freebsd-skq/sys/dev/twa/twa_freebsd.c
vkashyap 8e955dcc90 Initial check-in of the device driver for 3ware's 9000 series
PATA/SATA RAID controllers.  This driver is a SIM under CAM, and
so, behaves like a driver for a SCSI controller.
2004-03-30 03:46:00 +00:00

1033 lines
26 KiB
C

/*-
* Copyright (c) 2003-04 3ware, Inc.
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* 3ware driver for 9000 series storage controllers.
*
* Author: Vinod Kashyap
*/
#include <dev/twa/twa_includes.h>
static void twa_setup_data_dmamap(void *arg, bus_dma_segment_t *segs,
int nsegments, int error);
static void twa_setup_request_dmamap(void *arg, bus_dma_segment_t *segs,
int nsegments, int error);
MALLOC_DEFINE(TWA_MALLOC_CLASS, "twa commands", "twa commands");
static d_open_t twa_open;
static d_close_t twa_close;
static d_ioctl_t twa_ioctl_wrapper;
static struct cdevsw twa_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = twa_open,
.d_close = twa_close,
.d_ioctl = twa_ioctl_wrapper,
.d_name = "twa",
};
static devclass_t twa_devclass;
/*
* Function name: twa_open
* Description: Called when the controller is opened.
* Simply marks the controller as open.
*
* Input: dev -- control device corresponding to the ctlr
* flags -- mode of open
* fmt -- device type (character/block etc.)
* proc -- current process
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_open(dev_t dev, int flags, int fmt, d_thread_t *proc)
{
int unit = minor(dev);
struct twa_softc *sc = devclass_get_softc(twa_devclass, unit);
sc->twa_state |= TWA_STATE_OPEN;
return(0);
}
/*
* Function name: twa_close
* Description: Called when the controller is closed.
* Simply marks the controller as not open.
*
* Input: dev -- control device corresponding to the ctlr
* flags -- mode of corresponding open
* fmt -- device type (character/block etc.)
* proc -- current process
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_close(dev_t dev, int flags, int fmt, d_thread_t *proc)
{
int unit = minor(dev);
struct twa_softc *sc = devclass_get_softc(twa_devclass, unit);
sc->twa_state &= ~TWA_STATE_OPEN;
return(0);
}
/*
* Function name: twa_ioctl_wrapper
* Description: Called when an ioctl is posted to the controller.
* Simply calls the ioctl handler.
*
* Input: dev -- control device corresponding to the ctlr
* cmd -- ioctl cmd
* buf -- ptr to buffer in kernel memory, which is
* a copy of the input buffer in user-space
* flags -- mode of corresponding open
* proc -- current process
* Output: buf -- ptr to buffer in kernel memory, which will
* be copied to the output buffer in user-space
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_ioctl_wrapper(dev_t dev, u_long cmd, caddr_t buf,
int flags, d_thread_t *proc)
{
struct twa_softc *sc = (struct twa_softc *)(dev->si_drv1);
return(twa_ioctl(sc, cmd, buf));
}
static int twa_probe (device_t dev);
static int twa_attach (device_t dev);
static void twa_free (struct twa_softc *sc);
static int twa_detach (device_t dev);
static int twa_shutdown (device_t dev);
static int twa_suspend (device_t dev);
static int twa_resume (device_t dev);
static void twa_pci_intr(void *arg);
static void twa_intrhook (void *arg);
static device_method_t twa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, twa_probe),
DEVMETHOD(device_attach, twa_attach),
DEVMETHOD(device_detach, twa_detach),
DEVMETHOD(device_shutdown, twa_shutdown),
DEVMETHOD(device_suspend, twa_suspend),
DEVMETHOD(device_resume, twa_resume),
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{0, 0}
};
static driver_t twa_pci_driver = {
"twa",
twa_methods,
sizeof(struct twa_softc)
};
DRIVER_MODULE(twa, pci, twa_pci_driver, twa_devclass, 0, 0);
/*
* Function name: twa_probe
