint32_t *)(o+1);
SLIST_FOREACH(fs, &s->fsk_list, sch_chain)
if (fs->fs.fs_nr < DN_MAX_ID)
*p++ = fs->fs.fs_nr;
return 0;
}
static int
copy_data_helper(void *_o, void *_arg)
{
struct copy_args *a = _arg;
uint32_t *r = a->extra->r; /* start of first range */
uint32_t *lim; /* first invalid pointer */
int n;
lim = (uint32_t *)((char *)(a->extra) + a->extra->o.len);
if (a->type == DN_LINK || a->type == DN_SCH) {
/* pipe|sched show, we receive a dn_schk */
struct dn_schk *s = _o;
n = s->sch.sched_nr;
if (a->type == DN_SCH && n >= DN_MAX_ID)
return 0; /* not a scheduler */
if (a->type == DN_LINK && n <= DN_MAX_ID)
return 0; /* not a pipe */
/* see if the object is within one of our ranges */
for (;r < lim; r += 2) {
if (n < r[0] || n > r[1])
continue;
/* Found a valid entry, copy and we are done */
if (a->flags & DN_C_LINK) {
if (copy_obj(a->start, a->end,
&s->link, "link", n))
return DNHT_SCAN_END;
if (copy_profile(a, s->profile))
return DNHT_SCAN_END;
if (copy_flowset(a, s->fs, 0))
return DNHT_SCAN_END;
}
if (a->flags & DN_C_SCH) {
if (copy_obj(a->start, a->end,
&s->sch, "sched", n))
return DNHT_SCAN_END;
/* list all attached flowsets */
if (copy_fsk_list(a, s, 0))
return DNHT_SCAN_END;
}
if (a->flags & DN_C_FLOW)
copy_si(a, s, 0);
break;
}
} else if (a->type == DN_FS) {
/* queue show, skip internal flowsets */
struct dn_fsk *fs = _o;
n = fs->fs.fs_nr;
if (n >= DN_MAX_ID)
return 0;
/* see if the object is within one of our ranges */
for (;r < lim; r += 2) {
if (n < r[0] || n > r[1])
continue;
if (copy_flowset(a, fs, 0))
return DNHT_SCAN_END;
copy_q(a, fs, 0);
break; /* we are done */
}
}
return 0;
}
static inline struct dn_schk *
locate_scheduler(int i)
{
return dn_ht_find(dn_cfg.schedhash, i, 0, NULL);
}
/*
* red parameters are in fixed point arithmetic.
*/
static int
config_red(struct dn_fsk *fs)
{
int64_t s, idle, weight, w0;
int t, i;
fs->w_q = fs->fs.w_q;
fs->max_p = fs->fs.max_p;
ND("called");
/* Doing stuff that was in userland */
i = fs->sched->link.bandwidth;
s = (i <= 0) ? 0 :
hz * dn_cfg.red_avg_pkt_size * 8 * SCALE(1) / i;
idle = div64((s * 3) , fs->w_q); /* s, fs->w_q scaled; idle not scaled */
fs->lookup_step = div64(idle , dn_cfg.red_lookup_depth);
/* fs->lookup_step not scaled, */
if (!fs->lookup_step)
fs->lookup_step = 1;
w0 = weight = SCALE(1) - fs->w_q; //fs->w_q scaled
for (t = fs->lookup_step; t > 1; --t)
weight = SCALE_MUL(weight, w0);
fs->lookup_weight = (int)(weight); // scaled
/* Now doing stuff that was in kerneland */
fs->min_th = SCALE(fs->fs.min_th);
fs->max_th = SCALE(fs->fs.max_th);
if (fs->fs.max_th == fs->fs.min_th)
fs->c_1 = fs->max_p;
else
fs->c_1 = SCALE((int64_t)(fs->max_p)) / (fs->fs.max_th - fs->fs.min_th);
fs->c_2 = SCALE_MUL(fs->c_1, SCALE(fs->fs.min_th));
if (fs->fs.flags & DN_IS_GENTLE_RED) {
fs->c_3 = (SCALE(1) - fs->max_p) / fs->fs.max_th;
fs->c_4 = SCALE(1) - 2 * fs->max_p;
}
/* If the lookup table already exist, free and create it again. */
if (fs->w_q_lookup) {
free(fs->w_q_lookup, M_DUMMYNET);
fs->w_q_lookup = NULL;
}
if (dn_cfg.red_lookup_depth == 0) {
printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth"
"must be > 0\n");
fs->fs.flags &= ~DN_IS_RED;
fs->fs.flags &= ~DN_IS_GENTLE_RED;
return (EINVAL);
}
fs->lookup_depth = dn_cfg.red_lookup_depth;
fs->w_q_lookup = (u_int *)malloc(fs->lookup_depth * sizeof(int),
M_DUMMYNET, M_NOWAIT);
if (fs->w_q_lookup == NULL) {
printf("dummynet: sorry, cannot allocate red lookup table\n");
fs->fs.flags &= ~DN_IS_RED;
fs->fs.flags &= ~DN_IS_GENTLE_RED;
return(ENOSPC);
}
/* Fill the lookup table with (1 - w_q)^x */
fs->w_q_lookup[0] = SCALE(1) - fs->w_q;
for (i = 1; i < fs->lookup_depth; i++)
fs->w_q_lookup[i] =
SCALE_MUL(fs->w_q_lookup[i - 1], fs->lookup_weight);
if (dn_cfg.red_avg_pkt_size < 1)
dn_cfg.red_avg_pkt_size = 512;
fs->avg_pkt_size = dn_cfg.red_avg_pkt_size;
if (dn_cfg.red_max_pkt_size < 1)
dn_cfg.red_max_pkt_size = 1500;
fs->max_pkt_size = dn_cfg.red_max_pkt_size;
ND("exit");
return 0;
}
/* Scan all flowset attached to this scheduler and update red */
static void
update_red(struct dn_schk *s)
{
struct dn_fsk *fs;
SLIST_FOREACH(fs, &s->fsk_list, sch_chain) {
if (fs && (fs->fs.flags & DN_IS_RED))
config_red(fs);
}
}
/* attach flowset to scheduler s, possibly requeue */
static void
fsk_attach(struct dn_fsk *fs, struct dn_schk *s)
{
ND("remove fs %d from fsunlinked, link to sched %d",
fs->fs.fs_nr, s->sch.sched_nr);
SLIST_REMOVE(&dn_cfg.fsu, fs, dn_fsk, sch_chain);
fs->sched = s;
SLIST_INSERT_HEAD(&s->fsk_list, fs, sch_chain);
if (s->fp->new_fsk)
s->fp->new_fsk(fs);
/* XXX compute fsk_mask */
fs->fsk_mask = fs->fs.flow_mask;
if (fs->sched->sch.flags & DN_HAVE_MASK)
flow_id_or(&fs->sched->sch.sched_mask, &fs->fsk_mask);
if (fs->qht) {
/*
* we must drain qht according to the old
* type, and reinsert according to the new one.
