freebsd-skq/contrib/bind/lib/dst/eay_dss_link.c
2002-02-04 19:12:46 +00:00

631 lines
17 KiB
C

#ifdef EAY_DSS
static const char rcsid[] = "$Header: /proj/cvs/isc/bind8/src/lib/dst/eay_dss_link.c,v 1.6 2001/05/29 05:48:09 marka Exp $";
/*
* Portions Copyright (c) 1995-1998 by Trusted Information Systems, Inc.
*
* Permission to use, copy modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND TRUSTED INFORMATION SYSTEMS
* DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
* TRUSTED INFORMATION SYSTEMS BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THE SOFTWARE.
*/
/*
* This file contains two components
* 1. Interface to the EAY libcrypto library to allow compilation of Bind
* with TIS/DNSSEC when EAY libcrypto is not available
* all calls to libcrypto are contained inside this file.
* 2. The glue to connvert DSA KEYS to and from external formats
*/
#include "port_before.h"
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <sys/param.h>
#include <sys/time.h>
#include <netinet/in.h>
#include "dst_internal.h"
#include "crypto.h"
#include "bn.h"
#include "dsa.h"
#include "sha.h"
#include "port_after.h"
static int dst_eay_dss_sign(const int mode, DST_KEY *dkey, void **context,
const u_char *data, const int len,
u_char *signature, const int sig_len);
static int dst_eay_dss_verify(const int mode, DST_KEY *dkey, void **context,
const u_char *data, const int len,
const u_char *signature, const int sig_len);
static int dst_eay_dss_to_dns_key(const DST_KEY *in_key, u_char *out_str,
const int out_len);
static int dst_eay_dss_from_dns_key(DST_KEY *s_key, const u_char *key,
const int len);
static int dst_eay_dss_key_to_file_format(const DST_KEY *key, u_char *buff,
const int buff_len);
static int dst_eay_dss_key_from_file_format(DST_KEY *d_key,
const u_char *buff,
const int buff_len);
static void *dst_eay_dss_free_key_structure(void *key);
static int dst_eay_dss_generate_keypair(DST_KEY *key, int exp);
static int dst_eay_dss_compare_keys(const DST_KEY *key1, const DST_KEY *key2);
/*
* dst_eay_dss_init() Function to answer set up function pointers for
* EAY DSS related functions
*/
int
dst_eay_dss_init(void)
{
if (dst_t_func[KEY_DSA] != NULL)
return (1);
dst_t_func[KEY_DSA] = malloc(sizeof(struct dst_func));
if (dst_t_func[KEY_DSA] == NULL)
return (0);
memset(dst_t_func[KEY_DSA], 0, sizeof(struct dst_func));
dst_t_func[KEY_DSA]->sign = dst_eay_dss_sign;
dst_t_func[KEY_DSA]->verify = dst_eay_dss_verify;
dst_t_func[KEY_DSA]->compare = dst_eay_dss_compare_keys;
dst_t_func[KEY_DSA]->generate = dst_eay_dss_generate_keypair;
dst_t_func[KEY_DSA]->destroy = dst_eay_dss_free_key_structure;
dst_t_func[KEY_DSA]->from_dns_key = dst_eay_dss_from_dns_key;
dst_t_func[KEY_DSA]->to_dns_key = dst_eay_dss_to_dns_key;
dst_t_func[KEY_DSA]->from_file_fmt = dst_eay_dss_key_from_file_format;
dst_t_func[KEY_DSA]->to_file_fmt = dst_eay_dss_key_to_file_format;
return (1);
}
/*
* dst_eay_dss_sign
* Call EAY DSS signing functions to sign a block of data.
* There are three steps to signing, INIT (initialize structures),
* UPDATE (hash (more) data), FINAL (generate a signature). This
* routine performs one or more of these steps.
* Parameters
* mode SIG_MODE_INIT, SIG_MODE_UPDATE and/or SIG_MODE_FINAL.
* algobj structure holds context for a sign done in multiple calls.
* context the context to use for this computation
* data data to be signed.
* len length in bytes of data.
* priv_key key to use for signing.
* signature location to store signature.
* sig_len size in bytes of signature field.