* Description: Called at driver load time. Claims 9000 ctlrs.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: <= 0 -- success
* > 0 -- failure
*/
static int
twa_probe(device_t dev)
{
static u_int8_t first_ctlr = 1;
twa_dbg_print(3, "entered");
if ((pci_get_vendor(dev) == TWA_VENDOR_ID) &&
(pci_get_device(dev) == TWA_DEVICE_ID_9K)) {
device_set_desc(dev, TWA_DEVICE_NAME);
/* Print the driver version only once. */
if (first_ctlr) {
printf("3ware device driver for 9000 series storage controllers, version: %s\n",
TWA_DRIVER_VERSION_STRING);
first_ctlr = 0;
}
return(0);
}
return(ENXIO);
}
/*
* Function name: twa_attach
* Description: Allocates pci resources; updates sc; adds a node to the
* sysctl tree to expose the driver version; makes calls
* to initialize ctlr, and to attach to CAM.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_attach(device_t dev)
{
struct twa_softc *sc = device_get_softc(dev);
u_int32_t command;
int res_id;
int error;
twa_dbg_dprint_enter(3, sc);
/* Initialize the softc structure. */
sc->twa_bus_dev = dev;
sysctl_ctx_init(&sc->twa_sysctl_ctx);
sc->twa_sysctl_tree = SYSCTL_ADD_NODE(&sc->twa_sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_nameunit(dev), CTLFLAG_RD, 0, "");
if (sc->twa_sysctl_tree == NULL) {
twa_printf(sc, "Cannot add sysctl tree node.\n");
return(ENXIO);
}
SYSCTL_ADD_STRING(&sc->twa_sysctl_ctx, SYSCTL_CHILDREN(sc->twa_sysctl_tree),
OID_AUTO, "driver_version", CTLFLAG_RD,
TWA_DRIVER_VERSION_STRING, 0, "TWA driver version");
/* Make sure we are going to be able to talk to this board. */
command = pci_read_config(dev, PCIR_COMMAND, 2);
if ((command & PCIM_CMD_PORTEN) == 0) {
twa_printf(sc, "Register window not available.\n");
return(ENXIO);
}
/* Force the busmaster enable bit on, in case the BIOS forgot. */
command |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, command, 2);
/* Allocate the PCI register window. */
res_id = TWA_IO_CONFIG_REG;
if ((sc->twa_io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &res_id,
0, ~0, 1, RF_ACTIVE)) == NULL) {
twa_printf(sc, "can't allocate register window.\n");
twa_free(sc);
return(ENXIO);
}
sc->twa_bus_tag = rman_get_bustag(sc->twa_io_res);
sc->twa_bus_handle = rman_get_bushandle(sc->twa_io_res);
/* Allocate and connect our interrupt. */
res_id = 0;
if ((sc->twa_irq_res = bus_alloc_resource(sc->twa_bus_dev, SYS_RES_IRQ,
&res_id, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE)) == NULL) {
twa_printf(sc, "Can't allocate interrupt.\n");
twa_free(sc);
return(ENXIO);
}
if (bus_setup_intr(sc->twa_bus_dev, sc->twa_irq_res, INTR_TYPE_CAM,
twa_pci_intr, sc, &sc->twa_intr_handle)) {
twa_printf(sc, "Can't set up interrupt.\n");
twa_free(sc);
return(ENXIO);
}
/* Initialize the driver for this controller. */
if ((error = twa_setup(sc))) {
twa_free(sc);
return(error);
}
/* Print some information about the controller and configuration. */
twa_describe_controller(sc);
/* Create the control device. */
sc->twa_ctrl_dev = make_dev(&twa_cdevsw, device_get_unit(sc->twa_bus_dev),
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
"twa%d", device_get_unit(sc->twa_bus_dev));
sc->twa_ctrl_dev->si_drv1 = sc;
/*
* Schedule ourselves to bring the controller up once interrupts are
* available. This isn't strictly necessary, since we disable
* interrupts while probing the controller, but it is more in keeping
* with common practice for other disk devices.
*/
sc->twa_ich.ich_func = twa_intrhook;
sc->twa_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->twa_ich) != 0) {
twa_printf(sc, "Can't establish configuration hook.\n");
twa_free(sc);
return(ENXIO);
}
if ((error = twa_cam_setup(sc))) {
twa_free(sc);
return(error);
}
return(0);
}
/*
* Function name: twa_free
* Description: Performs clean-up at the time of going down.