* The requeue is complex -- in general we need to
* reclassify every single packet.
* For the time being, let's hope qht is never set
* when we reach this point.
*/
D("XXX TODO requeue from fs %d to sch %d",
fs->fs.fs_nr, s->sch.sched_nr);
fs->qht = NULL;
}
/* set the new type for qht */
if (nonzero_mask(&fs->fsk_mask))
fs->fs.flags |= DN_QHT_HASH;
else
fs->fs.flags &= ~DN_QHT_HASH;
/* XXX config_red() can fail... */
if (fs->fs.flags & DN_IS_RED)
config_red(fs);
}
/* update all flowsets which may refer to this scheduler */
static void
update_fs(struct dn_schk *s)
{
struct dn_fsk *fs, *tmp;
SLIST_FOREACH_SAFE(fs, &dn_cfg.fsu, sch_chain, tmp) {
if (s->sch.sched_nr != fs->fs.sched_nr) {
D("fs %d for sch %d not %d still unlinked",
fs->fs.fs_nr, fs->fs.sched_nr,
s->sch.sched_nr);
continue;
}
fsk_attach(fs, s);
}
}
#ifdef NEW_AQM
/* Retrieve AQM configurations to ipfw userland
*/
static int
get_aqm_parms(struct sockopt *sopt)
{
struct dn_extra_parms *ep;
struct dn_fsk *fs;
size_t sopt_valsize;
int l, err = 0;
sopt_valsize = sopt->sopt_valsize;
l = sizeof(*ep);
if (sopt->sopt_valsize < l) {
D("bad len sopt->sopt_valsize %d len %d",
(int) sopt->sopt_valsize , l);
err = EINVAL;
return err;
}
ep = malloc(l, M_DUMMYNET, M_WAITOK);
if(!ep) {
err = ENOMEM ;
return err;
}
do {
err = sooptcopyin(sopt, ep, l, l);
if(err)
break;
sopt->sopt_valsize = sopt_valsize;
if (ep->oid.len < l) {
err = EINVAL;
break;
}
fs = dn_ht_find(dn_cfg.fshash, ep->nr, 0, NULL);
if (!fs) {
D("fs %d not found", ep->nr);
err = EINVAL;
break;
}
if (fs->aqmfp && fs->aqmfp->getconfig) {
if(fs->aqmfp->getconfig(fs, ep)) {
D("Error while trying to get AQM params");
err = EINVAL;
break;
}
ep->oid.len = l;
err = sooptcopyout(sopt, ep, l);
}
}while(0);
free(ep, M_DUMMYNET);
return err;
}
/* Retrieve AQM configurations to ipfw userland
*/
static int
get_sched_parms(struct sockopt *sopt)
{
struct dn_extra_parms *ep;
struct dn_schk *schk;
size_t sopt_valsize;
int l, err = 0;
sopt_valsize = sopt->sopt_valsize;
l = sizeof(*ep);
if (sopt->sopt_valsize < l) {
D("bad len sopt->sopt_valsize %d len %d",
(int) sopt->sopt_valsize , l);
err = EINVAL;
return err;
}
ep = malloc(l, M_DUMMYNET, M_WAITOK);
if(!ep) {
err = ENOMEM ;
return err;
}
do {
err = sooptcopyin(sopt, ep, l, l);
if(err)
break;
sopt->sopt_valsize = sopt_valsize;
if (ep->oid.len < l) {
err = EINVAL;
break;
}
schk = locate_scheduler(ep->nr);
if (!schk) {
D("sched %d not found", ep->nr);
err = EINVAL;
break;
}
if (schk->fp && schk->fp->getconfig) {
if(schk->fp->getconfig(schk, ep)) {
D("Error while trying to get sched params");
err = EINVAL;
break;
}
ep->oid.len = l;
err = sooptcopyout(sopt, ep, l);
}
}while(0);
free(ep, M_DUMMYNET);
return err;
}
/* Configure AQM for flowset 'fs'.
* extra parameters are passed from userland.
*/
static int
config_aqm(struct dn_fsk *fs, struct dn_extra_parms *ep, int busy)
{
int err = 0;
do {
/* no configurations */
if (!ep) {
err = 0;
break;
}
/* no AQM for this flowset*/
if (!strcmp(ep->name,"")) {
err = 0;
break;
}
if (ep->oid.len < sizeof(*ep)) {
D("short aqm len %d", ep->oid.len);
err = EINVAL;
break;
}
if (busy) {
D("Unable to configure flowset, flowset busy!");
err = EINVAL;
break;
}
/* deconfigure old aqm if exist */
if (fs->aqmcfg && fs->aqmfp && fs->aqmfp->deconfig) {
aqm_cleanup_deconfig_fs(fs);
}
if (!(fs->aqmfp = find_aqm_type(0, ep->name))) {
D("AQM functions not found for type %s!", ep->name);
fs->fs.flags &= ~DN_IS_AQM;
err = EINVAL;
break;
} else
fs->fs.flags |= DN_IS_AQM;
if (ep->oid.subtype != DN_AQM_PARAMS) {
D("Wrong subtype");
err = EINVAL;
break;
}
if (fs->aqmfp->config) {
err = fs->aqmfp->config(fs, ep, ep->oid.len);
if (err) {
D("Unable to configure AQM for FS %d", fs->fs.fs_nr );
fs->fs.flags &= ~DN_IS_AQM;
fs->aqmfp = NULL;
break;
}
}
} while(0);
return err;
}
#endif
/*
* Configuration -- to preserve backward compatibility we use
* the following scheme (N is 65536)
* NUMBER SCHED LINK FLOWSET
* 1 .. N-1 (1)WFQ (2)WFQ (3)queue
* N+1 .. 2N-1 (4)FIFO (5)FIFO (6)FIFO for sched 1..N-1
* 2N+1 .. 3N-1 -- -- (7)FIFO for sched N+1..2N-1
*
* "pipe i config" configures #1, #2 and #3
* "sched i config" configures #1 and possibly #6
* "queue i config" configures #3
* #1 is configured with 'pipe i config' or 'sched i config'
* #2 is configured with 'pipe i config', and created if not
* existing with 'sched i config'
* #3 is configured with 'queue i config'
* #4 is automatically configured after #1, can only be FIFO
* #5 is automatically configured after #2
* #6 is automatically created when #1 is !MULTIQUEUE,
* and can be updated.