* returns
* N Success on SIG_MODE_FINAL = returns signature length in bytes
* N is 41 for DNS
* 0 Success on SIG_MODE_INIT and UPDATE
* <0 Failure
*/
static int
dst_eay_dss_sign(const int mode, DST_KEY *dkey, void **context,
const u_char *data, const int len,
u_char *signature, const int sig_len)
{
int sign_len = 0;
int status;
SHA_CTX *ctx = NULL;
if (mode & SIG_MODE_INIT)
ctx = (SHA_CTX *) malloc(sizeof(SHA_CTX));
else if (context)
ctx = (SHA_CTX *) *context;
if (ctx == NULL)
return (-1);
if (mode & SIG_MODE_INIT)
SHA1_Init(ctx);
if ((mode & SIG_MODE_UPDATE) && (data && len > 0)) {
SHA1_Update(ctx, (u_char *) data, len);
}
if (mode & SIG_MODE_FINAL) {
DSA *key;
u_char digest[SHA_DIGEST_LENGTH];
u_char rand[SHA_DIGEST_LENGTH];
u_char r[SHA_DIGEST_LENGTH], s[SHA_DIGEST_LENGTH];
if (dkey == NULL || dkey->dk_KEY_struct == NULL)
return (-1);
key = dkey->dk_KEY_struct;
if (key == NULL)
return(-2);
SHA1_Final(digest, ctx);
status = DSA_sign(0, digest, SHA_DIGEST_LENGTH,
signature, &sign_len, key);
if (status != 0)
return (SIGN_FINAL_FAILURE);
*signature = (dkey->dk_key_size - 512)/64;
sign_len = 1;
memcpy(signature + sign_len, r, SHA_DIGEST_LENGTH);
sign_len += SHA_DIGEST_LENGTH;
memcpy(signature + sign_len, s, SHA_DIGEST_LENGTH);
sign_len += SHA_DIGEST_LENGTH;
}
else {
if (context == NULL)
return (-1);
*context = (void *) ctx;
}
return (sign_len);
}
/*
* dst_eay_dss_verify
* Calls EAY DSS verification routines. There are three steps to
* verification, INIT (initialize structures), UPDATE (hash (more) data),
* FINAL (generate a signature). This routine performs one or more of
* these steps.
* Parameters
* mode SIG_MODE_INIT, SIG_MODE_UPDATE and/or SIG_MODE_FINAL.
* dkey structure holds context for a verify done in multiple calls.
* context algorithm specific context for the current context processing
* data data signed.
* len length in bytes of data.
* pub_key key to use for verify.
* signature signature.
* sig_len length in bytes of signature.
* returns
* 0 Success
* <0 Failure
*/
static int
dst_eay_dss_verify(const int mode, DST_KEY *dkey, void **context,
const u_char *data, const int len,
const u_char *signature, const int sig_len)
{
int status;
SHA_CTX *ctx = NULL;
if (mode & SIG_MODE_INIT)
ctx = (SHA_CTX *) malloc(sizeof(SHA_CTX));
else if (context)
ctx = (SHA_CTX *) *context;
if (ctx == NULL)
return (-1);
if (mode & SIG_MODE_INIT)
SHA1_Init(ctx);
if ((mode & SIG_MODE_UPDATE) && (data && len > 0)) {
SHA1_Update(ctx, (u_char *) data, len);
}
if (mode & SIG_MODE_FINAL) {
DSA *key;
u_char digest[SHA_DIGEST_LENGTH];
u_char r[SHA_DIGEST_LENGTH], s[SHA_DIGEST_LENGTH];
if (dkey == NULL || dkey->dk_KEY_struct == NULL)
return (-1);
key = (DSA *) dkey->dk_KEY_struct;
if (key = NULL)
return (-2);
if (signature == NULL || sig_len != (2 * SHA_DIGEST_LENGTH +1))
return (SIGN_FINAL_FAILURE);
SHA1_Final(digest, ctx);
SAFE_FREE(ctx);
if (status != 0)
return (SIGN_FINAL_FAILURE);
if (((int)*signature) != ((BN_num_bytes(key->p) -64)/8))
return(VERIFY_FINAL_FAILURE);
memcpy(r, signature +1, SHA_DIGEST_LENGTH);
memcpy(s, signature + SHA_DIGEST_LENGTH +1, SHA_DIGEST_LENGTH);
status = DSA_verify(0, digest, SHA_DIGEST_LENGTH,
(u_char *)signature, sig_len, key);
if (status != 0)
return (VERIFY_FINAL_FAILURE);
}
else {
if (context == NULL)
return (-1);
*context = (void *) ctx;
}
return (0);
}
/*
* dst_eay_dss_to_dns_key
* Converts key from DSA to DNS distribution format
* This function gets in a pointer to the public key and a work area
* to write the key into.