*
* Input: sc -- ptr to per ctlr structure
* Output: None
* Return value: None
*/
static void
twa_free(struct twa_softc *sc)
{
struct twa_request *tr;
twa_dbg_dprint_enter(3, sc);
/* Detach from CAM */
twa_cam_detach(sc);
/* Destroy dma handles. */
bus_dmamap_unload(sc->twa_dma_tag, sc->twa_cmd_map);
while ((tr = twa_dequeue_free(sc)) != NULL)
bus_dmamap_destroy(sc->twa_dma_tag, tr->tr_dma_map);
/* Free all memory allocated so far. */
if (sc->twa_req_buf)
free(sc->twa_req_buf, TWA_MALLOC_CLASS);
if (sc->twa_cmd_pkt_buf)
bus_dmamem_free(sc->twa_dma_tag, sc->twa_cmd_pkt_buf,
sc->twa_cmd_map);
if (sc->twa_aen_queue[0])
free (sc->twa_aen_queue[0], M_DEVBUF);
/* Destroy the data-transfer DMA tag. */
if (sc->twa_dma_tag)
bus_dma_tag_destroy(sc->twa_dma_tag);
/* Disconnect the interrupt handler. */
if (sc->twa_intr_handle)
bus_teardown_intr(sc->twa_bus_dev, sc->twa_irq_res,
sc->twa_intr_handle);
if (sc->twa_irq_res != NULL)
bus_release_resource(sc->twa_bus_dev, SYS_RES_IRQ,
0, sc->twa_irq_res);
/* Release the register window mapping. */
if (sc->twa_io_res != NULL)
bus_release_resource(sc->twa_bus_dev, SYS_RES_IOPORT,
TWA_IO_CONFIG_REG, sc->twa_io_res);
/* Destroy the control device. */
if (sc->twa_ctrl_dev != (dev_t)NULL)
destroy_dev(sc->twa_ctrl_dev);
sysctl_ctx_free(&sc->twa_sysctl_ctx);
}
/*
* Function name: twa_detach
* Description: Called when the controller is being detached from
* the pci bus.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_detach(device_t dev)
{
struct twa_softc *sc = device_get_softc(dev);
int s;
int error;
twa_dbg_dprint_enter(3, sc);
error = EBUSY;
s = splcam();
if (sc->twa_state & TWA_STATE_OPEN)
goto out;
/* Shut the controller down. */
if ((error = twa_shutdown(dev)))
goto out;
/* Free all resources associated with this controller. */
twa_free(sc);
error = 0;
out:
splx(s);
return(error);
}
/*
* Function name: twa_shutdown
* Description: Called at unload/shutdown time. Lets the controller
* know that we are going down.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_shutdown(device_t dev)
{
struct twa_softc *sc = device_get_softc(dev);
int s;
int error = 0;
twa_dbg_dprint_enter(3, sc);
s = splcam();
/* Disconnect from the controller. */
error = twa_deinit_ctlr(sc);
splx(s);
return(error);
}
/*
* Function name: twa_suspend
* Description: Called to suspend I/O before hot-swapping PCI ctlrs.
* Doesn't do much as of now.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_suspend(device_t dev)
{
struct twa_softc *sc = device_get_softc(dev);
int s;
twa_dbg_dprint_enter(3, sc);
s = splcam();
sc->twa_state |= TWA_STATE_SUSPEND;
twa_disable_interrupts(sc);
splx(s);
return(1);
}
/*
* Function name: twa_resume
* Description: Called to resume I/O after hot-swapping PCI ctlrs.
* Doesn't do much as of now.
*
* Input: dev -- bus device corresponding to the ctlr
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
static int
twa_resume(device_t dev)
{
struct twa_softc *sc = device_get_softc(dev);
twa_dbg_dprint_enter(3, sc);
sc->twa_state &= ~TWA_STATE_SUSPEND;
twa_enable_interrupts(sc);
return(1);
}
/*
* Function name: twa_pci_intr
* Description: Interrupt handler. Wrapper for twa_interrupt.