* #7 is automatically configured after #2
*/
/*
* configure a link (and its FIFO instance)
*/
static int
config_link(struct dn_link *p, struct dn_id *arg)
{
int i;
if (p->oid.len != sizeof(*p)) {
D("invalid pipe len %d", p->oid.len);
return EINVAL;
}
i = p->link_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/*
* The config program passes parameters as follows:
* bw = bits/second (0 means no limits),
* delay = ms, must be translated into ticks.
* qsize = slots/bytes
* burst ???
*/
p->delay = (p->delay * hz) / 1000;
/* Scale burst size: bytes -> bits * hz */
p->burst *= 8 * hz;
DN_BH_WLOCK();
/* do it twice, base link and FIFO link */
for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) {
struct dn_schk *s = locate_scheduler(i);
if (s == NULL) {
DN_BH_WUNLOCK();
D("sched %d not found", i);
return EINVAL;
}
/* remove profile if exists */
if (s->profile) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
/* copy all parameters */
s->link.oid = p->oid;
s->link.link_nr = i;
s->link.delay = p->delay;
if (s->link.bandwidth != p->bandwidth) {
/* XXX bandwidth changes, need to update red params */
s->link.bandwidth = p->bandwidth;
update_red(s);
}
s->link.burst = p->burst;
schk_reset_credit(s);
}
dn_cfg.id++;
DN_BH_WUNLOCK();
return 0;
}
/*
* configure a flowset. Can be called from inside with locked=1,
*/
static struct dn_fsk *
config_fs(struct dn_fs *nfs, struct dn_id *arg, int locked)
{
int i;
struct dn_fsk *fs;
#ifdef NEW_AQM
struct dn_extra_parms *ep;
#endif
if (nfs->oid.len != sizeof(*nfs)) {
D("invalid flowset len %d", nfs->oid.len);
return NULL;
}
i = nfs->fs_nr;
if (i <= 0 || i >= 3*DN_MAX_ID)
return NULL;
#ifdef NEW_AQM
ep = NULL;
if (arg != NULL) {
ep = malloc(sizeof(*ep), M_TEMP, locked ? M_NOWAIT : M_WAITOK);
if (ep == NULL)
return (NULL);
memcpy(ep, arg, sizeof(*ep));
}
#endif
ND("flowset %d", i);
/* XXX other sanity checks */
if (nfs->flags & DN_QSIZE_BYTES) {
ipdn_bound_var(&nfs->qsize, 16384,
1500, dn_cfg.byte_limit, NULL); // "queue byte size");
} else {
ipdn_bound_var(&nfs->qsize, 50,
1, dn_cfg.slot_limit, NULL); // "queue slot size");
}
if (nfs->flags & DN_HAVE_MASK) {
/* make sure we have some buckets */
ipdn_bound_var((int *)&nfs->buckets, dn_cfg.hash_size,
1, dn_cfg.max_hash_size, "flowset buckets");
} else {
nfs->buckets = 1; /* we only need 1 */
}
if (!locked)
DN_BH_WLOCK();
do { /* exit with break when done */
struct dn_schk *s;
int flags = nfs->sched_nr ? DNHT_INSERT : 0;
int j;
int oldc = dn_cfg.fsk_count;
fs = dn_ht_find(dn_cfg.fshash, i, flags, NULL);
if (fs == NULL) {
D("missing sched for flowset %d", i);
break;
}
/* grab some defaults from the existing one */
if (nfs->sched_nr == 0) /* reuse */
nfs->sched_nr = fs->fs.sched_nr;
for (j = 0; j < sizeof(nfs->par)/sizeof(nfs->par[0]); j++) {
if (nfs->par[j] == -1) /* reuse */
nfs->par[j] = fs->fs.par[j];
}
if (bcmp(&fs->fs, nfs, sizeof(*nfs)) == 0) {
ND("flowset %d unchanged", i);
#ifdef NEW_AQM
if (ep != NULL) {
/*
* Reconfigure AQM as the parameters can be changed.
* We consider the flowset as busy if it has scheduler
* instance(s).
*/
s = locate_scheduler(nfs->sched_nr);
config_aqm(fs, ep, s != NULL && s->siht != NULL);
}
#endif
break; /* no change, nothing to do */
}
if (oldc != dn_cfg.fsk_count) /* new item */
dn_cfg.id++;
s = locate_scheduler(nfs->sched_nr);
/* detach from old scheduler if needed, preserving
* queues if we need to reattach. Then update the
* configuration, and possibly attach to the new sched.
*/
DX(2, "fs %d changed sched %d@%p to %d@%p",
fs->fs.fs_nr,
fs->fs.sched_nr, fs->sched, nfs->sched_nr, s);
if (fs->sched) {
int flags = s ? DN_DETACH : (DN_DETACH | DN_DESTROY);
flags |= DN_DESTROY; /* XXX temporary */
fsk_detach(fs, flags);
}
fs->fs = *nfs; /* copy configuration */
#ifdef NEW_AQM
fs->aqmfp = NULL;
if (ep != NULL)
config_aqm(fs, ep, s != NULL &&
s->siht != NULL);
#endif
if (s != NULL)
fsk_attach(fs, s);
} while (0);
if (!locked)
DN_BH_WUNLOCK();
#ifdef NEW_AQM
if (ep != NULL)
free(ep, M_TEMP);
#endif
return fs;
}
/*
* config/reconfig a scheduler and its FIFO variant.
* For !MULTIQUEUE schedulers, also set up the flowset.
*
* On reconfigurations (detected because s->fp is set),
* detach existing flowsets preserving traffic, preserve link,
* and delete the old scheduler creating a new one.
*/
static int
config_sched(struct dn_sch *_nsch, struct dn_id *arg)
{
struct dn_schk *s;
struct schk_new_arg a; /* argument for schk_new */
int i;
struct dn_link p; /* copy of oldlink */
struct dn_profile *pf = NULL; /* copy of old link profile */
/* Used to preserv mask parameter */
struct ipfw_flow_id new_mask;
int new_buckets = 0;
int new_flags = 0;
int pipe_cmd;
int err = ENOMEM;
a.sch = _nsch;
if (a.sch->oid.len != sizeof(*a.sch)) {
D("bad sched len %d", a.sch->oid.len);
return EINVAL;
}
i = a.sch->sched_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/* make sure we have some buckets */
if (a.sch->flags & DN_HAVE_MASK)
ipdn_bound_var((int *)&a.sch->buckets, dn_cfg.hash_size,
1, dn_cfg.max_hash_size, "sched buckets");
/* XXX other sanity checks */
bzero(&p, sizeof(p));
pipe_cmd = a.sch->flags & DN_PIPE_CMD;
a.sch->flags &= ~DN_PIPE_CMD; //XXX do it even if is not set?
if (pipe_cmd) {
/* Copy mask parameter */
new_mask = a.sch->sched_mask;
new_buckets = a.sch->buckets;
new_flags = a.sch->flags;
}
DN_BH_WLOCK();
again: /* run twice, for wfq and fifo */
/*
* lookup the type. If not supplied, use the previous one
* or default to WF2Q+. Otherwise, return an error.