* Parameters
* public KEY structure
* out_str buffer to write encoded key into
* out_len size of out_str
* Return
* N >= 0 length of encoded key
* n < 0 error
*/
static int
dst_eay_dss_to_dns_key(const DST_KEY *in_key, u_char *out_str,
const int out_len)
{
u_char *op = out_str;
int t;
DSA *key;
if (in_key == NULL || in_key->dk_KEY_struct == NULL ||
out_len <= 0 || out_str == NULL)
return (-1);
key = (DSA *) in_key->dk_KEY_struct;
t = (BN_num_bytes(key->p) - 64) / 8;
*op++ = t;
BN_bn2bin(key->q, op);
op += BN_num_bytes(key->q);
BN_bn2bin(key->p, op);
op += BN_num_bytes(key->p);
BN_bn2bin(key->g, op);
op += BN_num_bytes(key->g);
BN_bn2bin(key->pub_key, op);
op += BN_num_bytes(key->pub_key);
return (op - out_str);
}
/*
* dst_eay_dss_from_dns_key
* Converts from a DNS KEY RR format to an RSA KEY.
* Parameters
* len Length in bytes of DNS key
* key DNS key
* name Key name
* s_key DST structure that will point to the RSA key this routine
* will build.
* Return
* 0 The input key, s_key or name was null.
* 1 Success
*/
static int
dst_eay_dss_from_dns_key(DST_KEY *s_key, const u_char *key, const int len)
{
int t;
u_char *key_ptr = (u_char *)key;
DSA *d_key;
int p_bytes;
if (s_key == NULL || len < 0 || key == NULL)
return (0);
if (len == 0) /* process null key */
return (1);
if (key_ptr == NULL)
return (0);
t = (int) *key_ptr++; /* length of exponent in bytes */
p_bytes = 64 + 8 * t;
if ((3 * (t * 8 + 64) + SHA_DIGEST_LENGTH + 1) != len)
return (0);
if ((d_key = (DSA *) malloc(sizeof(DSA))) == NULL) {
EREPORT(("dst_eay_dss_from_dns_key(): Memory allocation error 1"));
return (0);
}
memset(d_key, 0, sizeof(DSA));
s_key->dk_KEY_struct = (void *) d_key;
d_key->q = BN_bin2bn(key_ptr, SHA_DIGEST_LENGTH, NULL);
key_ptr += SHA_DIGEST_LENGTH;
d_key->p = BN_bin2bn(key_ptr, p_bytes, NULL);
key_ptr += p_bytes;
d_key->g = BN_bin2bn(key_ptr, p_bytes, NULL);
key_ptr += p_bytes;
d_key->pub_key = BN_bin2bn(key_ptr, p_bytes, NULL);
key_ptr += p_bytes;
s_key->dk_key_size = p_bytes * 8;
return (1);
}
/**************************************************************************
* dst_eay_dss_key_to_file_format
* Encodes an DSA Key into the portable file format.
