fb3b9b52bc
precision.
295 lines
9.0 KiB
C
295 lines
9.0 KiB
C
/*-
|
|
* Copyright (c) 2008 David Schultz <das@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Tests for corner cases in trigonometric functions. Some accuracy tests
|
|
* are included as well, but these are very basic sanity checks, not
|
|
* intended to be comprehensive.
|
|
*
|
|
* The program for generating representable numbers near multiples of pi is
|
|
* available at http://www.cs.berkeley.edu/~wkahan/testpi/ .
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <assert.h>
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
|
|
FE_OVERFLOW | FE_UNDERFLOW)
|
|
|
|
#define LEN(a) (sizeof(a) / sizeof((a)[0]))
|
|
|
|
#pragma STDC FENV_ACCESS ON
|
|
|
|
/*
|
|
* Test that a function returns the correct value and sets the
|
|
* exception flags correctly. The exceptmask specifies which
|
|
* exceptions we should check. We need to be lenient for several
|
|
* reasons, but mainly because on some architectures it's impossible
|
|
* to raise FE_OVERFLOW without raising FE_INEXACT.
|
|
*
|
|
* These are macros instead of functions so that assert provides more
|
|
* meaningful error messages.
|
|
*
|
|
* XXX The volatile here is to avoid gcc's bogus constant folding and work
|
|
* around the lack of support for the FENV_ACCESS pragma.
|
|
*/
|
|
#define test(func, x, result, exceptmask, excepts) do { \
|
|
volatile long double _d = x; \
|
|
assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
|
|
assert(fpequal((func)(_d), (result))); \
|
|
assert(((func), fetestexcept(exceptmask) == (excepts))); \
|
|
} while (0)
|
|
|
|
#define testall(prefix, x, result, exceptmask, excepts) do { \
|
|
test(prefix, x, (double)result, exceptmask, excepts); \
|
|
test(prefix##f, x, (float)result, exceptmask, excepts); \
|
|
test(prefix##l, x, result, exceptmask, excepts); \
|
|
} while (0)
|
|
|
|
#define testdf(prefix, x, result, exceptmask, excepts) do { \
|
|
test(prefix, x, (double)result, exceptmask, excepts); \
|
|
test(prefix##f, x, (float)result, exceptmask, excepts); \
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
* Determine whether x and y are equal, with two special rules:
|
|
* +0.0 != -0.0
|
|
* NaN == NaN
|
|
*/
|
|
int
|
|
fpequal(long double x, long double y)
|
|
{
|
|
return ((x == y && signbit(x) == signbit(y)) || isnan(x) && isnan(y));
|
|
}
|
|
|
|
/*
|
|
* Test special cases in sin(), cos(), and tan().
|
|
*/
|
|
static void
|
|
run_special_tests(void)
|
|
{
|
|
|
|
/* Values at 0 should be exact. */
|
|
testall(tan, 0.0, 0.0, ALL_STD_EXCEPT, 0);
|
|
testall(tan, -0.0, -0.0, ALL_STD_EXCEPT, 0);
|
|
testall(cos, 0.0, 1.0, ALL_STD_EXCEPT, 0);
|
|
testall(cos, -0.0, 1.0, ALL_STD_EXCEPT, 0);
|
|
testall(sin, 0.0, 0.0, ALL_STD_EXCEPT, 0);
|
|
testall(sin, -0.0, -0.0, ALL_STD_EXCEPT, 0);
|
|
|
|
/* func(+-Inf) == NaN */
|
|
testall(tan, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
testall(sin, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
testall(cos, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
testall(tan, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
testall(sin, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
testall(cos, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
|
|
|
|
/* func(NaN) == NaN */
|
|
testall(tan, NAN, NAN, ALL_STD_EXCEPT, 0);
|
|
testall(sin, NAN, NAN, ALL_STD_EXCEPT, 0);
|
|
testall(cos, NAN, NAN, ALL_STD_EXCEPT, 0);
|
|
}
|
|
|
|
/*
|
|
* Tests to ensure argument reduction for large arguments is accurate.