*
* Input: arg -- ptr to per ctlr structure
* Output: None
* Return value: None
*/
static void
twa_pci_intr(void *arg)
{
struct twa_softc *sc = (struct twa_softc *)arg;
twa_interrupt(sc);
}
/*
* Function name: twa_intrhook
* Description: Callback for us to enable interrupts.
*
* Input: arg -- ptr to per ctlr structure
* Output: None
* Return value: None
*/
static void
twa_intrhook(void *arg)
{
struct twa_softc *sc = (struct twa_softc *)arg;
twa_dbg_dprint(4, sc, "twa_intrhook Entered");
/* Pull ourselves off the intrhook chain. */
config_intrhook_disestablish(&sc->twa_ich);
/* Enable interrupts. */
twa_enable_interrupts(sc);
}
/*
* Function name: twa_write_pci_config
* Description: Writes to the PCI config space.
*
* Input: sc -- ptr to per ctlr structure
* value -- value to be written
* size -- # of bytes to be written
* Output: None
* Return value: None
*/
void
twa_write_pci_config(struct twa_softc *sc, u_int32_t value, int size)
{
pci_write_config(sc->twa_bus_dev, PCIR_STATUS, value, size);
}
/*
* Function name: twa_alloc_req_pkts
* Description: Allocates memory for, and initializes request pkts,
* and queues them in the free queue.
*
* Input: sc -- ptr to per ctlr structure
* num_reqs-- # of request pkts to allocate and initialize.
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
int
twa_alloc_req_pkts(struct twa_softc *sc, int num_reqs)
{
struct twa_request *tr;
int i;
if ((sc->twa_req_buf = malloc(num_reqs * sizeof(struct twa_request),
TWA_MALLOC_CLASS, M_NOWAIT)) == NULL)
return(ENOMEM);
/* Allocate the bus DMA tag appropriate for PCI. */
if (bus_dma_tag_create(NULL, /* parent */
TWA_ALIGNMENT, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR + 1, /* highaddr */
NULL, NULL, /* filter, filterarg */
TWA_Q_LENGTH *
(sizeof(struct twa_command_packet)),/* maxsize */
TWA_MAX_SG_ELEMENTS, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&Giant, /* lockfuncarg */
&sc->twa_dma_tag /* tag */)) {
twa_printf(sc, "Can't allocate DMA tag.\n");
return(ENOMEM);
}
/* Allocate memory for cmd pkts. */
if (bus_dmamem_alloc(sc->twa_dma_tag,
(void *)(&(sc->twa_cmd_pkt_buf)),
BUS_DMA_WAITOK, &(sc->twa_cmd_map)))
return(ENOMEM);
bus_dmamap_load(sc->twa_dma_tag, sc->twa_cmd_map,
sc->twa_cmd_pkt_buf,
num_reqs * sizeof(struct twa_command_packet),
twa_setup_request_dmamap, sc, 0);
bzero(sc->twa_req_buf, num_reqs * sizeof(struct twa_request));
bzero(sc->twa_cmd_pkt_buf,
num_reqs * sizeof(struct twa_command_packet));
for (i = 0; i < num_reqs; i++) {
tr = &(sc->twa_req_buf[i]);
tr->tr_command = &(sc->twa_cmd_pkt_buf[i]);
tr->tr_cmd_phys = sc->twa_cmd_pkt_phys +
(i * sizeof(struct twa_command_packet));
tr->tr_request_id = i;
tr->tr_sc = sc;
sc->twa_lookup[i] = tr;
/*
* Create a map for data buffers. maxsize (256 * 1024) used in
* bus_dma_tag_create above should suffice the bounce page needs
* for data buffers, since the max I/O size we support is 128KB.
* If we supported I/O's bigger than 256KB, we would have to
* create a second dma_tag, with the appropriate maxsize.
*/
if (bus_dmamap_create(sc->twa_dma_tag, 0,
&tr->tr_dma_map))
return(ENOMEM);
/* Insert request into the free queue. */
twa_release_request(tr);
}
return(0);
}
/*
* Function name: twa_fillin_sgl
* Description: Fills in the scatter/gather list.