* Parameters
* key DSA KEY structure
* buff output buffer
* buff_len size of output buffer
* Return
* 0 Failure - null input rkey
* -1 Failure - not enough space in output area
* N Success - Length of data returned in buff
*/
static int
dst_eay_dss_key_to_file_format(const DST_KEY *key, u_char *buff,
const int buff_len)
{
u_char *bp;
int len, b_len;
DSA *dkey;
char num[256]; /* More than long enough for DSA keys */
if (key == NULL || key->dk_KEY_struct == NULL) /* no output */
return (0);
if (buff == NULL || buff_len <= (int) strlen(key_file_fmt_str))
return (-1); /* no OR not enough space in output area */
dkey = (DSA *) key->dk_KEY_struct;
memset(buff, 0, buff_len); /* just in case */
/* write file header */
sprintf(buff, key_file_fmt_str, KEY_FILE_FORMAT, KEY_DSA, "DSA");
bp = (char *) strchr(buff, '\0');
b_len = buff_len - (bp - buff);
memcpy(num, dkey->p, BN_num_bytes(dkey->p));
if ((len = dst_s_conv_bignum_u8_to_b64(bp, b_len, "Prime(p): ", num,
BN_num_bytes(dkey->p))) <= 0)
return (-1);
bp = (char *) strchr(buff, '\0');
b_len = buff_len - (bp - buff);
memcpy(num, dkey->q, BN_num_bytes(dkey->q));
if ((len = dst_s_conv_bignum_u8_to_b64(bp, b_len, "Subprime(q): ", num,
BN_num_bytes(dkey->q))) <= 0)
return (-2);
bp = (char *) strchr(buff, '\0');
b_len = buff_len - (bp - buff);
memcpy(num, dkey->g, BN_num_bytes(dkey->g));
if ((len = dst_s_conv_bignum_u8_to_b64(bp, b_len, "Base(g): ", num,
BN_num_bytes(dkey->g))) <= 0)
return (-3);
bp = (char *) strchr(buff, '\0');
b_len = buff_len - (bp - buff);
memcpy(num, dkey->priv_key, BN_num_bytes(dkey->priv_key));
if ((len = dst_s_conv_bignum_u8_to_b64(bp, b_len, "Private_value(x): ",
num,
BN_num_bytes(dkey->priv_key)))
<= 0)
return (-4);
bp = (char *) strchr(buff, '\0');
b_len = buff_len - (bp - buff);
memcpy(num, dkey->pub_key, BN_num_bytes(dkey->pub_key));
if ((len = dst_s_conv_bignum_u8_to_b64(bp, b_len, "Public_value(y): ",
num,
BN_num_bytes(dkey->pub_key)))
<= 0)
return (-5);
bp += len;
b_len -= len;
return (buff_len - b_len);
}
/**************************************************************************
* dst_eay_dss_key_from_file_format
* Converts contents of a private key file into a private DSA key.
* Parameters
* d_key structure to put key into
* buff buffer containing the encoded key
* buff_len the length of the buffer
* Return
* n >= 0 Foot print of the key converted
* n < 0 Error in conversion
*/
static int
dst_eay_dss_key_from_file_format(DST_KEY *d_key, const u_char *buff,
const int buff_len)
{
char s[128];
int len, s_len = sizeof(s);
const char *p = buff;
DSA *dsa_key;
if (d_key == NULL || buff == NULL || buff_len <= 0)
return (-1);
dsa_key = (DSA *) malloc(sizeof(DSA));
if (dsa_key == NULL) {
return (-2);
}
memset(dsa_key, 0, sizeof(*dsa_key));
d_key->dk_KEY_struct = (void *) dsa_key;
if (!dst_s_verify_str(&p, "Prime(p): "))
return (-3);
memset(s, 0, s_len);
if ((len = dst_s_conv_bignum_b64_to_u8(&p, s, s_len)) == 0)
return (-4);
dsa_key->p = BN_bin2bn (s, len, NULL);
if (dsa_key->p == NULL)
return(-5);
while (*++p && p < (const char *) &buff[buff_len]) {
if (dst_s_verify_str(&p, "Subprime(q): ")) {
if (!(len = dst_s_conv_bignum_b64_to_u8(&p, s, s_len)))
return (-6);
dsa_key->q = BN_bin2bn (s, len, NULL);
if (dsa_key->q == NULL)
return (-7);
} else if (dst_s_verify_str(&p, "Base(g): ")) {
if (!(len = dst_s_conv_bignum_b64_to_u8(&p, s, s_len)))
return (-8);
dsa_key->g = BN_bin2bn (s, len, NULL);
if (dsa_key->g == NULL)
return (-9);
} else if (dst_s_verify_str(&p, "Private_value(x): ")) {
if (!(len = dst_s_conv_bignum_b64_to_u8(&p, s, s_len)))
return (-10);
dsa_key->priv_key = BN_bin2bn (s, len, NULL);
if (dsa_key->priv_key == NULL)
return (-11);
} else if (dst_s_verify_str(&p, "Public_value(y): ")) {
if (!(len = dst_s_conv_bignum_b64_to_u8(&p, s, s_len)))
return (-12);
dsa_key->pub_key = BN_bin2bn (s, len, NULL);
if (dsa_key->pub_key == NULL)
return (-13);
} else {
EREPORT(("Decode_DSAKey(): Bad keyword %s\n", p));
return (-14);
}
} /* while p */
d_key->dk_key_size = BN_num_bytes(dsa_key->p);
return (0);
}
/**************************************************************************
* dst_eay_dss_free_key_structure
* Frees all dynamicly allocated structures in DSA.