|
|
*/
|
|
static void
|
|
run_reduction_tests(void)
|
|
{
|
|
/* floats very close to odd multiples of pi */
|
|
static const float f_pi_odd[] = {
|
|
85563208.0f,
|
|
43998769152.0f,
|
|
9.2763667655669323e+25f,
|
|
1.5458357838905804e+29f,
|
|
};
|
|
/* doubles very close to odd multiples of pi */
|
|
static const double d_pi_odd[] = {
|
|
3.1415926535897931,
|
|
91.106186954104004,
|
|
642615.9188844458,
|
|
3397346.5699258847,
|
|
6134899525417045.0,
|
|
3.0213551960457761e+43,
|
|
1.2646209897993783e+295,
|
|
6.2083625380677099e+307,
|
|
};
|
|
/* long doubles very close to odd multiples of pi */
|
|
#if LDBL_MANT_DIG == 64
|
|
static const long double ld_pi_odd[] = {
|
|
1.1891886960373841596e+101L,
|
|
1.07999475322710967206e+2087L,
|
|
6.522151627890431836e+2147L,
|
|
8.9368974898260328229e+2484L,
|
|
9.2961044110572205863e+2555L,
|
|
4.90208421886578286e+3189L,
|
|
1.5275546401232615884e+3317L,
|
|
1.7227465626338900093e+3565L,
|
|
2.4160090594000745334e+3808L,
|
|
9.8477555741888350649e+4314L,
|
|
1.6061597222105160737e+4326L,
|
|
};
|
|
#elif LDBL_MANT_DIG == 113
|
|
static const long double ld_pi_odd[] = {
|
|
/* XXX */
|
|
};
|
|
#endif
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < LEN(f_pi_odd); i++) {
|
|
assert(fabs(sinf(f_pi_odd[i])) < FLT_EPSILON);
|
|
assert(cosf(f_pi_odd[i]) == -1.0);
|
|
assert(fabs(tan(f_pi_odd[i])) < FLT_EPSILON);
|
|
|
|
assert(fabs(sinf(-f_pi_odd[i])) < FLT_EPSILON);
|
|
assert(cosf(-f_pi_odd[i]) == -1.0);
|
|
assert(fabs(tanf(-f_pi_odd[i])) < FLT_EPSILON);
|
|
|
|
assert(fabs(sinf(f_pi_odd[i] * 2)) < FLT_EPSILON);
|
|
assert(cosf(f_pi_odd[i] * 2) == 1.0);
|
|
assert(fabs(tanf(f_pi_odd[i] * 2)) < FLT_EPSILON);
|
|
|
|
assert(fabs(sinf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
|
|
assert(cosf(-f_pi_odd[i] * 2) == 1.0);
|
|
assert(fabs(tanf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
|
|
}
|
|
|
|
for (i = 0; i < LEN(d_pi_odd); i++) {
|
|
assert(fabs(sin(d_pi_odd[i])) < 2 * DBL_EPSILON);
|
|
assert(cos(d_pi_odd[i]) == -1.0);
|
|
assert(fabs(tan(d_pi_odd[i])) < 2 * DBL_EPSILON);
|
|
|
|
assert(fabs(sin(-d_pi_odd[i])) < 2 * DBL_EPSILON);
|
|
assert(cos(-d_pi_odd[i]) == -1.0);
|
|
assert(fabs(tan(-d_pi_odd[i])) < 2 * DBL_EPSILON);
|
|
|
|
assert(fabs(sin(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
|
|
assert(cos(d_pi_odd[i] * 2) == 1.0);
|
|
assert(fabs(tan(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
|
|
|
|
assert(fabs(sin(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
|
|
assert(cos(-d_pi_odd[i] * 2) == 1.0);
|
|
assert(fabs(tan(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
|
|
}
|
|
|
|
#if LDBL_MANT_DIG > 53
|
|
for (i = 0; i < LEN(ld_pi_odd); i++) {
|
|
assert(fabsl(sinl(ld_pi_odd[i])) < LDBL_EPSILON);
|
|
assert(cosl(ld_pi_odd[i]) == -1.0);
|
|
assert(fabsl(tanl(ld_pi_odd[i])) < LDBL_EPSILON);
|
|
|
|
assert(fabsl(sinl(-ld_pi_odd[i])) < LDBL_EPSILON);
|
|
assert(cosl(-ld_pi_odd[i]) == -1.0);
|
|
assert(fabsl(tanl(-ld_pi_odd[i])) < LDBL_EPSILON);
|
|
|
|
assert(fabsl(sinl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
|
|
assert(cosl(ld_pi_odd[i] * 2) == 1.0);
|
|
assert(fabsl(tanl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
|
|
|
|
assert(fabsl(sinl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
|
|
assert(cosl(-ld_pi_odd[i] * 2) == 1.0);
|
|
assert(fabsl(tanl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tests the accuracy of these functions over the primary range.
|
|
*/
|
|
static void
|
|
run_accuracy_tests(void)
|
|
{
|
|
|
|
/* For small args, sin(x) = tan(x) = x, and cos(x) = 1. */
|
|
testall(sin, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testall(tan, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testall(cos, 0xd.50ee515fe4aea16p-114L, 1.0,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
|
|
/*
|
|
* These tests should pass for f32, d64, and ld80 as long as
|
|
* the error is <= 0.75 ulp (round to nearest)
|
|
*/
|
|
#if LDBL_MANT_DIG <= 64
|
|
#define testacc testall
|
|
#else
|
|
#define testacc testdf
|
|
#endif
|
|
testacc(sin, 0.17255452780841205174L, 0.17169949801444412683L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testacc(sin, -0.75431944555904520893L, -0.68479288156557286353L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testacc(cos, 0.70556358769838947292L, 0.76124620693117771850L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testacc(cos, -0.34061437849088045332L, 0.94254960031831729956L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testacc(tan, -0.15862817413325692897L, -0.15997221861309522115L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
testacc(tan, 0.38374784931303813530L, 0.40376500259976759951L,
|
|
ALL_STD_EXCEPT, FE_INEXACT);
|
|
|
|
/*
|
|
* XXX missing:
|
|
* - tests for ld128
|
|
* - tests for other rounding modes (probably won't pass for now)
|
|
* - tests for large numbers that get reduced to hi+lo with lo!=0
|
|
*/
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
|
|
printf("1..3\n");
|
|
|
|
run_special_tests();
|
|
printf("ok 1 - trig\n");
|
|
|
|
#ifndef __i386__
|
|
run_reduction_tests();
|
|
#endif
|
|
printf("ok 2 - trig\n");
|
|
|
|
#ifndef __i386__
|
|
run_accuracy_tests();
|
|
#endif
|
|
printf("ok 3 - trig\n");
|
|
|
|
return (0);
|
|
}
|