*/
dn_cfg.id++;
a.fp = find_sched_type(a.sch->oid.subtype, a.sch->name);
if (a.fp != NULL) {
/* found. Lookup or create entry */
s = dn_ht_find(dn_cfg.schedhash, i, DNHT_INSERT, &a);
} else if (a.sch->oid.subtype == 0 && !a.sch->name[0]) {
/* No type. search existing s* or retry with WF2Q+ */
s = dn_ht_find(dn_cfg.schedhash, i, 0, &a);
if (s != NULL) {
a.fp = s->fp;
/* Scheduler exists, skip to FIFO scheduler
* if command was pipe config...
*/
if (pipe_cmd)
goto next;
} else {
/* New scheduler, create a wf2q+ with no mask
* if command was pipe config...
*/
if (pipe_cmd) {
/* clear mask parameter */
bzero(&a.sch->sched_mask, sizeof(new_mask));
a.sch->buckets = 0;
a.sch->flags &= ~DN_HAVE_MASK;
}
a.sch->oid.subtype = DN_SCHED_WF2QP;
goto again;
}
} else {
D("invalid scheduler type %d %s",
a.sch->oid.subtype, a.sch->name);
err = EINVAL;
goto error;
}
/* normalize name and subtype */
a.sch->oid.subtype = a.fp->type;
bzero(a.sch->name, sizeof(a.sch->name));
strlcpy(a.sch->name, a.fp->name, sizeof(a.sch->name));
if (s == NULL) {
D("cannot allocate scheduler %d", i);
goto error;
}
/* restore existing link if any */
if (p.link_nr) {
s->link = p;
if (!pf || pf->link_nr != p.link_nr) { /* no saved value */
s->profile = NULL; /* XXX maybe not needed */
} else {
s->profile = malloc(sizeof(struct dn_profile),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s->profile == NULL) {
D("cannot allocate profile");
goto error; //XXX
}
memcpy(s->profile, pf, sizeof(*pf));
}
}
p.link_nr = 0;
if (s->fp == NULL) {
DX(2, "sched %d new type %s", i, a.fp->name);
} else if (s->fp != a.fp ||
bcmp(a.sch, &s->sch, sizeof(*a.sch)) ) {
/* already existing. */
DX(2, "sched %d type changed from %s to %s",
i, s->fp->name, a.fp->name);
DX(4, " type/sub %d/%d -> %d/%d",
s->sch.oid.type, s->sch.oid.subtype,
a.sch->oid.type, a.sch->oid.subtype);
if (s->link.link_nr == 0)
D("XXX WARNING link 0 for sched %d", i);
p = s->link; /* preserve link */
if (s->profile) {/* preserve profile */
if (!pf)
pf = malloc(sizeof(*pf),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (pf) /* XXX should issue a warning otherwise */
memcpy(pf, s->profile, sizeof(*pf));
}
/* remove from the hash */
dn_ht_find(dn_cfg.schedhash, i, DNHT_REMOVE, NULL);
/* Detach flowsets, preserve queues. */
// schk_delete_cb(s, NULL);
// XXX temporarily, kill queues
schk_delete_cb(s, (void *)DN_DESTROY);
goto again;
} else {
DX(4, "sched %d unchanged type %s", i, a.fp->name);
}
/* complete initialization */
s->sch = *a.sch;
s->fp = a.fp;
s->cfg = arg;
// XXX schk_reset_credit(s);
/* create the internal flowset if needed,
* trying to reuse existing ones if available
*/
if (!(s->fp->flags & DN_MULTIQUEUE) && !s->fs) {
s->fs = dn_ht_find(dn_cfg.fshash, i, 0, NULL);
if (!s->fs) {
struct dn_fs fs;
bzero(&fs, sizeof(fs));
set_oid(&fs.oid, DN_FS, sizeof(fs));
fs.fs_nr = i + DN_MAX_ID;
fs.sched_nr = i;
s->fs = config_fs(&fs, NULL, 1 /* locked */);
}
if (!s->fs) {
schk_delete_cb(s, (void *)DN_DESTROY);
D("error creating internal fs for %d", i);
goto error;
}
}
/* call init function after the flowset is created */
if (s->fp->config)
s->fp->config(s);
update_fs(s);
next:
if (i < DN_MAX_ID) { /* now configure the FIFO instance */
i += DN_MAX_ID;
if (pipe_cmd) {
/* Restore mask parameter for FIFO */
a.sch->sched_mask = new_mask;
a.sch->buckets = new_buckets;
a.sch->flags = new_flags;
} else {
/* sched config shouldn't modify the FIFO scheduler */
if (dn_ht_find(dn_cfg.schedhash, i, 0, &a) != NULL) {
/* FIFO already exist, don't touch it */
err = 0; /* and this is not an error */
goto error;
}
}
a.sch->sched_nr = i;
a.sch->oid.subtype = DN_SCHED_FIFO;
bzero(a.sch->name, sizeof(a.sch->name));
goto again;
}
err = 0;
error:
DN_BH_WUNLOCK();
if (pf)
free(pf, M_DUMMYNET);
return err;
}
/*
* attach a profile to a link
*/
static int
config_profile(struct dn_profile *pf, struct dn_id *arg)
{
struct dn_schk *s;
int i, olen, err = 0;
if (pf->oid.len < sizeof(*pf)) {
D("short profile len %d", pf->oid.len);
return EINVAL;
}
i = pf->link_nr;
if (i <= 0 || i >= DN_MAX_ID)
return EINVAL;
/* XXX other sanity checks */
DN_BH_WLOCK();
for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) {
s = locate_scheduler(i);
if (s == NULL) {
err = EINVAL;
break;
}
dn_cfg.id++;
/*
* If we had a profile and the new one does not fit,
* or it is deleted, then we need to free memory.
*/
if (s->profile && (pf->samples_no == 0 ||
s->profile->oid.len < pf->oid.len)) {
free(s->profile, M_DUMMYNET);
s->profile = NULL;
}
if (pf->samples_no == 0)
continue;
/*
* new profile, possibly allocate memory
* and copy data.