*/
static void *
dst_eay_dss_free_key_structure(void *key)
{
DSA *d_key = (DSA *) key;
if (d_key != NULL) {
BN_free(d_key->p);
BN_free(d_key->q);
BN_free(d_key->g);
if (d_key->pub_key)
BN_free(d_key->pub_key);
if (d_key->priv_key)
BN_free(d_key->priv_key);
SAFE_FREE(d_key);
}
return (NULL);
}
/**************************************************************************
* dst_eay_dss_generate_keypair
* Generates unique keys that are hard to predict.
* Parameters
* key generic Key structure
* exp the public exponent
* Return
* 0 Failure
* 1 Success
*/
static int
dst_eay_dss_generate_keypair(DST_KEY *key, int nothing)
{
int status, n;
DSA *dsa;
u_char rand[SHA_DIGEST_LENGTH];
if (key == NULL || key->dk_alg != KEY_DSA)
return (0);
if ((dsa = (DSA *) malloc(sizeof(DSA))) == NULL) {
EREPORT(("dst_eay_dss_generate_keypair: Memory allocation error 3"));
return (0);
}
memset(dsa, 0, sizeof(*dsa));
n = dst_random(DST_RAND_KEY, sizeof(rand), rand);
if (n != sizeof(rand))
return (0);
dsa = DSA_generate_parameters(key->dk_key_size, rand, 20, NULL, NULL,
NULL, NULL);
if (!dsa) {
EREPORT(("dst_eay_dss_generate_keypair: Generate Parameters failed"));
return (0);
}
if (DSA_generate_key(dsa) == 0) {
EREPORT(("dst_eay_dss_generate_keypair: Generate Key failed"));
return(0);
}
key->dk_KEY_struct = (void *) dsa;
return (1);
}
/*
* dst_eay_dss_compare_keys
* Compare two keys for equality.
* Return
* 0 The keys are equal
* NON-ZERO The keys are not equal
*/
static int
dst_eay_dss_compare_keys(const DST_KEY *key1, const DST_KEY *key2)
{
int status;
DSA *dkey1 = (DSA *) key1->dk_KEY_struct;
DSA *dkey2 = (DSA *) key2->dk_KEY_struct;
if (dkey1 == NULL && dkey2 == NULL)
return (0);
else if (dkey1 == NULL)
return (2);
else if (dkey2 == NULL)
return(1);
status = BN_cmp(dkey1->p, dkey2->p) ||
BN_cmp(dkey1->q, dkey2->q) ||
BN_cmp(dkey1->g, dkey2->g) ||
BN_cmp(dkey1->pub_key, dkey2->pub_key);
if (status)
return (status);
if (dkey1->priv_key || dkey2->priv_key) {
if (dkey1->priv_key == NULL || dkey2->priv_key == NULL)
return (202);
return (BN_cmp(dkey1->priv_key, dkey2->priv_key));
} else
return (0);
}
#else
#include "port_before.h"
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <sys/param.h>
#include <sys/time.h>
#include <netinet/in.h>
#include "dst_internal.h"
#include "port_after.h"
int
dst_eay_dss_init(void)
{
return (0);
}
#endif /* EAY_DSS */