*
* Input: sgl -- ptr to sg list
* segs -- ptr to fill the sg list from
* nsegments--# of segments
* Output: None
* Return value: None
*/
static void
twa_fillin_sgl(struct twa_sg *sgl, bus_dma_segment_t *segs, int nsegments)
{
int i;
for (i = 0; i < nsegments; i++) {
sgl[i].address = segs[i].ds_addr;
sgl[i].length = segs[i].ds_len;
}
}
/*
* Function name: twa_setup_data_dmamap
* Description: Callback of bus_dmamap_load for the buffer associated
* with data. Updates the cmd pkt (size/sgl_entries
* fields, as applicable) to reflect the number of sg
* elements.
*
* Input: arg -- ptr to request pkt
* segs -- ptr to a list of segment descriptors
* nsegments--# of segments
* error -- 0 if no errors encountered before callback,
* non-zero if errors were encountered
* Output: None
* Return value: None
*/
static void
twa_setup_data_dmamap(void *arg, bus_dma_segment_t *segs,
int nsegments, int error)
{
struct twa_request *tr = (struct twa_request *)arg;
struct twa_command_packet *cmdpkt = tr->tr_command;
struct twa_command_9k *cmd9k;
union twa_command_7k *cmd7k;
u_int8_t sgl_offset;
twa_dbg_dprint_enter(10, tr->tr_sc);
if ((tr->tr_flags & TWA_CMD_IN_PROGRESS) &&
(tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_EXTERNAL))
twa_allow_new_requests(tr->tr_sc, (void *)(tr->tr_private));
if (error == EFBIG) {
tr->tr_error = error;
goto out;
}
if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K) {
cmd9k = &(cmdpkt->command.cmd_pkt_9k);
twa_fillin_sgl(&(cmd9k->sg_list[0]), segs, nsegments);
cmd9k->sgl_entries += nsegments - 1;
} else {
/* It's a 7000 command packet. */
cmd7k = &(cmdpkt->command.cmd_pkt_7k);
if ((sgl_offset = cmdpkt->command.cmd_pkt_7k.generic.sgl_offset))
twa_fillin_sgl((struct twa_sg *)
(((u_int32_t *)cmd7k) + sgl_offset),
segs, nsegments);
/* Modify the size field, based on sg address size. */
cmd7k->generic.size +=
((TWA_64BIT_ADDRESSES ? 3 : 2) * nsegments);
}
if (tr->tr_flags & TWA_CMD_DATA_IN)
bus_dmamap_sync(tr->tr_sc->twa_dma_tag, tr->tr_dma_map,
BUS_DMASYNC_PREREAD);
if (tr->tr_flags & TWA_CMD_DATA_OUT) {
/*
* If we're using an alignment buffer, and we're
* writing data, copy the real data out.
*/
if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED)
bcopy(tr->tr_real_data, tr->tr_data, tr->tr_real_length);
bus_dmamap_sync(tr->tr_sc->twa_dma_tag, tr->tr_dma_map,
BUS_DMASYNC_PREWRITE);
}
error = twa_submit_io(tr);
out:
if (error) {
twa_unmap_request(tr);
/*
* If the caller had been returned EINPROGRESS, and he has
* registered a callback for handling completion, the callback
* will never get called because we were unable to submit the
* request. So, free up the request right here.
*/
if ((tr->tr_flags & TWA_CMD_IN_PROGRESS) && (tr->tr_callback))
twa_release_request(tr);
}
}
/*
* Function name: twa_setup_request_dmamap
* Description: Callback of bus_dmamap_load for the buffer associated
* with a cmd pkt.
*
* Input: arg -- ptr to request pkt
* segs -- ptr to a list of segment descriptors
* nsegments--# of segments
* error -- 0 if no errors encountered before callback,
* non-zero if errors were encountered
* Output: None
* Return value: None
*/
static void
twa_setup_request_dmamap(void *arg, bus_dma_segment_t *segs,
int nsegments, int error)
{
struct twa_softc *sc = (struct twa_softc *)arg;
twa_dbg_dprint_enter(10, sc);
sc->twa_cmd_pkt_phys = segs[0].ds_addr;
}
/*
* Function name: twa_map_request
* Description: Maps a cmd pkt and data associated with it, into
* DMA'able memory.