*/
if (s->profile == NULL)
s->profile = malloc(pf->oid.len,
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (s->profile == NULL) {
D("no memory for profile %d", i);
err = ENOMEM;
break;
}
/* preserve larger length XXX double check */
olen = s->profile->oid.len;
if (olen < pf->oid.len)
olen = pf->oid.len;
memcpy(s->profile, pf, pf->oid.len);
s->profile->oid.len = olen;
}
DN_BH_WUNLOCK();
return err;
}
/*
* Delete all objects:
*/
static void
dummynet_flush(void)
{
/* delete all schedulers and related links/queues/flowsets */
dn_ht_scan(dn_cfg.schedhash, schk_delete_cb,
(void *)(uintptr_t)DN_DELETE_FS);
/* delete all remaining (unlinked) flowsets */
DX(4, "still %d unlinked fs", dn_cfg.fsk_count);
dn_ht_free(dn_cfg.fshash, DNHT_REMOVE);
fsk_detach_list(&dn_cfg.fsu, DN_DELETE_FS);
/* Reinitialize system heap... */
heap_init(&dn_cfg.evheap, 16, offsetof(struct dn_id, id));
}
/*
* Main handler for configuration. We are guaranteed to be called
* with an oid which is at least a dn_id.
* - the first object is the command (config, delete, flush, ...)
* - config_link must be issued after the corresponding config_sched
* - parameters (DN_TXT) for an object must precede the object
* processed on a config_sched.
*/
int
do_config(void *p, int l)
{
struct dn_id o;
union {
struct dn_profile profile;
struct dn_fs fs;
struct dn_link link;
struct dn_sch sched;
} *dn;
struct dn_id *arg;
uintptr_t a;
int err, err2, off;
memcpy(&o, p, sizeof(o));
if (o.id != DN_API_VERSION) {
D("invalid api version got %d need %d", o.id, DN_API_VERSION);
return EINVAL;
}
arg = NULL;
dn = NULL;
for (off = 0; l >= sizeof(o); memcpy(&o, (char *)p + off, sizeof(o))) {
if (o.len < sizeof(o) || l < o.len) {
D("bad len o.len %d len %d", o.len, l);
err = EINVAL;
break;
}
l -= o.len;
err = 0;
switch (o.type) {
default:
D("cmd %d not implemented", o.type);
break;
#ifdef EMULATE_SYSCTL
/* sysctl emulation.
* if we recognize the command, jump to the correct
* handler and return
*/
case DN_SYSCTL_SET:
err = kesysctl_emu_set(p, l);
return err;
#endif
case DN_CMD_CONFIG: /* simply a header */
break;
case DN_CMD_DELETE:
/* the argument is in the first uintptr_t after o */
if (o.len < sizeof(o) + sizeof(a)) {
err = EINVAL;
break;
}
memcpy(&a, (char *)p + off + sizeof(o), sizeof(a));
switch (o.subtype) {
case DN_LINK:
/* delete base and derived schedulers */
DN_BH_WLOCK();
err = delete_schk(a);
err2 = delete_schk(a + DN_MAX_ID);
DN_BH_WUNLOCK();
if (!err)
err = err2;
break;
default:
D("invalid delete type %d", o.subtype);
err = EINVAL;
break;
case DN_FS:
err = (a < 1 || a >= DN_MAX_ID) ?
EINVAL : delete_fs(a, 0) ;
break;
}
break;
case DN_CMD_FLUSH:
DN_BH_WLOCK();
dummynet_flush();
DN_BH_WUNLOCK();
break;
case DN_TEXT: /* store argument of next block */
if (arg != NULL)
free(arg, M_TEMP);
arg = malloc(o.len, M_TEMP, M_WAITOK);
memcpy(arg, (char *)p + off, o.len);
break;
case DN_LINK:
if (dn == NULL)
dn = malloc(sizeof(*dn), M_TEMP, M_WAITOK);
memcpy(&dn->link, (char *)p + off, sizeof(dn->link));
err = config_link(&dn->link, arg);
break;
case DN_PROFILE:
if (dn == NULL)
dn = malloc(sizeof(*dn), M_TEMP, M_WAITOK);
memcpy(&dn->profile, (char *)p + off,
sizeof(dn->profile));
err = config_profile(&dn->profile, arg);
break;
case DN_SCH:
if (dn == NULL)
dn = malloc(sizeof(*dn), M_TEMP, M_WAITOK);
memcpy(&dn->sched, (char *)p + off,
sizeof(dn->sched));
err = config_sched(&dn->sched, arg);
break;
case DN_FS:
if (dn == NULL)
dn = malloc(sizeof(*dn), M_TEMP, M_WAITOK);
memcpy(&dn->fs, (char *)p + off, sizeof(dn->fs));
err = (NULL == config_fs(&dn->fs, arg, 0));
break;
}
if (err != 0)
break;
off += o.len;
}
if (arg != NULL)
free(arg, M_TEMP);
if (dn != NULL)
free(dn, M_TEMP);
return err;
}
static int
compute_space(struct dn_id *cmd, struct copy_args *a)
{
int x = 0, need = 0;
int profile_size = sizeof(struct dn_profile) -
ED_MAX_SAMPLES_NO*sizeof(int);
/* NOTE about compute space:
* NP = dn_cfg.schk_count
* NSI = dn_cfg.si_count
* NF = dn_cfg.fsk_count
* NQ = dn_cfg.queue_count
* - ipfw pipe show
* (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler
* link, scheduler template, flowset
* integrated in scheduler and header
* for flowset list
* (NSI)*(dn_flow) all scheduler instance (includes
* the queue instance)
* - ipfw sched show
* (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler
* link, scheduler template, flowset
* integrated in scheduler and header
* for flowset list
* (NSI * dn_flow) all scheduler instances
* (NF * sizeof(uint_32)) space for flowset list linked to scheduler
* (NQ * dn_queue) all queue [XXXfor now not listed]
* - ipfw queue show
* (NF * dn_fs) all flowset
* (NQ * dn_queue) all queues
*/
switch (cmd->subtype) {
default:
return -1;
/* XXX where do LINK and SCH differ ? */
/* 'ipfw sched show' could list all queues associated to
* a scheduler. This feature for now is disabled
*/
case DN_LINK: /* pipe show */
x = DN_C_LINK | DN_C_SCH | DN_C_FLOW;
need += dn_cfg.schk_count *
(sizeof(struct dn_fs) + profile_size) / 2;
need += dn_cfg.fsk_count * sizeof(uint32_t);
break;
case DN_SCH: /* sched show */
need += dn_cfg.schk_count *
(sizeof(struct dn_fs) + profile_size) / 2;
need += dn_cfg.fsk_count * sizeof(uint32_t);
x = DN_C_SCH | DN_C_LINK | DN_C_FLOW;
break;
case DN_FS: /* queue show */
x = DN_C_FS | DN_C_QUEUE;
break;
case DN_GET_COMPAT: /* compatibility mode */
need = dn_compat_calc_size();
break;
}
a->flags = x;
if (x & DN_C_SCH) {
need += dn_cfg.schk_count * sizeof(struct dn_sch) / 2;
/* NOT also, each fs might be attached to a sched */
need += dn_cfg.schk_count * sizeof(struct dn_id) / 2;
}
if (x & DN_C_FS)
need += dn_cfg.fsk_count * sizeof(struct dn_fs);
if (x & DN_C_LINK) {
need += dn_cfg.schk_count * sizeof(struct dn_link) / 2;
}
/*
* When exporting a queue to userland, only pass up the
* struct dn_flow, which is the only visible part.
*/
if (x & DN_C_QUEUE)
need += dn_cfg.queue_count * sizeof(struct dn_flow);
if (x & DN_C_FLOW)
need += dn_cfg.si_count * (sizeof(struct dn_flow));
return need;
}
/*
* If compat != NULL dummynet_get is called in compatibility mode.
* *compat will be the pointer to the buffer to pass to ipfw
*/
int
dummynet_get(struct sockopt *sopt, void **compat)
{
int have, i, need, error;
char *start = NULL, *buf;
size_t sopt_valsize;
struct dn_id *cmd;
struct copy_args a;
struct copy_range r;
int l = sizeof(struct dn_id);
bzero(&a, sizeof(a));
bzero(&r, sizeof(r));
/* save and restore original sopt_valsize around copyin */
sopt_valsize = sopt->sopt_valsize;
cmd = &r.o;
if (!compat) {
/* copy at least an oid, and possibly a full object */
error = sooptcopyin(sopt, cmd, sizeof(r), sizeof(*cmd));
sopt->sopt_valsize = sopt_valsize;
if (error)
goto done;
l = cmd->len;
#ifdef EMULATE_SYSCTL
/* sysctl emulation. */
if (cmd->type == DN_SYSCTL_GET)
return kesysctl_emu_get(sopt);
#endif
if (l > sizeof(r)) {
/* request larger than default, allocate buffer */
cmd = malloc(l, M_DUMMYNET, M_WAITOK);
error = sooptcopyin(sopt, cmd, l, l);
sopt->sopt_valsize = sopt_valsize;
if (error)
goto done;
}
} else { /* compatibility */
error = 0;
cmd->type = DN_CMD_GET;
cmd->len = sizeof(struct dn_id);
cmd->subtype = DN_GET_COMPAT;
// cmd->id = sopt_valsize;
D("compatibility mode");
}
#ifdef NEW_AQM
/* get AQM params */
if(cmd->subtype == DN_AQM_PARAMS) {
error = get_aqm_parms(sopt);
goto done;
/* get Scheduler params */
} else if (cmd->subtype == DN_SCH_PARAMS) {
error = get_sched_parms(sopt);
goto done;
}
#endif
a.extra = (struct copy_range *)cmd;
if (cmd->len == sizeof(*cmd)) { /* no range, create a default */
uint32_t *rp = (uint32_t *)(cmd + 1);
cmd->len += 2* sizeof(uint32_t);
rp[0] = 1;
rp[1] = DN_MAX_ID - 1;
if (cmd->subtype == DN_LINK) {
rp[0] += DN_MAX_ID;
rp[1] += DN_MAX_ID;
}
}
/* Count space (under lock) and allocate (outside lock).
* Exit with lock held if we manage to get enough buffer.
* Try a few times then give up.
*/
for (have = 0, i = 0; i < 10; i++) {
DN_BH_WLOCK();
need = compute_space(cmd, &a);
/* if there is a range, ignore value from compute_space() */
if (l > sizeof(*cmd))
need = sopt_valsize - sizeof(*cmd);
if (need < 0) {
DN_BH_WUNLOCK();
error = EINVAL;
goto done;
}
need += sizeof(*cmd);
cmd->id = need;
if (have >= need)
break;
DN_BH_WUNLOCK();
if (start)
free(start, M_DUMMYNET);
start = NULL;
if (need > sopt_valsize)
break;
have = need;
start = malloc(have, M_DUMMYNET, M_WAITOK | M_ZERO);
}
if (start == NULL) {
if (compat) {
*compat = NULL;
error = 1; // XXX
} else {
error = sooptcopyout(sopt, cmd, sizeof(*cmd));
}
goto done;
}
ND("have %d:%d sched %d, %d:%d links %d, %d:%d flowsets %d, "
"%d:%d si %d, %d:%d queues %d",
dn_cfg.schk_count, sizeof(struct dn_sch), DN_SCH,
dn_cfg.schk_count, sizeof(struct dn_link), DN_LINK,
dn_cfg.fsk_count, sizeof(struct dn_fs), DN_FS,
dn_cfg.si_count, sizeof(struct dn_flow), DN_SCH_I,
dn_cfg.queue_count, sizeof(struct dn_queue), DN_QUEUE);
sopt->sopt_valsize = sopt_valsize;
a.type = cmd->subtype;
if (compat == NULL) {
memcpy(start, cmd, sizeof(*cmd));
((struct dn_id*)(start))->len = sizeof(struct dn_id);
buf = start + sizeof(*cmd);
} else
buf = start;
a.start = &buf;
a.end = start + have;
/* start copying other objects */
if (compat) {
a.type = DN_COMPAT_PIPE;
dn_ht_scan(dn_cfg.schedhash, copy_data_helper_compat, &a);
a.type = DN_COMPAT_QUEUE;
dn_ht_scan(dn_cfg.fshash, copy_data_helper_compat, &a);
} else if (a.type == DN_FS) {
dn_ht_scan(dn_cfg.fshash, copy_data_helper, &a);
} else {
dn_ht_scan(dn_cfg.schedhash, copy_data_helper, &a);
}
DN_BH_WUNLOCK();
if (compat) {
*compat = start;
sopt->sopt_valsize = buf - start;
/* free() is done by ip_dummynet_compat() */
start = NULL; //XXX hack
} else {
error = sooptcopyout(sopt, start, buf - start);
}
done:
if (cmd && cmd != &r.o)
free(cmd, M_DUMMYNET);
if (start)
free(start, M_DUMMYNET);
return error;
}