*
* Input: tr -- ptr to request pkt
* Output: None
* Return value: 0 -- success
* non-zero-- failure
*/
int
twa_map_request(struct twa_request *tr)
{
struct twa_softc *sc = tr->tr_sc;
int error = 0;
twa_dbg_dprint_enter(10, sc);
/* If the command involves data, map that too. */
if (tr->tr_data != NULL) {
/*
* It's sufficient for the data pointer to be 4-byte aligned
* to work with 9000. However, if 4-byte aligned addresses
* are passed to bus_dmamap_load, we can get back sg elements
* that are not 512-byte multiples in size. So, we will let
* only those buffers that are 512-byte aligned to pass
* through, and bounce the rest, so as to make sure that we
* always get back sg elements that are 512-byte multiples
* in size.
*/
if (((vm_offset_t)tr->tr_data % 512) || (tr->tr_length % 512)) {
tr->tr_flags |= TWA_CMD_DATA_COPY_NEEDED;
tr->tr_real_data = tr->tr_data; /* save original data pointer */
tr->tr_real_length = tr->tr_length; /* save original data length */
tr->tr_length = (tr->tr_length + 511) & ~511;
tr->tr_data = malloc(tr->tr_length, TWA_MALLOC_CLASS, M_NOWAIT);
if (tr->tr_data == NULL) {
twa_printf(sc, "%s: malloc failed\n", __func__);
tr->tr_data = tr->tr_real_data; /* restore original data pointer */
tr->tr_length = tr->tr_real_length; /* restore original data length */
return(ENOMEM);
}
}
/*
* Map the data buffer into bus space and build the s/g list.
*/
if ((error = bus_dmamap_load(sc->twa_dma_tag, tr->tr_dma_map,
tr->tr_data, tr->tr_length,
twa_setup_data_dmamap, tr,
BUS_DMA_WAITOK))) {
if (error == EINPROGRESS) {
tr->tr_flags |= TWA_CMD_IN_PROGRESS;
if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_EXTERNAL)
twa_disallow_new_requests(sc);
error = 0;
} else {
/* Free alignment buffer if it was used. */
if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) {
free(tr->tr_data, TWA_MALLOC_CLASS);
tr->tr_data = tr->tr_real_data; /* restore 'real' data pointer */
tr->tr_length = tr->tr_real_length;/* restore 'real' data length */
}
}
} else
error = tr->tr_error;
} else
if ((error = twa_submit_io(tr)))
twa_unmap_request(tr);
return(error);
}
/*
* Function name: twa_unmap_request
* Description: Undoes the mapping done by twa_map_request.
*
* Input: tr -- ptr to request pkt
* Output: None
* Return value: None
*/
void
twa_unmap_request(struct twa_request *tr)
{
struct twa_softc *sc = tr->tr_sc;
u_int8_t cmd_status;
twa_dbg_dprint_enter(10, sc);
/* If the command involved data, unmap that too. */
if (tr->tr_data != NULL) {
if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K)
cmd_status = tr->tr_command->command.cmd_pkt_9k.status;
else
cmd_status = tr->tr_command->command.cmd_pkt_7k.generic.status;
if (tr->tr_flags & TWA_CMD_DATA_IN) {
bus_dmamap_sync(sc->twa_dma_tag,
tr->tr_dma_map, BUS_DMASYNC_POSTREAD);
/*
* If we are using a bounce buffer, and we are reading
* data, copy the real data in.
*/
if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED)
if (cmd_status == 0)
bcopy(tr->tr_data, tr->tr_real_data,
tr->tr_real_length);
}
if (tr->tr_flags & TWA_CMD_DATA_OUT)
bus_dmamap_sync(sc->twa_dma_tag, tr->tr_dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->twa_dma_tag, tr->tr_dma_map);
}
/* Free alignment buffer if it was used. */
if (tr->tr_flags & TWA_CMD_DATA_COPY_NEEDED) {
free(tr->tr_data, TWA_MALLOC_CLASS);
tr->tr_data = tr->tr_real_data; /* restore 'real' data pointer */
tr->tr_length = tr->tr_real_length;/* restore 'real' data length */
}
}
#ifdef TWA_DEBUG
void twa_report(void);
void twa_reset_stats(void);
void twa_print_request(struct twa_request *tr, int req_type);
/*
* Function name: twa_report
* Description: For being called from ddb. Prints controller stats,
* and requests, if any, that are in the wrong queue.
*
* Input: None
* Output: None
* Return value: None
*/
void
twa_report(void)
{
struct twa_softc *sc;
struct twa_request *tr;
int s;
int i;
s = splcam();
for (i = 0; (sc = devclass_get_softc(twa_devclass, i)) != NULL; i++) {
twa_print_controller(sc);
TAILQ_FOREACH(tr, &sc->twa_busy, tr_link)
twa_print_request(tr, TWA_CMD_BUSY);
TAILQ_FOREACH(tr, &sc->twa_complete, tr_link)
twa_print_request(tr, TWA_CMD_COMPLETE);
}
splx(s);
}
/*
* Function name: twa_reset_stats
* Description: For being called from ddb.
* Resets some controller stats.
*
* Input: None
* Output: None
* Return value: None
*/
void
twa_reset_stats(void)
{
struct twa_softc *sc;
int s;
int i;
s = splcam();
for (i = 0; (sc = devclass_get_softc(twa_devclass, i)) != NULL; i++) {
sc->twa_qstats[TWAQ_FREE].q_max = 0;
sc->twa_qstats[TWAQ_BUSY].q_max = 0;
sc->twa_qstats[TWAQ_PENDING].q_max = 0;
sc->twa_qstats[TWAQ_COMPLETE].q_max = 0;
}
splx(s);
}
/*
* Function name: twa_print_request
* Description: Prints a given request if it's in the wrong queue.
*
* Input: tr -- ptr to request pkt
* req_type-- expected status of the given request
* Output: None
* Return value: None
*/
void
twa_print_request(struct twa_request *tr, int req_type)
{
struct twa_softc *sc = tr->tr_sc;
struct twa_command_packet *cmdpkt = tr->tr_command;
struct twa_command_9k *cmd9k;
union twa_command_7k *cmd7k;
u_int8_t *cdb;
int cmd_phys_addr;
if (tr->tr_status != req_type) {
twa_printf(sc, "Invalid %s request %p in queue! req_type = %x, queue_type = %x\n",
(tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_INTERNAL) ? "INTERNAL" : "EXTERNAL",
tr, tr->tr_status, req_type);
if (tr->tr_cmd_pkt_type & TWA_CMD_PKT_TYPE_9K) {
cmd9k = &(cmdpkt->command.cmd_pkt_9k);
cmd_phys_addr = cmd9k->sg_list[0].address;
twa_printf(sc, "9K cmd = %x %x %x %x %x %x %x %x %x\n",
cmd9k->command.opcode,
cmd9k->command.reserved,
cmd9k->unit,
cmd9k->request_id,
cmd9k->status,
cmd9k->sgl_offset,
cmd9k->sgl_entries,
cmd_phys_addr,
cmd9k->sg_list[0].length);
cdb = (u_int8_t *)(cmdpkt->command.cmd_pkt_9k.cdb);
twa_printf(sc, "cdb = %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
cdb[0], cdb[1], cdb[2], cdb[3], cdb[4], cdb[5], cdb[6], cdb[7],
cdb[8], cdb[9], cdb[10], cdb[11], cdb[12], cdb[13], cdb[14], cdb[15]);
} else {
cmd7k = &(cmdpkt->command.cmd_pkt_7k);
twa_printf(sc, "7K cmd = %x %x %x %x %x %x %x %x %x\n",
cmd7k->generic.opcode,
cmd7k->generic.sgl_offset,
cmd7k->generic.size,
cmd7k->generic.request_id,
cmd7k->generic.unit,
cmd7k->generic.host_id,
cmd7k->generic.status,
cmd7k->generic.flags,
cmd7k->generic.count);
}
cmd_phys_addr = (int)(tr->tr_cmd_phys);
twa_printf(sc, "cmdphys=0x%x data=%p length=0x%x\n",
cmd_phys_addr, tr->tr_data, tr->tr_length);
twa_printf(sc, "req_id=0x%x flags=0x%x callback=%p private=%p\n",
tr->tr_request_id, tr->tr_flags,
tr->tr_callback, tr->tr_private);
}
}
#endif