/* Callback called on scheduler instance to delete it if idle */
static int
drain_scheduler_cb(void *_si, void *arg)
{
struct dn_sch_inst *si = _si;
if ((si->kflags & DN_ACTIVE) || si->dline.mq.head != NULL)
return 0;
if (si->sched->fp->flags & DN_MULTIQUEUE) {
if (si->q_count == 0)
return si_destroy(si, NULL);
else
return 0;
} else { /* !DN_MULTIQUEUE */
if ((si+1)->ni.length == 0)
return si_destroy(si, NULL);
else
return 0;
}
return 0; /* unreachable */
}
/* Callback called on scheduler to check if it has instances */
static int
drain_scheduler_sch_cb(void *_s, void *arg)
{
struct dn_schk *s = _s;
if (s->sch.flags & DN_HAVE_MASK) {
dn_ht_scan_bucket(s->siht, &s->drain_bucket,
drain_scheduler_cb, NULL);
s->drain_bucket++;
} else {
if (s->siht) {
if (drain_scheduler_cb(s->siht, NULL) == DNHT_SCAN_DEL)
s->siht = NULL;
}
}
return 0;
}
/* Called every tick, try to delete a 'bucket' of scheduler */
void
dn_drain_scheduler(void)
{
dn_ht_scan_bucket(dn_cfg.schedhash, &dn_cfg.drain_sch,
drain_scheduler_sch_cb, NULL);
dn_cfg.drain_sch++;
}
/* Callback called on queue to delete if it is idle */
static int
drain_queue_cb(void *_q, void *arg)
{
struct dn_queue *q = _q;
if (q->ni.length == 0) {
dn_delete_queue(q, DN_DESTROY);
return DNHT_SCAN_DEL; /* queue is deleted */
}
return 0; /* queue isn't deleted */
}
/* Callback called on flowset used to check if it has queues */
static int
drain_queue_fs_cb(void *_fs, void *arg)
{
struct dn_fsk *fs = _fs;
if (fs->fs.flags & DN_QHT_HASH) {
/* Flowset has a hash table for queues */
dn_ht_scan_bucket(fs->qht, &fs->drain_bucket,
drain_queue_cb, NULL);
fs->drain_bucket++;
} else {
/* No hash table for this flowset, null the pointer
* if the queue is deleted
*/
if (fs->qht) {
if (drain_queue_cb(fs->qht, NULL) == DNHT_SCAN_DEL)
fs->qht = NULL;
}
}
return 0;
}
/* Called every tick, try to delete a 'bucket' of queue */
void
dn_drain_queue(void)
{
/* scan a bucket of flowset */
dn_ht_scan_bucket(dn_cfg.fshash, &dn_cfg.drain_fs,
drain_queue_fs_cb, NULL);
dn_cfg.drain_fs++;
}
/*
* Handler for the various dummynet socket options
*/
static int
ip_dn_ctl(struct sockopt *sopt)
{
void *p = NULL;
int error, l;
error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET);
if (error)
return (error);
/* Disallow sets in really-really secure mode. */
if (sopt->sopt_dir == SOPT_SET) {
error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
if (error)
return (error);
}
switch (sopt->sopt_name) {
default :
D("dummynet: unknown option %d", sopt->sopt_name);
error = EINVAL;
break;
case IP_DUMMYNET_FLUSH:
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL: /* remove a pipe or queue */
case IP_DUMMYNET_GET:
D("dummynet: compat option %d", sopt->sopt_name);
error = ip_dummynet_compat(sopt);
break;
case IP_DUMMYNET3 :
if (sopt->sopt_dir == SOPT_GET) {
error = dummynet_get(sopt, NULL);
break;
}
l = sopt->sopt_valsize;
if (l < sizeof(struct dn_id) || l > 12000) {
D("argument len %d invalid", l);
break;
}
p = malloc(l, M_TEMP, M_WAITOK); // XXX can it fail ?
error = sooptcopyin(sopt, p, l, l);
if (error)
break ;
error = do_config(p, l);
break;
}
if (p != NULL)
free(p, M_TEMP);
return error ;
}
static void
ip_dn_init(void)
{
if (dn_cfg.init_done)
return;
printf("DUMMYNET %p with IPv6 initialized (100409)\n", curvnet);
dn_cfg.init_done = 1;
/* Set defaults here. MSVC does not accept initializers,
* and this is also useful for vimages
*/
/* queue limits */
dn_cfg.slot_limit = 100; /* Foot shooting limit for queues. */
dn_cfg.byte_limit = 1024 * 1024;
dn_cfg.expire = 1;
/* RED parameters */
dn_cfg.red_lookup_depth = 256; /* default lookup table depth */
dn_cfg.red_avg_pkt_size = 512; /* default medium packet size */
dn_cfg.red_max_pkt_size = 1500; /* default max packet size */
/* hash tables */
dn_cfg.max_hash_size = 65536; /* max in the hash tables */
dn_cfg.hash_size = 64; /* default hash size */
/* create hash tables for schedulers and flowsets.
* In both we search by key and by pointer.
*/
dn_cfg.schedhash = dn_ht_init(NULL, dn_cfg.hash_size,
offsetof(struct dn_schk, schk_next),
schk_hash, schk_match, schk_new);
dn_cfg.fshash = dn_ht_init(NULL, dn_cfg.hash_size,
offsetof(struct dn_fsk, fsk_next),
fsk_hash, fsk_match, fsk_new);
/* bucket index to drain object */
dn_cfg.drain_fs = 0;
dn_cfg.drain_sch = 0;
heap_init(&dn_cfg.evheap, 16, offsetof(struct dn_id, id));
SLIST_INIT(&dn_cfg.fsu);
SLIST_INIT(&dn_cfg.schedlist);
DN_LOCK_INIT();
TASK_INIT(&dn_task, 0, dummynet_task, curvnet);
dn_tq = taskqueue_create_fast("dummynet", M_WAITOK,
taskqueue_thread_enqueue, &dn_tq);
taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet");
callout_init(&dn_timeout, 1);
dn_reschedule();
/* Initialize curr_time adjustment mechanics. */
getmicrouptime(&dn_cfg.prev_t);
}
static void
ip_dn_destroy(int last)
{
DN_BH_WLOCK();
/* ensure no more callouts are started */
dn_gone = 1;
/* check for last */
if (last) {
ND("removing last instance\n");
ip_dn_ctl_ptr = NULL;
ip_dn_io_ptr = NULL;
}
dummynet_flush();
DN_BH_WUNLOCK();
callout_drain(&dn_timeout);
taskqueue_drain(dn_tq, &dn_task);
taskqueue_free(dn_tq);
dn_ht_free(dn_cfg.schedhash, 0);
dn_ht_free(dn_cfg.fshash, 0);
heap_free(&dn_cfg.evheap);
DN_LOCK_DESTROY();
}
static int
dummynet_modevent(module_t mod, int type, void *data)
{
if (type == MOD_LOAD) {
if (ip_dn_io_ptr) {
printf("DUMMYNET already loaded\n");
return EEXIST ;
}
ip_dn_init();
ip_dn_ctl_ptr = ip_dn_ctl;
ip_dn_io_ptr = dummynet_io;
return 0;
} else if (type == MOD_UNLOAD) {
ip_dn_destroy(1 /* last */);
return 0;
} else
return EOPNOTSUPP;
}
/* modevent helpers for the modules */
static int
load_dn_sched(struct dn_alg *d)
{
struct dn_alg *s;
if (d == NULL)
return 1; /* error */
ip_dn_init(); /* just in case, we need the lock */
/* Check that mandatory funcs exists */
if (d->enqueue == NULL || d->dequeue == NULL) {
D("missing enqueue or dequeue for %s", d->name);
return 1;
}
/* Search if scheduler already exists */
DN_BH_WLOCK();
SLIST_FOREACH(s, &dn_cfg.schedlist, next) {
if (strcmp(s->name, d->name) == 0) {
D("%s already loaded", d->name);
break; /* scheduler already exists */
}
}
if (s == NULL)
SLIST_INSERT_HEAD(&dn_cfg.schedlist, d, next);
DN_BH_WUNLOCK();
D("dn_sched %s %sloaded", d->name, s ? "not ":"");
return s ? 1 : 0;
}
static int
unload_dn_sched(struct dn_alg *s)
{
struct dn_alg *tmp, *r;
int err = EINVAL;
ND("called for %s", s->name);
DN_BH_WLOCK();
SLIST_FOREACH_SAFE(r, &dn_cfg.schedlist, next, tmp) {
if (strcmp(s->name, r->name) != 0)
continue;
ND("ref_count = %d", r->ref_count);
err = (r->ref_count != 0) ? EBUSY : 0;
if (err == 0)
SLIST_REMOVE(&dn_cfg.schedlist, r, dn_alg, next);
break;
}
DN_BH_WUNLOCK();
D("dn_sched %s %sunloaded", s->name, err ? "not ":"");
return err;
}
int
dn_sched_modevent(module_t mod, int cmd, void *arg)
{
struct dn_alg *sch = arg;
if (cmd == MOD_LOAD)
return load_dn_sched(sch);
else if (cmd == MOD_UNLOAD)
return unload_dn_sched(sch);
else
return EINVAL;
}
static moduledata_t dummynet_mod = {
"dummynet", dummynet_modevent, NULL
};
#define DN_SI_SUB SI_SUB_PROTO_FIREWALL
#define DN_MODEV_ORD (SI_ORDER_ANY - 128) /* after ipfw */
DECLARE_MODULE(dummynet, dummynet_mod, DN_SI_SUB, DN_MODEV_ORD);
MODULE_DEPEND(dummynet, ipfw, 3, 3, 3);
MODULE_VERSION(dummynet, 3);
/*
* Starting up. Done in order after dummynet_modevent() has been called.
* VNET_SYSINIT is also called for each existing vnet and each new vnet.
*/
//VNET_SYSINIT(vnet_dn_init, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_init, NULL);
/*
* Shutdown handlers up shop. These are done in REVERSE ORDER, but still
* after dummynet_modevent() has been called. Not called on reboot.
* VNET_SYSUNINIT is also called for each exiting vnet as it exits.
* or when the module is unloaded.
*/
//VNET_SYSUNINIT(vnet_dn_uninit, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_destroy, NULL);
#ifdef NEW_AQM
/* modevent helpers for the AQM modules */
static int
load_dn_aqm(struct dn_aqm *d)
{
struct dn_aqm *aqm=NULL;
if (d == NULL)
return 1; /* error */
ip_dn_init(); /* just in case, we need the lock */
/* Check that mandatory funcs exists */
if (d->enqueue == NULL || d->dequeue == NULL) {
D("missing enqueue or dequeue for %s", d->name);
return 1;
}
/* Search if AQM already exists */
DN_BH_WLOCK();
SLIST_FOREACH(aqm, &dn_cfg.aqmlist, next) {
if (strcmp(aqm->name, d->name) == 0) {
D("%s already loaded", d->name);
break; /* AQM already exists */
}
}
if (aqm == NULL)
SLIST_INSERT_HEAD(&dn_cfg.aqmlist, d, next);
DN_BH_WUNLOCK();
D("dn_aqm %s %sloaded", d->name, aqm ? "not ":"");
return aqm ? 1 : 0;
}
/* Callback to clean up AQM status for queues connected to a flowset
* and then deconfigure the flowset.
* This function is called before an AQM module is unloaded
*/
static int
fs_cleanup(void *_fs, void *arg)
{
struct dn_fsk *fs = _fs;
uint32_t type = *(uint32_t *)arg;
if (fs->aqmfp && fs->aqmfp->type == type)
aqm_cleanup_deconfig_fs(fs);
return 0;
}
static int
unload_dn_aqm(struct dn_aqm *aqm)
{
struct dn_aqm *tmp, *r;
int err = EINVAL;
err = 0;
ND("called for %s", aqm->name);
DN_BH_WLOCK();
/* clean up AQM status and deconfig flowset */
dn_ht_scan(dn_cfg.fshash, fs_cleanup, &aqm->type);
SLIST_FOREACH_SAFE(r, &dn_cfg.aqmlist, next, tmp) {
if (strcmp(aqm->name, r->name) != 0)
continue;
ND("ref_count = %d", r->ref_count);
err = (r->ref_count != 0 || r->cfg_ref_count != 0) ? EBUSY : 0;
if (err == 0)
SLIST_REMOVE(&dn_cfg.aqmlist, r, dn_aqm, next);
break;
}
DN_BH_WUNLOCK();
D("%s %sunloaded", aqm->name, err ? "not ":"");
if (err)
D("ref_count=%d, cfg_ref_count=%d", r->ref_count, r->cfg_ref_count);
return err;
}
int
dn_aqm_modevent(module_t mod, int cmd, void *arg)
{
struct dn_aqm *aqm = arg;
if (cmd == MOD_LOAD)
return load_dn_aqm(aqm);
else if (cmd == MOD_UNLOAD)
return unload_dn_aqm(aqm);
else
return EINVAL;
}
#endif
/* end of file */